
Strengthening Password-Based Authentication
Protocols Against Online Dictionary Attacks�

Peng Wang1, Yongdae Kim1, Vishal Kher1, and Taekyoung Kwon2

1 Computer Science and Engineering,
University of Minnesota - Twin Cities, Minnesota, USA

{pwang,kyd,vkher}@cs.umn.edu
2 School of Computer Engineering, Sejong University, Seoul, Korea

tkwon@sejong.ac.kr

Abstract. Passwords are one of the most common cause of system
break-ins, because the low entropy of passwords makes systems vulnera-
ble to brute force guessing attacks (dictionary attacks). Existing Strong
Password-based Authentication and Key Agreement (SPAKA) proto-
cols protect passwords from passive (eavesdropping-offline dictionary) at-
tacks, but not from active online dictionary attacks. This paper presents
a simple scheme that strengthens password-based authentication proto-
cols and helps prevent online dictionary attacks as well as many-to-many
attacks common to 3-pass SPAKA protocols. The proposed scheme sig-
nificantly increases the computational burden of an attacker trying to
launch online dictionary attacks, while imposing negligible load on the
legitimate clients as well as on the authentication server.

1 Introduction

Password-based authentication protocols cannot rely on persistent stored infor-
mation on the client side. Instead, they rely on users’ ability of precise recall of a
secret information. It is mainly due to this precise recall requirement that users
typically choose simple and low entropy passwords that are easy to remember
[7, 15, 16, 21, 24]. The weakness of passwords becomes the weak link of the sys-
tem, which attackers exploit by launching offline or online dictionary attacks.
In online dictionary attacks, the attacker tries to guess the correct password
by interacting with the login server. In offline dictionary attacks, the attacker
first collects messages between the users and the server or finds a copy of the
password file. Then, the attacker tries to guess correct passwords by matching
the passwords in her dictionary with the collected information without requiring
any feedback from the login server.

Typically, online dictionary attacks are prevented by using account locking or
delayed response techniques. In account locking a server locks accounts after few
unsuccessful attempts. However, account locking enables denial of service attacks
against users’ accounts and may increase administrators’ load if the locks have

� This research is supported in part by the Intelligent Storage Consortium at Digital
Technology Center (DISC), University of Minnesota.

J. Ioannidis, A. Keromytis, and M.Yung (Eds.): ACNS 2005, LNCS 3531, pp. 17–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 Peng Wang et al.

to be opened manually. Delayed response aims to reduce the number of pass-
words attackers can check in a period of time. However, if the attacker wants
to compromise any account in the target system, she can initiate many sessions
simultaneously (parallel attacks) and can still check (using different usernames)
a large number of passwords in her dictionary. For example, attacker can mar-
shal the muscle of a few thousand computers and perform online dictionary
attacks. Recent trends indicate that hackers are renting out vast networks of
infected home computers (zombies) without their owner’s knowledge [30, 31].
An attacker can rent a network of 20,000 computers for less than a few thou-
sand dollars ($2,000). If the attacker aims to perform online dictionary attacks
against highly sensitive networks, such as the military networks, the attacker
has enough incentives to buy such network of zombies. Using these networks the
attacker can launch parallel online dictionary attacks and verify large number of
guesses within a short period of time. We stress that employing account locking
and delayed response techniques in such scenarios does not help.

In general, strong password-based authentication protocols should not reveal
any useful information about the users’ passwords to the login server (which
can be malicious) and should not be susceptible to online dictionary attacks and
eavesdropping attacks. The goal of the proposed work is to strengthen exist-
ing password based authentication protocols against online dictionary attacks.
Strong Password-based Authentication and Key Agreement (SPAKA) protocols
[1, 12] are remote password only protocols that can provide authentication and
key agreement over insecure channel without the support of previously shared
cryptographic keys or a Public Key Infrastructure (PKI). Other authentication
protocols, such as SSH [29] and protocols running on SSL [25] are vulnerable to
man-in-the-middle attacks (since public key certificates are rarely checked) and
these protocols forward the password (or some simple function of the password
such as hash) to the server. SPAKA protocols are vulnerable to online dictionary
attacks, but they do not reveal any secret information to the login server. Fur-
ther, they are not susceptible to eavesdropping and man-in-the-middle attacks.
Therefore, we choose to strengthen SPAKA protocols against online dictionary
attacks, and, as a result, complete the general set of security requirements of a
strong password based authentication protocols. However, the scheme presented
in this paper is generic enough to be integrated with other password based au-
thentication protocols.

In addition to online dictionary attacks, the 3-pass SPAKA protocols are vul-
nerable to a more powerful many-to-many guessing attack [18]. In 3-pass SPAKA
protocols, when the client initiates the login protocol, the server sends out only
one message (during the second pass) that contains both the server’s challenge
and its proof of the knowledge of the verifier. In many-to-many guessing attacks,
an attacker can collect these values and terminate the protocol at the end of the
second pass. The attacker can then use these values to mount guessing attacks
offline. She can initiate multiple of such half-open sessions and gather a lot of
information before the server detects the attack. Thus, the attacker can verify
more number of guesses than that allowed by the server’s policy. In this paper

Strengthening Password-Based Authentication Protocols 19

we present a scheme that strengthens existing authentication protocols against
online dictionary attacks. We integrate our scheme with SPAKA protocols to
strengthen SPAKA protocols against online dictionary attacks as well as many-
to-many guessing attacks. We call the modified SPAKA protocols as SPAKA+.
Overview of Our approach There is a fundamental difference between the login
attempts performed by the legitimate users and the login attempts performed
by the attackers trying to launch online dictionary attacks. A user who knows
the password can successfully login within a couple of trials, while an attacker
is expected to perform several magnitudes more trials than legitimate users
do. In general, one of the main factors that limit the success of an attacker
attempting to launch dictionary attacks is the amount of time required by a
program (password cracker) to guess a user’s password. The threat of parallel
attacks can be eliminated by requiring the client to send a “proof of work” with
an aim to keep the attacker busy and reduce the number of sessions that an
attacker can initiate.

SPAKA+ strengthens SPAKA protocols against online dictionary attacks
and many-to-many attacks by asking clients to solve a cryptographic puzzle
(proof of work). The scheme is designed to distinguish between legitimate users
and attackers and puts negligible computational burden on the legitimate users.
Attackers are forced to solve puzzles, which increases the complexity of online
dictionary attack approximately by the hardness of puzzles. If under attack, the
authentication server can self-adjust the hardness of the puzzle. Therefore, our
protocol will impose significant computation burden on sophisticated attackers
using rented zombies, and, thus, greatly increase the amount of time required
to break passwords. The computational burden on the authentication server is
negligible and the server has to maintain only one long term state information
(near-stateless) if users’ computers are assumed to be secure. In case users’ com-
puters are not secure, we suggest a way to minimize the success of the attacker
by maintaining some state information on the server. Our generic puzzle-based
scheme can be generalized to non-SPAKA protocols, such as the authentication
protocols used with SSL or SSH as long as the basic protocols generate shared
secrets (e.g., session keys) between the client and the server. We use these secrets
to “mark” the computers used by legitimate users.
Organization The rest of the paper is organized as follows. Section 2 introduces
SPAKA. We present our protocols in section 3. Section 4 discusses security and
performance issues. Section 5 reviews related work, and section 6 concludes the
paper and outlines future work.

2 SPAKA Protocols

Since Lomas et al. introduced LGSN in 1989 [19], there have been considerable
research efforts on Strong Password-based Authentication and Key Agreement
(SPAKA) protocols, such as EKE [5], SPEKE [13], SRP [27], AMP [17], AuthA
[4], PAK[6], etc, (refer [1] and [12] for a complete list of papers). SPAKA proto-
cols are remote password-only protocols. They can provide authentication and

20 Peng Wang et al.

key agreement over insecure channel without the support of previously shared
cryptographic keys or a Public Key Infrastructure (PKI). In a SPAKA protocol,
a party only commits high entropy information to the other party and never
shows any information except the fact of knowing the password or the verifier of
the password. Since messages transferred over the network do not leak informa-
tion about passwords, attackers cannot launch offline dictionary attacks based
on the eavesdropped massages.

SPAKA protocols typically have two stages: a key agreement phase that
ends with two parties sharing a common secret that can be used to generate
the shared session key, and a key confirmation phase in which two parties verify
that they share the common key so that they can believe they are talking to the
right party. At the end of a successful run of this protocol, each party holds a
session key for subsequent secure communications. We list security properties of
SPAKA protocols below.

– SPAKA protocols provide mutual authentication.
– They are secure against offline dictionary attacks.
– They are secure against Denning-Sacco attack [10]. Learning already dis-

tributed session keys will not help the attacker to discover passwords, veri-
fiers or new session keys.

– They provide perfect forward secrecy. Learning the password and (or) the
verifier will not help the attacker to discover previous session keys.

– They do not require clock synchronization between the client and the server.

3 SPAKA+

SPAKA Protocols protect passwords from eavesdropping-offline dictionary at-
tacks. However, online dictionary attacks are still possible. Delayed response also
failed because attackers can initiate parallel attacks. We eliminate the threat by
requiring the client to solve a puzzle with an aim to keep the attacker busy
and reduce the number of sessions that an attacker can initiate. Ideally, only
attackers should be asked to solve puzzles. Since a user typically uses a limited
set of computers that are not accessible to attackers, legitimate users can be
distinguished from attackers based on the origin of the login request. SPAKA+
uses successful authentication sessions (old session keys) to “mark” computers
of legitimate users. The following table lists the notations we will use in the rest
of this paper.

Symbol Meaning Symbol Meaning
C Client’s ID S Server’s ID
π Client’s password q System parameter of SPAKA protocols
v Client’s verifier fi(·) Functions used in SPAKA protocols, i ∈ [1, 6]

IPc Client’s IP address h−1(·) Procedure used to solve the puzzle
h(·) Hash function k1, k2, k′

1, k′
2 Temporary values of SPAKA protocols

N Output size of h(·) kp, kq , k′
p, k′

q Temporary values of SPAKA+
x, y Random numbers Ek(·) Encryption function with key k
X, Y Challenges ks Server’s symmetric encryption key
sk Session key skold Previous session key
z Random number a, a′ Hash values of previous session keys
z′ Solution of puzzle l Lifetime of cookies and tickets
n Length of z t, t′ Timestamps on the tickets and cookies

Strengthening Password-Based Authentication Protocols 21

3.1 Overview

Similar to private-public key pairs in public key systems, in SPAKA protocols,
Alice (the client) generates a password π and a verifier v that is the public part
(trapdoor one-way function) of her password. The verifier is only revealed to Bob
(login server) via a secure channel. During a successful execution of a SPAKA
protocol, Alice and Bob authenticate each other and agree on a session key. At
this time, in our proposed protocols, Bob issues a cookie = Eks(C, a′, t′, l) to
Alice.

The cookie contains the client ID (C), the hash value of the session key (a′ =
h(skold)), a timestamp (t′), and the lifetime (l) of the cookie. (The session key
will be called skold when the cookie is used next time.) The cookie is encrypted
using Authenticated Encryption [3] with a key ks known only to Bob. Note that
both the encryption and the decryption of the cookie are done by Bob himself.
Also note that the timestamp records Bob’s local time. Only Bob will check the
timestamp when the cookie is used.

Alice generates a ticket = {C, a, t, l}, which contains the same fields as
in the cookie except the timestamp (t) of the ticket records Alice’s local time.
For the sake of clarity, we denote the hash value (h(skold)) generated by Alice
as a to distinguish it from the hash value (a′) generated by Bob. Only Alice will
check t before using the (cookie, ticket) pair. Hence, Alice and Bob do not need
clock synchronization for using cookie and ticket. Alice stores both the cookie
and the unencrypted ticket in her local computer. Bob does not store any of
them.

When Alice tries to login again, she sends the cookie to Bob and finds a in
her corresponding ticket. Then they run the SPAKA protocol. In the proposed
protocols, in order to proceed, Alice must prove that she knows a. If Alice tries to
login from a computer without a valid (cookie, ticket) pair, Bob makes a puzzle
as described in section 3.2. In order to proceed, Alice must solve the puzzle first.

The proposed protocols achieve following properties:

1. If a user tries to login from a computer without a valid (cookie, ticket) pair,
the client must solve a puzzle. In other words, an attacker cannot verify her
guesses without solving a puzzle, even if she launch many-to-many guessing
attacks to 3-pass protocols.

2. A client with a valid (cookie, ticket) pair does not have to solve a puzzle. In
this case, our protocol adds negligible computation on the legitimate client
side.

3. They add negligible computation on the server side.
4. They do not increase the number of messages exchanged between the clients

and the servers.
5. Servers can easily self-adjust the hardness of puzzles as well as the lifetime

of (cookie, ticket) pairs.
6. If an attacker can somehow get access to one of the user’s computers, she may

steal a (cookie, ticket) pair. Only this user will be affected. Her account still
has the strength of the original SPAKA protocols. In addition, in section 4
we present a scheme to counter the stolen tickets problem.

22 Peng Wang et al.

3.2 A Puzzle Tailored for SPAKA Protocols

For our purpose, a puzzle shall satisfy the following requirements.

– Creating a puzzle and verifying a solution shall be inexpensive.
– The cost of solving the puzzle shall be easy to adjust.
– It shall not be possible to precompute solutions to the puzzles.
– An attacker shall not be able to relay the puzzles to a third party.
– It shall not require clock synchronization between the client and the server.
– It shall not use encryption.

The first four requirements are common to most cryptographic puzzle schemes.
Clock synchronization and encryption are not used because they are not used in
the most of SPAKA protocols. Since we integrate our puzzle to SPAKA protocols
and aim to use the new protocols in any environment where the original SPAKA
protocols are used, we do not ask for more cryptographic primitives or system
services than those already used in the original SPAKA protocols. Note that
statelessness, which is a common requirement of a client puzzle system aiming
to prevent TCP SYN flood attack [8] is not a concern in our scheme, because
our puzzle is integrated to SPAKA protocols that are not stateless.

The solution to our puzzle is the brute-force reversal of a cryptographically
strong hash function, such as SHA-1 [20]. Suppose a server requires a client to
solve a puzzle, the server computes puzzle = h(z, Y, IPc), where z ∈R Z2n is
a n-bit random number (0 ≤ n � N), n controls the hardness of the puzzle.
Y is a random (long and unpredictable) challenge sent by Bob to Alice in the
SPAKA protocols. IPc is the IP address of the client. If IPc is not included
then a relaying attack is possible where the attacker also runs his own SPAKA+
server. The attacker acquires puzzles from the legitimate SPAKA+ server and
relays these puzzles to her clients through her SPAKA+ server; thus, forcing
her clients to solve puzzles on her behalf. The server sends puzzle, Y , and n
to the client. Since Y is long and changes per session, it is not possible for the
client to precompute solutions to the puzzles. Creating a puzzle that requires
one random number generation and one hash computation is inexpensive. The
server can adjust the cost of solving the puzzle by simply tuning n.

Even if the client knows Y and IPc, due to the one-way property of the
cryptographic hash function h(·), the client has no efficient way to solve the
puzzle than trying different numbers z′ ∈ Z2n until puzzle = h(z′, Y, IPc). We
denote h−1(·) as the procedure used to solve the puzzle. On average, it takes
2n−1 trials to solve this puzzle. Next, the client proves to the server that a
solution of the puzzle is found. The verification of the solution requires one hash
computation on the server side. This step is integrated into SPAKA protocols
(see sections 3.3 and 3.4 for detail).

Since above computations only use functions already used in SPAKA pro-
tocols, the puzzle can be used in any type of client platform running SPAKA
protocols. It is easy to see that the simple puzzle satisfies all requirements listed
above.

Strengthening Password-Based Authentication Protocols 23

Client (C) Server (S)

enter C, π
x ∈R Z

∗
q

X = f1(x)
C, X−−−−−−−−−→ lookup client’s verifier v

y ∈R Z
∗
q

Y = f2(C, S, X, y, v)

Y←−−−−−−−−
k1 = f3(C, S, x, Y, π) k′

1 = f4(C, S, X, y, v)

k1−−−−−−−−→
k′
2 = f5(C, S, x, Y, π) abort if k1 �= k′

1

k2←−−−−−−−− k2 = f6(C, S, X, y, v)

abort if k2 �= k′
2

compute sk compute sk

Fig. 1. General 4-pass protocol.

3.3 Strengthening 4-Pass Protocols

Figure 1 depicts the general structure of 4-pass SPAKA protocols described
below.

– Alice enters her username C and password π.
– Alice generates a random number x and composes a challenge X based on

x. She sends C and the challenge X to Bob.
– Bob looks up Alice’s entry in the password file and finds her verifier v. He

generates a random number y and composes his challenge Y based on y and
other information such as v. Y is sent to Alice.

– Alice computes k1 and sends it to Bob. The value k1 serves as her response to
Bob’s challenge, the proof of her knowledge of π, and the key confirmation.

– Bob computes k′
1 that should be the same as k1 if Alice entered the correct

password. If k′
1 is equal to k1, then Bob computes k2 and sends it to Alice.

Similarly, the value k2 serves as his response to Alice’s challenge, the proof
of his knowledge of v, and the key confirmation.

– Alice computes k′
2 and checks if k2 and k′

2 match.
– Both Alice and Bob believe they are talking to the right party. They then

compute the session key sk.

When Alice (or Eve who is an attacker) tries to login from a machine without
a valid (cookie, ticket) pair, she must solve a puzzle. The situation is depicted in
Figure 2. Bob creates a puzzle and sends puzzle, Y and n to Alice together in the
second message. Alice solves the puzzle by brute-force reversing h(·). Instead of
sending k1 to Bob, she sends kp = h(k1, z′). Bob computes k′

1 and k′
p = h(k′

1, z).
He proceeds only if kp is equal to k′

p. To keep the protocol to be 4-pass, Bob
computes sk before sending out the 4th message. Finally, he sends cookienew

and the lifetime of cookienew in the 4th message.
Assume the output of h(·) is random. Then the probability that ∃z′ ∈R Z2n ,

s.t. z′ �= z and h(z′, Y, IPc) = h(z, Y, IPc) is 1
2N−n . Since n � N , with

24 Peng Wang et al.

Client (C) Server (S)

enter C, π
x ∈R Z

∗
q

X = f1(x)
C, X−−−−−−−−−−−−→ lookup client’s verifier v

y ∈R Z
∗
q

Y = f2(C, S, X, y, v)
z ∈R Z2n

k1 = f3(C, S, x, Y, π)
Y, puzzle, n←−−−−−−−−−−−−−− puzzle = h(z, Y, IPc)

z′ = h−1(puzzle, Y, IPc)

kp = h(k1, z′) kp−−−−−−−−−−−→ k′
1 = f4(C, S, X, y, v)

k′
p = h(k′

1, z)

k′
2 = f5(C, S, x, Y, π) abort if kp �= k′

p

compute sk
generate cookienew

abort if k2 �= k′
2

k2, cookienew, l←−−−−−−−−−−−−−−− k2 = f6(C, S, X, y, v)

compute sk
generate ticketnew

save cookienew and ticketnew

Fig. 2. 4-pass protocol without cookie and ticket.

high probability z′ is equal to z. If k1 is equal to k′
1, i.e., the password and

the verifier match, then kp is equal to k′
p. In this case, mutual authentication

between Alice and Bob is successful. On the other hand, suppose Eve is running
an online dictionary attack. She has to solve the puzzle. Without correct z′, with
the probability 1− 1

2n , kp �= k′
p even if k1 is equal to k′

1, (i.e., even if she guessed
the correct password). So checking if kp is equal to k′

p implicitly verifies if k1 is
equal to k′

1 as well as if z is equal to z′. In other words, it verifies if Alice (or
Eve) entered the correct password and has solved the puzzle.

Figure 3 represents the scenario when Alice tries to login with a valid (cookie,
ticket) pair. Alice sends the cookie to Bob in the first message. Bob decrypts
the cookie and verifies if it is expired. If not, he saves a′. Instead of sending
k1 to Bob in the third message, Alice sends kp = h(k1, a). Bob computes k′

1

and k′
p = h(k′

1, a′). He proceeds only if kp is equal to k′
p. Similar to the above

protocol, this step implicitly verifies if k1 is equal to k′
1 as well as if a is equal

to a′. Finally, Bob sends cookienew and l in the 4th message. In this case, Alice
is not asked to solve a puzzle, but she must have a valid (cookie, ticket) pair.

3.4 Strengthening 3-Pass Protocols

In a 3-pass protocol, Bob computes k1 and sends it to Alice in the second message
with Bob’s challenge. Alice verifies it, then sends k2 in the third message. Figure
4 represents the general structure of 3-pass SPAKA protocols.

As depicted in figure 5, when a Alice (or Eve) tries to login from a machine
without a valid (cookie, ticket) pair, she must solve a puzzle. Similar to 4-pass
protocol, Bob creates a puzzle. He also computes kp = h(k1, z) and sends them

Strengthening Password-Based Authentication Protocols 25

Client (C) Server (S)

enter C, π
x ∈R Z

∗
q

X = f1(x)
find ticket and cookie

abort if ticket is expired
C, X, cookie−−−−−−−−−−−−−−−→ abort if the cookie is invalid

find a in the ticket find a′ in the cookie
lookup client’s verifier v
y ∈R Z

∗
q

Y←−−−−−−−−−−−−− Y = f2(C, S, X, y, v)

k1 = f3(C, S, x, Y, π)

kp = h(k1, a)
kp−−−−−−−−−−−−−→ k′

1 = f4(C, S, X, y, v)

k′
p = h(k′

1, a′)
k′
2 = f5(C, S, x, Y, π) abort if kp �= k′

p

compute sk
generate cookienew

abort if k2 �= k′
2

k2, cookienew, l←−−−−−−−−−−−−−−− k2 = f6(C, S, X, y, v)

compute sk
generate ticketnew

save cookienew and ticketnew

Fig. 3. 4-pass protocol with cookie and ticket.

to Alice in the second message. To keep the protocol to be 3-pass, Bob computes
sk earlier and sends cookienew and l in the second message since that is the only
message Bob sends to Alice. After receiving the second message, Alice solves
the puzzle by brute-force reversing h(·) and computes k′

1 and kp = h(k1, z′).
If kp is equal to k′

p, she concludes that the solution of the puzzle is correct and
the verifier matches the password. Following the general 3-pass protocol she first
computes k2 and then computes kq = h(k2, z′) and sends kq to Bob instead of
sending k2.

The value k1 sent in the second message must be replaced with kp. Otherwise
Eve can disconnect after receiving the second message. Since k1 serves as key
confirmation, it gives Eve enough information to check if her guessing is correct
or not. On the other hand, the value kp is the hash value of (k1, z). To verify
k1, Eve has to first solve the puzzle. The solution of the puzzle is also sent
back to Bob in the third message implicitly. Suppose only k2 is sent to Bob, Eve
can bypass the puzzle and wait to see if Bob aborts or not. If not, she knows
her guess is correct. Note z and k2 can be sent in clear. We use kq to keep the
protocol consistent with the 3-pass with cookie case since a cannot be sent in
clear. To keep the new protocol to be 3-pass, Bob must send cookienew in the
second message. If Eve gets cookienew, but it is not useful to her as she cannot
decrypt cookienew.

Similar to 4-pass protocol, when Alice tries to login with a valid (cookie,
ticket) pair, she is not asked to solve a puzzle. Figure 6 depicts this scenario. As
in the 3-pass without cookie case, we use kp and kq instead of k1 and k2. Again,
Bob sends cookienew and l in the second message.

26 Peng Wang et al.

Client (C) Server (S)

enter C, π
x ∈R Z

∗
q

X = f1(x, π)
C, X−−−−−−−−−→ lookup client’s verifier v

y ∈R Z
∗
q

Y = f2(C, S, X, y, v)

k′
1 = f3(C, S, x, Y, π)

Y, k1←−−−−−−−−− k1 = f4(C, S, X, y, v)

abort if k1 �= k′
1 k′

2 = f6(C, S, X, y, v)

k2 = f5(C, S, x, Y, π)
k2−−−−−−−−−−→ abort if k2 �= k′

2

compute sk compute sk

Fig. 4. General 3-pass protocol.

3.5 Adjusting Hardness of Puzzles

We modified a test program of the SRP implementation [28] to test the per-
formance of generating a puzzle, solving the puzzle, and verifying the solution.
We run the test program on a Pentium-4 2.4GHz computer running Linux with
kernel version 2.4.20. As expected, generating a puzzle and verifying the solution
takes negligible amount of time. The time required to solve a puzzle is roughly
doubled, when we increase the hardness by one. Bob can self-adjust the hardness
of puzzles by keeping a global counter to count the number of failed attempts to
all accounts in the system within an interval. He adjusts the hardness of puzzles
when the counter reaches predefined threshold values.

4 Discussion

In this section we highlight the various aspects of our scheme. Especially, we
present a mechanism that does not give Eve significant advantage even if Eve
successfully steals Alice’s (cookie, ticket) pairs by exploiting vulnerabilities in
the underlying system.

Usability. Given a computationally intensive cryptographic puzzle, different
machines may spend different amount of time to solve it. If a legitimate user is
using a slower machine, she has to spend more time solving a puzzle. However,
after a successful login she will have a (cookie, ticket) pair, and, therefore, she
does not need to solve puzzles as long as she keeps using the same set of machines.
The usability of the system is not sacrificed.

Client-side cookies. In our approach, cookies are stored in users’ computers.
Once the client receives a new cookie (after successful login), the client can
simply delete the stale cookies for that account; therefore, the maximum number
of cookie stored on a user’s computer is equal to the the number of accounts
the user has. If cookies are stored in the server, then the server has to store all
cookies that have not expired. If the authentication service is heavily used and
if the lifetime of cookies is long, then the server has to store a large number of
cookies.

Strengthening Password-Based Authentication Protocols 27

Client (C) Server (S)

enter C, π
x ∈R Z

∗
q

X = f1(x, π)
C, X−−−−−−−−−→ lookup client’s verifier v

y ∈R Z
∗
q

Y = f2(C, S, X, y, v)
k1 = f4(C, S, X, y, v)
z ∈R Z2n

puzzle = h(z, Y, IPc)
kp = h(k1, z)
compute sk

k′
1 = f3(C, S, x, Y, π)

Y, kp, puzzle, n, cookienew, l←−−−−−−−−−−−−−−−−− generate cookienew

z′ = h−1(puzzle, Y, IPc)
k′

p = h(k′
1, z′) k′

2 = f6(C, S, X, y, v)

abort if kp �= k′
p k′

q = h(k′
2, z)

k2 = f5(C, S, x, Y, π)

kq = h(k2, z′) kq−−−−−−→ abort if kq �= k′
q

compute sk
generate ticketnew

save cookienew , ticketnew

Fig. 5. 3-pass protocol without cookie and ticket.

No information leakage. Comparing to the 3-pass or 4-pass general protocols,
more information is sent in our new protocols, namely puzzle, kp, kq, cookie,
cookienew. These pieces of information do not help Eve to find valuable informa-
tion, such as the password, the verifier, previous session keys, or the new session
key. The cookienew (or cookie) contains the hash of (previous) session key and
is encrypted with a key known only to the server; therefore, Eve cannot find
the (previous) session key. In the case when Alice attempts to login without a
valid (cookie, ticket) pair, kp (or kq) is the hash value of (k1, z) (or (k2, z)).
Since we assume that the general protocols are secure, k1 (k2) that can be easily
eavesdropped in SPAKA protocols does not leak valuable information, neither
does kp (kq) as a result. In the case when Alice attempts to login using a valid
(cookie, ticket) pair, the same argument applies, kp (kq) does not leak valuable
information including a.

Combatting many-to-many attacks. 3-pass SPAKA protocols are vulnerable
to the many-to-many guessing attack [18]. This attack is common to 3-pass
SPAKA protocols because Bob must send his challenge and the key confirmation
that also helps Alice to authenticate Bob in one message. This enables Eve to
disconnect an ongoing session earlier (right after receiving Bob’s message) and
verify her guess later offline. She can also run multiple sessions simultaneously
and collect more useful values. With SPAKA+, Eve can still disconnect earlier.
However, she cannot verify her guesses without solving puzzles. The amount of
work Eve can save is one message per guess. The cost of sending one message is
several magnitudes lower than the cost of solving a puzzle. Hence, Eve’s cost of
running online dictionary attacks and her cost of running many-to-many attacks

28 Peng Wang et al.

Client (C) Server (S)

enter C, π
x ∈R Z

∗
q

X = f1(x, π)
find ticket and cookie

abort if ticket is expired
C, X, cookie−−−−−−−−−−−−−−−→ abort if the cookie is invalid

find a in the ticket find a′ in the cookie
lookup client’s verifier v
y ∈R Z

∗
q

Y = f2(C, S, X, y, v)
k1 = f4(C, S, X, y, v)
kp = h(k1, a′)
compute sk

k′
1 = f3(C, S, x, Y, π)

Y, kp, cookienew, l←−−−−−−−−−−−−−−− generate cookienew

k′
p = h(k′

1, a) k′
2 = f6(C, S, X, y, v)

abort if kp �= k′
p k′

q = h(k′
2, a′)

k2 = f5(C, S, x, Y, π)

kq = h(k2, a)
kq−−−−−−→ abort if kq �= k′

q

compute sk
generate ticketnew

save cookienew and ticketnew

Fig. 6. 3-pass protocol with cookie and ticket.

is about the same. Therefore, the vulnerability of 3-pass SPAKA protocols is
significantly reduced.

Analyzing the possibility of ticket theft. If an attacker is able to steal a
ticket, then she may be able to bypass our puzzle. We now analyze the scenarios
in which a client’s ticket can be stolen. If a user is always using her home (or
personal) computer or a well administered lab computer with appropriate user
accounts, then the chances of stealing the client’s ticket are slim, since the ticket
is protected with a strong access control mechanism. Even in the case where
a user is using a well administered lab computer, which is using a network file
system, the chances that an attacker successfully steals a client’s ticket are low as
the attacker will have to run a sniffer on the local network to eavesdrop the ticket
stored on the remote file server, which typically is difficult (or to some extent
easy to detect) in a well administered lab. In the aforementioned scenarios, an
attacker will have to hack into the user’s account to get the ticket. If a client is
travelling and uses for a short time a computer that is not well administered,
then an attacker can steal the client’s ticket, but just stealing one ticket does
not give substantial advantage to the attacker. The threat of ticket theft is high
only when a lot of users are frequently using computers in a public lab that
does not have any notion of user accounts. In this scenario, an attacker can
simply read the tickets stored on these computers and bypass the puzzle. Below,
we explain in detail how SPAKA+ minimizes the threat of stolen tickets. The
mechanism described is quite light weight if the number of stolen tickets is small
as compared to the number of users in the system, which is true for most of the
cases discussed above.

Strengthening Password-Based Authentication Protocols 29

Resisting stolen tickets. To minimize the threat of stolen tickets, Bob main-
tains two lists, namely Cookie Cache and Black List, to store cookies. Both of
the lists are initially empty. He also maintains a counter (initialized to 0) for
each cookie stored in the Cookie Cache and a small threshold value (thresh), say
5. When a user C tries to login with a (cookie, ticket) pair and his password
π, Bob first checks if C is been served by one of his instances. If so, Bob aborts
this session, because it is likely that C is Eve exploiting many-to-many attack
[18]. Bob does not allow parallel SPAKA+ sessions for one user account. If not,
Bob searches the cookie in the Black List. If found, Bob runs the SPAKA+ and
asks C to solve a puzzle. If Bob does not find the cookie in the Black List, he
runs the SPAKA+ protocol without asking C to solve a puzzle. If Bob cannot
authenticate C, he checks the Cookie Cache. If the Cookie is not in the Cookie
Cache, then he inserts the Cookie is the Cookie Cache. If the cookie is already
in the Cookie Cache, then he increase the counter of this Cookie. If the counter
is larger than thresh, then he adds the Cookie in the Black list. On the other
hand, if C entered the correct password, then Bob allows C to login and delete
the Cookie from the Cookie Cache if it is there. Bob will also delete expired
cookies from the Cookie Cache and the Black List periodically.

Following above scheme, when Alice tries to login with a valid (cookie, ticket)
pair but entered a wrong password, the login attempt will fail. At this time, Bob
temporarily caches the cookie. Since Alice knows the correct password, she is very
likely to try again and enters the correct password within a couple of trails. Bob
sees that Alice entered the correct password, then deletes the cached cookie and
the corresponding counter. In this case, Bob only maintains a short term state.

If Eve runs online dictionary attacks with one of Alice’s valid (cookie, ticket)
pairs, she gets at most (thresh − 1) + thresh chances without being asked to
solve a puzzle. She tries (thresh − 1) times then waits for Alice to login with
the same (cookie, ticket) pair. Bob deletes the cookie from Cookie Cache, and,
therefore, Eve gets thresh more chances. Note that Alice will delete this (cookie,
ticket) pair from her computer since she gets a new pair on the next successful
login. Therefore, she will not use the pair that Eve has again. It is very unlikely
that Eve can guess the correct password within (thresh−1)+ thresh trials. Now
Bob considers that this cookie and its corresponding ticket are stolen and puts
Alice’s ID and the cookie in his Black List. In this case, Bob maintains a long
term state. The more insecure the computer is, the more (cookie, ticket) pairs
Eve can steal, as a result bigger the Bob’s Black List. As a side effect, the system
employing above scheme benefits from the Black List. By periodically analyzing
the Black List, Bob can estimate if Alice’s computer is secure by counting the
number of Alice’s cookies in the Black List and notifying Alice if he believes
Alice’s computer is not secure.

5 Related Work

Pinkas and Sander proposed a well crafted scheme that attempts to slow down
online dictionary attacks on web applications with Reverse Turing Test (RTT)

30 Peng Wang et al.

[22]. To increase the usability, servers issue cookies to clients. The cookies must
be protected against eavesdropping and cookie theft. Hence, it requires that the
server keeps a counter for every cookie stored in a user’s machine. First of all,
these schemes are mainly restricted to GUI based applications and cannot be
applied to non-GUI based applications. The scheme presented in this paper can
be easily integrated with GUI based as well as non-GUI based authentication
systems. In addition, if under attack, the hardness of the puzzle can be increased
to further slow down the attacker. Cookies used in Pinkas and Sander scheme are
vulnerable to web based cookie stealing attacks. We use tickets and encrypted
cookies to avoid puzzles. Clients prove that they have tickets without revealing
the tickets (sending the tickets on the network). The only way an attacker can
steal a ticket is by breaking into a user’s account. Hence, our cookie-ticket pair
approach is more secure than the cookie only approach used in Pinkas and
Sander’s approach. Further, our scheme requires less server storage than that
required in [22]. In their approach, a server keeps a counter for every cookie
stored on users’ computers. In our approach, on one hand, if we assume that
users’ computers are secure, then the server does not cache cookies, it only stores
one global counter. On the other hand, if users’ computers are not assumed to
be secure and the “resisting stolen tickets” protocol (explained at the end of
section 4) is used, then the number of cookies and the corresponding counters
maintained by the server is equal to the number tickets stolen by an attacker,
which is still less than their approach.

Cryptographic puzzles have been used in the literature for several related
tasks. Rivest et al. used puzzles to create digital time capsules [23]. Juels and
Brainard introduced the first proposal for using a client puzzle approach to
defend against connection depletion attacks [14]. Aura et al. [2] proposed an ap-
proach to protect authentication protocols against denial-of-service. [9] reported
a implementation of client puzzles in the context of TLS. Wang and Reiter’s [26]
approach enables each client to “bid” for resources by tuning the difficulty of
the puzzles it solves, and to adapt its bidding strategy in response to apparent
attacks. The sever allocates resources first to the client that solved the most
difficult puzzle when the server is busy. Dwork and Naor introduced the pricing
via processing paradigm and designed puzzles for combatting spam [11]. One
interesting property of their puzzle is the short cut. The short cut information is
only known by trusted agents and “pricing authority”. Normal legitimate users
do not know the short cut. For the various purposes of their applications, the
above approaches are not required to distinguish between legitimate users and
attackers. Every one is required to solve a puzzle.

6 Conclusion and Future Work

We introduced SPAKA+ that strengthens SPAKA protocols against online dic-
tionary attacks using cryptographic puzzles. SPAKA+ significantly increases
the complexity of online dictionary attacks as well as many-to-many guessing
attacks. The server can self-adjust the computational burden of an attacker by

Strengthening Password-Based Authentication Protocols 31

tuning the hardness of the puzzles in real-time based on the server’s estimate of
ongoing online dictionary attacks. SPAKA+ is secure and adds negligible load
on the legitimate clients. We designed a simple cryptographic puzzle that utilizes
the nice structure of the SPAKA protocols for generating puzzles, transferring
puzzles and solutions, and verifying solutions. The puzzle is designed such that
attackers cannot relay it to others. The puzzle does not require any function
other than those used in the SPAKA protocols. As a result, the new scheme
can be used without requiring additional support from the underlying system
and is easy to implement. If the users’ computers are secure, the server’s load in
our scheme is low. Whereas if the users’ computers are assumed to be insecure
we have presented an approach that resists stolen tickets by maintaining state
information on the server.

Future work includes integrating the new scheme into available SPAKA im-
plementations, such as SRP and PAK. We plan to implement an experimental
system to perform online dictionary attacks and many-to-many guessing attacks
in order to evaluate the success of our scheme. A detailed evaluation both from
performance perspective as well as usability perspective will be performed. We
also plan to apply our idea to SSH.

References

1. Research papers on password-based cryptography. http://www.jablon.org/

passwordlinks.html.
2. T. Aura, P. Nikander, and J. Leiwo. DOS-resistant authentication with client

puzzles. In the 8th International Workshop on Security Protocols, 2001.
3. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-

tions and analysis of the generic composition paradigm. In ASIACRYPT, 2000.
4. M. Bellare and P. Rogaway. The AuthA protocol for password-based authenticated

key exchange, 2000. Submission to IEEE P1363.2.
5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols

secure against dictionary attacks. In IEEE Symposium on Security and Privacy,
1992.

6. V. Boyko, p. MacKenzie, and S. Patel. Provably secure password authentication
and key exchange using diffie-hellman. In EUROCRYPT, 2000.

7. P. Buxton. Egg rails at password security. Netimperative, June, 24, 2002.
8. CERT. TCP syn flooding and ip spoofing attack. CERT Advisory CA-96.21,

November 1996.
9. D. Dean and A. Stubblefield. Using client puzzles to protect TLS. In the 10th

Annual USENIX Security Symposium, 2001.
10. D. Denning and G. Sacco. Timestamps in key distribution systems. Communica-

tions of the ACM, August 1981.
11. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In

CRYPTO, 1993.
12. IEEE P1363 Working Group. IEEE P1363-2: Standard specifications for password-

based public key cryptographic techniques. http://grouper.ieee.org/groups/

1363.
13. D. P. Jablon. Strong password-only authenticated key exchange. Computer Com-

munication Review, 26(5):5–26, 1996.

32 Peng Wang et al.

14. A. Juels and J. Brainard. Client puzzles: A cryptographic defense against connec-
tion depletion attacks. In Network and Distributed System Security Symposium,
1999.

15. D. V. Klein. “foiling the cracker” – A survey of, and improvements to, password
security. In the second USENIX Workshop on Security, 1990.

16. E. Knight and C. Hartley. The password paradox. Business Security Advisor
magazine, December 1998.

17. T. Kwon. Authentication and key agreement via memorable password. In Network
and Distributed System Security Symposium, 2001.

18. T. Kwon. Practical authenticated key agreement using passwords. the 7th Infor-
mation Security Conference (ISC), 2004.

19. T. Lomas, L. Gong, J. Saltzer, and R. Needhamn. Reducing risks from poorly cho-
sen keys. In the twelfth ACM symposium on Operating systems principles (SOSP),
1989.

20. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, October 1996.

21. R. T. Morris and K. Thompson. Password security: A case history. Communica-
tions of the ACM, 22(11):594–597, Nov 1979.

22. B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In the
9th ACM conference on Computer and communications security, 2002.

23. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report LCS/TR-684, MIT, 1996.

24. E. Spafford. Observing reusable password choices. In the 3rd UNIX Security
Symposium, 1992.

25. Transport Layer Security Working Group. SSL 3.0 specification. http://wp.

netscape.com/eng/ssl3/.
26. X. Wang and M. K. Reiter. Defend against denial-of-service attacks with puzzle

auctions. In the IEEE Symposium on Security and Privacy, 2003.
27. T. Wu. The secure remote password protocol. In Network and Distributed System

Security Symposium, 1998.
28. T. Wu. The stanford SRP authentication project, February 2004. http://srp.

stanford.edu.
29. T. Ylonen. SSH - secure login connections over the internet. volume the 6th

USENIX Security Symposium, 1996.
30. Scotland Yard and the case of the rent-a-zombies. http://news.zdnet.com/

2100-1009_22-5260154.html, July 2004.
31. Zombie PCs for Rent. http://securitynews.weburb.dk/show.php3?item=

InformationSecurity&p%5Bne%wsletterId%5D=609, September 2004.

	Strengthening Password-Based Authentication Protocols Against Online Dictionary Attacks
	1 Introduction
	2 SPAKA Protocols
	3 SPAKA+
	3.1 Overview
	3.2 A Puzzle Tailored for SPAKA Protocols
	3.3 Strengthening 4-Pass Protocols
	3.4 Strengthening 3-Pass Protocols
	3.5 Adjusting Hardness of Puzzles

	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

