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Abstract. The recognition of painted strokes is an important step in
analyzing underdrawings in infrared reflectogramms. But even for art
experts, it is difficult to recognize all drawing tools and materials used
for the creation of the strokes. Thus the use of computer-aided imag-
ing technologies brings a new and objective analysis and assists the art
experts. This work proposes a method to recognize strokes drawn by
different drawing tools and materials. The method uses texture analysis
algorithms performing along the drawing trace to distinguish between
different types of strokes. The benefit of this method is the increased
content of textural information within the stroke and simultaneously in
the border region. We tested our algorithms on a set of six different types
of strokes: 3 classes of fluid and 3 classes of dry drawing materials.

1 Introduction

Infrared reflectogramms are a popular tool for the investigation of underdraw-
ings from medieval painted works of art. Underdrawings constitute the basic
concept of an artist when he starts his work of art. Normally they are hidden
by paint layers of the finished work and thus unseen in the visible range of the
electromagnetic spectrum. Infrared reflectography (IRR) allows a look through
the paint layers and thus a visualization of the underdrawing. The wavelength of
IRR lies in the range from approx. 1000 to 2500nm where the longer wavelength
facilitates the penetration of the paint layers. The generated image is called in-
frared (IR) reflectogramm [3]. Conservators and art historians are interested in
the development of underdrawings, their relation to other drawings and differ-
ences between underdrawings and the covering painting. Further more painting
instructions and the identification of the drawing tool and material used for the
creation of the underdrawing are of particular interest. But the recognition of
the drawing tool and material of painted strokes in IR images is not always clear
and unambiguous. The limited resolution of the acquisition system, the use of
different tools in a painting and disturbing paint layers make a recognition with
the naked eye difficult. Thus the use of computer-aided systems can assist art
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experts in doing their work comparable to the usage of computers in medical
applications which are nowadays inconceivable without computers.

Painted Strokes can be drawn either in dry or fluid drawing material. Chalk
and graphite are examples for dry materials and paint or ink applied by pen or
brush are examples for fluid painting materials. The appearance of the boundary
characteristics, the texture, the stroke endings or the color variety can be used
for the visual recognition.

In this work we are going to develop an algorithm which allows the identifi-
cation of the drawing material used for the creation of painted strokes. Several
work in this direction has been done before. A segmentation and classification
of underdrawing strokes by the help of snakes is reported in [6]. The analysis
of the texture of strokes is shown in [4] and [8]. Wirotius et al. [14] showed a
differentiation in gray level distributions for writer identification.

Our approach differs with respect to [4] and [8] in that the calculation of the
textural features is aligned i.e. the window in which the features are extracted
moves along the stroke trace, parallel to the stroke boundary. Through this
innovation we have several advantages: we can use bigger analysis windows in
order to have more texture information, we have more texture information of
the border region of the strokes and the method takes the directional nature of
the texture formation process into account.

The organization of this paper is as follows. The next section shows the
data material used in our work. Section 3 covers the algorithm. In Section 4
experiments and results are given followed by conclusions and an outlook in
Section 5.

2 Data

The texture of painted strokes depends primarily on the painting tool and ma-
terial used. Also the underground affects the appearance of the strokes. But for
medieval panel paintings the underground is prepared to be as plain as possible.
Thus the effect of the painting underground will be not investigated in this work
as well as we have no information about this fact in IR reflectogramms.

The strokes considered in the present study are applied on test panels pre-
pared by a restorer. Bomford specified typical drawing media used for the cre-
ation of underdrawings in medieval painted work of art [1]. These drawing me-
dia will be examined and considered in this work: graphite, black chalk and
silver point are the representatives for the dry strokes and ink applied by brush,
quill or reed pen are the considered fluid strokes. Figure 1 gives examples for
dry and fluid drawing materials. The first row shows a sample window from a
scanned image in the size of 100 x 80 pixels. Pixel-value cross-sections along the
white line segments from this image can be seen in the second row. The im-
age profile varies clearly between the strokes and the main differences lie within
the border regions of the profiles and thus in the border region of the strokes.
Hence important information to distinguish between strokes lies within the bor-
der region of the strokes and thus even these regions have to be considered
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Fig. 1. Strokes considered: normal view, profile and 3D view

Fig. 2. The reed pen stroke shows discontinuities along the stroke surface (texture)

in the texture analysis. The third row shows a 3D view of the stroke surface
with the pixel value on the z-axis. The surface between dry materials varies
clearly but the surface from fluid drawing materials is nearby constant. Differ-
ences can be seen in the distribution of the texture over the whole stroke. Quill
strokes have a very homogeneous black surface. The texture from brush strokes
is very similar except to some brighter areas. The surface from the reed pen
shows some discontinuities with some brighter areas in the medial part which
has less drawing material than the border region. This incident can be seen in
Figure 2.

2.1  Scanned Images

For our first tests we digitized the panels using a flat-bed scanner with a relative
resolution of 1200dpi. Examples of the scanned images can be seen in Figure 1.
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Fig. 3. IR images without (a) and with the covering color layers Alizarin(b) and Ul-
tramarine blue(c)

2.2 IR Images

To test our method on real underdrawings we covered the test panels with paint
layers in order to simulate real underdrawing strokes. Our acquisition system
consists of a Vidicon tube camera (Hamamatsu C1000) with a spectral sensitivity
between 900nm and 2000nm which was attached to a Matrox frame grabber. The
size of the digitized images is 629 x 548 pixel with an relative resolution of approx.
700 dpi.

The visibility of underdrawing strokes in IR reflectogramms depends on the
transmission rate 7 and the thickness of the color pigments and the contrast
between underdrawing strokes and the background [9]. For our work we used two
color pigments with a high transmission rate. The Schmincke Mussini® colors
Alizarin (red) and Ultramarine blue were applied on thin glass plates which
covered our test panels in order to simulate underdrawing strokes. Figure 3
shows IR images where the test panels were covered with the paint layers. It can
be seen that the strokes and even their texture can be realized in the covered IR
images (b) and (c). Only some reflection points and blurred parts can be seen.
Remember that the strokes in (b) and (c) cannot be realized in the visible range
through the covering paint layer.

3 Algorithm

Figure 4 gives an overview of our algorithm. After the acquisition of the test
panels and the segmentation of the individual strokes we calculate the medial
axis in order to afford the calculation of the textural features along the stroke
trace in painting direction. The textural features calculated are the input for the
classifier which determines the painting tool and material used for the creation
of the stroke.

3.1 Segmentation

For our purpose of testing the algorithm on test panels it is sufficient to segment
the strokes from the plain background. Through the similarity to document im-
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Fig. 4. The overall algorithm for the recognition of painted strokes

Fig. 5. (a) Input image, (b) shows a detail from (a) after the segmentation and calcu-
lation of the medial axis

age analysis we use the top hat transformation to plain the background followed
by a global threshold produced by Otsu’s method to segment the strokes from
the background. The method showed best result in [7]. Morphological operations
remove artifacts from the background and inside the strokes. After segmenting
the strokes from the background the intrinsic segmentation of the strokes is
done. We calculate the medial axis of the strokes with the thinning algorithm
from [15]. To enable the calculation of the textural features a stroke can have
only two endpoints of his medial axis. Thus small artifacts from the skeleton are
removed by pruning and crossing strokes are separated into individual segments.
Figure 5 shows an example of the medial axis with removed artifacts from an IR
image.

3.2 Texture Analysis

The primary task in identifying the painted strokes is the extraction of the
textural features. The benefit of our method is the direction controlled analysis.
Standard texture analysis algorithms perform parallel to the image boundaries
and calculate features for every pixel. For the stroke application it is optimal to
scan the textural features along the medial axis of the stroke trace. This condition
can be seen in Figure 6 where the rotated sampling window (b) contains more
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Fig. 6. Sample windows to calculate textural features. (a) standard method, (b) pro-
posed method

texture information than the normal window (a). Through this innovation we
have several advantages:

— Bigger sample windows can be adopted to gain the textural features for
providing more texture information

— The windows include more border information of the strokes which is fun-
damental to distinguish between them (see Section 2)

— The performance is better because textural features are calculated only for
the segmented part

To gain the textural features we applied two different texture analysis methods. A
similar application area is the texture analysis of clouds [2]. So the first method
used in our work is the Gray Level Co-occurrence Matrix (GLCM) [5] which
showed good results in this work and the second method is the discrete wavelet
transformation DWT [10] which also outperformed other methods in several
comparative studies [13,12].

Gray Level Co-occurrence Matrix. The GLCM is a very popular tool for
texture analysis. It was presented in 1973 by Haralick et al. [5]. The N x N GLCM
describes the spatial alignment and the spatial dependency of the different gray
levels, whereas N is the number of gray levels in the original image. The co-
occurrence matrix Py 4(4, ) is defined as follows. The entry (i,5) of Py 4 is the
number of occurrences of the pair of gray levels ¢ and j at inter-pixel distance d
and the direction angle ¢. The considered direction angles are 0°, 45°, 90° and
135°. For a chosen distance d = 1 we computed the energy, inertia, entropy and
the homogeneity of the mean of these four directions to get a four dimensional
feature vector.

Discrete Wavelet Transformation. The discrete wavelet transformation
(DWT) [10] decomposes an original signal f(z) with a family of basis func-
tions ¥ » (), which are dilations and translations of a single prototype wavelet
function known as the mother wavelet 1 (z):

f(x) = Z Z Cm,n'(/)m,n(x) . (1)

n=0m=0

Cm,n constitutes the DWT coefficients where m and n are integers and referred
to as the dilation and translation parameters. An efficient way to implement this
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Fig. 7. (a) 10 channels of a three level wavelet decomposition of an image. (b) Grouping
of wavelet channels to form 4 bands to calculate the features [11]

scheme using filters was developed by Mallat [10]. The 2D DWT is computed by
a pyramid transform scheme using filter banks. The filter banks are composed
of a low pass and a high pass filter and each filter bank is then sampled down
at a half rate of the previous frequency. The input image is convolved by a high
pass filter and a low pass filter in horizontal direction (rows) followed by another
convolution with a high and a low pass filter in vertical direction (columns). Thus
the original image is transformed into four sub images after each decomposition
step. See [11] for details. A three level decomposition results in 10 sub images,
see Figure 7(a) whereas the approximation image is the input image for the
next level.

We use a Daubechies dbl0 motherwavelet for our analysis. The energy of
the coefficient magnitudes ¢, ,, is calculated to build a four dimensional feature
vector: the HL and LH sub images from each channel are combined and the HH
sub images are not considered because they tend to contain the majority of noise
[11], see Figure 7(b).

4 Experiments and Results

After segmenting the images and the calculation of the medial axis we have
122 scanned strokes and 258 strokes acquired with the Vidicon tube camera.
We have 6 classes of strokes from the scanned images and 5 classes for the IR
images. Because of the nearly invisibility of the silver point stroke in the IR image
they are not considered in this test set. We perform contrast-limited adaptive
histogram equalization to enhance the contrast of the IR images.

The number of textural features per stroke depends on its length and the
distance between placing the windows. We used a distance of 10 pixels to place
the windows along the medial axis of the stroke. To limit the feature space we
combined the features calculated within each window by building the mean and
standard deviation. Thus we have 8 features for the GLCM method: the mean
and standard deviation for the energy, inertia, entropy and homogeneity and
8 DWT features: the mean and standard deviation of the energy in the four
channels. The features calculated (GLCM and DWT) were normalized and we
used the kNN classifier to evaluate the drawing tool and material used for the
creation of the strokes.
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Table 1. Classification results: method, number of features and percentage of correct
classified strokes for scanned and IR images

Method NoF|(%) SCAN|(%) IR
DWT 8 74.6 68.6
GLCM 8 75.4 59.3
Combination| 16 75.4 70.5
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Fig. 8. The feature space from the DWT features in Channel 1

Classification results are tabulated in Table 1. Best results were obtained with
k = 3. The percentage of correct classified scanned strokes constitutes 74.6% for
the DWT features and 75.4% for the GLCM features. A combination of the
features from both methods could not outperform this results. Expectedly the
results for the IR images are a little bit worse due to the limited resolution and
contrast. Hence we have 68.6% for the features from the DWT method and only
59.3% for the GLCM features. A combination of both brings 70.5%.

To illustrate the visual description in Section 2 we show the feature space of
two DWT features in Figure 8. The z-axis shows the mean value of the DWT
energy in the first channel and the standard deviation from the energy in the
first DWT channel is shown on the y-axis. It can be seen that all strokes show
compact clusters for their features except the features for the reed pen which
are distributed over the whole feature space. Brush, quill and black chalk show
low energy values. The quill stroke features cluster in the lower left part of the
feature space. They have a very homogeneous black surface and thus low energy
and standard deviation. Brush strokes are similar but they have higher standard
deviations due to some artifacts in the surface. The black chalk stroke has higher
energies and standard deviation due to its coarser texture. Graphite and silver
point show increasing values for their energy. Reed pen strokes with its manifold
texture are distributed over the whole feature space. As in agreement with the
visual description of the strokes in Section 2 fluid materials have low energy
values and dry materials like black chalk, graphite and silver point have higher
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Table 2. Confusion Matrix for the Classification results, Scanned images

stroke classified as (%)
class  |Graphite[Chalk[Brush|Quill[Reed Pen|[Silver

Graphite 80.0 0.0 0.00 | 0.00 0.00 20.0
Chalk 10.5 89.5 0.0 |0.00 0.0 0.00
Brush 0.00 16.7 | 50.0 | 33.3 0.00 0.00
Quill 4.3 0.00 | 34.8 | 60.9 0.00 0.00
Reed Pen 0.0 12.5 | 75.0 | 12.5 0.0 0.0

Silver 0.0 0.00 | 0.00 | 0.00 0.0 100.0

Table 3. Confusion Matrix for the Classification results, IR images

stroke classified as (%)
class  |Graphite[Chalk[Brush|Quill[Reed Pen

Graphite 89.1 8.7 0.00 | 0.00 2.2

Chalk 16.3 69.7 7.0 4.7 2.3
Brush 0.00 7.7 55.8 | 23.1 13.5
Quill 0.00 1.9 22.7 | 66.0 9.5

Reed Pen 17.2 12,5 | 234 | 219 25.0

energy values. The silver point has the highest energy values which is analog to
Figure 1 where the 3D view from the silver point shows a fine texture with high
frequencies.

To show the classification results for the several classes Table 2 and 3 tabu-
lates the confusion matrix for the classification results from the DWT method
for the scanned and IR images. The scanned reed pen strokes are distributed
over the whole feature space so that no reed pen stroke is classified correct. Best
results are within the silver point, the graphite and the black chalk stroke which
show compact clusters in Figure 8. Expectedly the dry drawing materials show
better results than the fluid materials due to the fact that the texture from the
fluid materials is very similar. The confusion matrix for the IR image in Table
3 shows similar results.

5 Conclusion and Outlook

In this work a rotational alignment of texture analysis of painted strokes has been
discussed. The method developed was able to recognize up to 75% of painted
strokes into a set of 6 predefined classes. We applied two different texture analysis
methods, the discrete wavelet transformation and the Gray Level Co-occurrence
Matrix. The problems in analyzing the texture of painted strokes, the narrow
width and the winding painting trace of the strokes, is avoided by an algorithm
which performs along the drawing trace of the strokes to calculate the textural
features. So we have a maximum content of stroke texture and we take the
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directional nature of the texture formation process into account. The algorithm
can be adopted to the identification of different stroke types in painted work
of art as well as the recognition of writing tools in handwritten documents. To
improve the classification results we will add profile features to the textural
features. Profile classification has been used in the work from [14]. Further more
the use of a stronger classifier will be evaluated in our future work.
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