
XPi: A Typed Process Calculus
for XML Messaging�

Lucia Acciai1 and Michele Boreale2

1 Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence
lucia.acciai@lif.univ-mrs.fr

2 Dipartimento di Sistemi e Informatica, Università di Firenze
boreale@dsi.unifi.it

Abstract. We present XPi, a core calculus for XML messaging. XPi fea-
tures asynchronous communications, pattern matching, name and code
mobility, integration of static and dynamic typing. Flexibility and ex-
pressiveness of this calculus are illustrated by a few examples, some con-
cerning description and discovery of web services. In XPi, a type system
disciplines XML message handling at the level of channels, patterns, and
processes. A run-time safety theorem ensures that in well-typed systems
no service will ever receive documents it cannot understand, and that the
offered services, even if re-defined, will be consistent with the declared
channel capacities.

1 Introduction

The design of globally distributed systems, like Web Services (WS, [23]) or
business-to-business applications [5], is more and more centered around passing
of messages in the form of XML documents. Major reasons for the emergence of
message-passing are its conceptual simplicity, its minimal infrastructural require-
ments, and its neutrality with respect to back-ends and platforms of services [6].
These features greatly ease interoperability and integration.

It is generally recognized that some of the proposed languages and standards
for WS draw their inspiration from the π-calculus [19]. The latter conveys the
message-passing paradigm in a distilled form. In practice, at one extreme we find
languages like WSDL [12], useful to describe service interfaces, but saying very
little about behaviour. At the other extreme, we find proposed standards like
BPEL4WS [2], oriented to detailed descriptions of services, but hardly amenable
to formal analysis. In other words, we are experiencing a significant gap between
theory (formal models and analysis techniques) and practice (programming) in
the field of distributed applications.

As a first step toward filling this gap, we aim at giving a concise semantic
account of XML messaging and of the related typing issues. To this purpose, we
present XPi, a process language based on the asynchronous π-calculus. Promi-
nent features of XPi are: patterns generalizing ordinary inputs, ML-like pattern
� This work has been partially supported by EU within the IST FET - Global Com-

puting initiative, projects MIKADO and PROFUNDIS.

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 47–66, 2005.
c© IFIP International Federation for Information Processing 2005

48 Lucia Acciai and Michele Boreale

matching, and integration of static and dynamic typing. Our objective is to
study issues raised by these features in connection with name and code mobility.
A more precise account of our work and contributions follows.

For the sake of simplicity, syntax and reduction semantics of untyped XPi
are first introduced (Section 2). In XPi, resource addresses on the net are rep-
resented as names, which can be generally understood as channels at which
services are listening. Messages passed around are XML documents, represented
as tagged/nested lists, in the vein of XDuce [15, 16]. Services and their clients
are processes, that may send messages to channels, or query channels to retrieve
messages obeying given patterns. Messages may contain names, which are passed
around with only the output capability [20]. Practically, this means that a client
receiving a service address cannot use this address to re-define the service. This
assumption is perfectly sensible, simplifies typing issues, and does not affect ex-
pressive power (see e.g. [7, 17]). Messages may also contain mobile code in the
form of abstractions, roughly, functions that take some argument and yield a
process as a result. More precisely, abstractions can consume messages through
pattern matching, thus supplying actual parameters to the contained code and
starting its execution. This mechanism allows for considerable expressiveness.
For example, we show that it permits a clean encoding of encryption primitives,
hence of the spi-calculus [1], into XPi.

Types (Section 3) discipline processing of messages at the level of channels,
patterns, and processes. At the time of its creation, each channel is given a
capacity, i.e. a type specifying the format of messages that can travel on that
channel. Subtyping arises from the presence of star types (arbitrary length lists)
and union types, and by lifting at the level of messages a subtyping relation
existing on basic values. The presence of a top type T enhances flexibility, al-
lowing for such types as “all documents with an external tag f , containing a
tag g and something else”, written T = f [g[T],T]. Subtyping is contravariant on
channels: this is natural if one thinks of services, roughly, as functions receiving
their arguments through channels. Contravariance calls for a bottom type

T

,
which allows one to express such sets of values as “all channels that can trans-
port documents of some type S < T”, written ch(f [g[

T

],

T

]). Abstractions that
can safely consume messages of type T are given type (T)Abs. Interplay between
pattern matching, types, and capacities raises a few interesting issues concerning
type safety (Section 4). Stated in terms of services accessible at given channels,
our run-time safety theorem ensures that in well-typed systems, first, no service
will ever receive documents it cannot understand, and second, that the offered
service, even when re-defined, will comply with the statically declared capacities.
The first property simply means that no process will ever output messages vio-
lating channel capacities. The second property means that no service will hang
due to a input pattern that is not consistent with the channel’s capacity (a form
of “pattern consistency”). Type checking is entirely static, in the sense that no
run-time type check is required.

Our type system is partially inspired by XSD [13], but is less rich than, say,
the language of [9]. In particular, we have preferred to omit recursive types. While

XPi: A Typed Process Calculus for XML Messaging 49

certainly useful in a full blown language, recursion would raise technicalities that
hinder issues concerning name and code mobility. Also, our pattern language is
quite basic, partly for the similar reasons of simplicity, partly because more
sophisticated patterns can be easily simulated.

The calculus described so far enforces a strictly static typing discipline. We
also consider an extension of this calculus with dynamic abstractions (Section
5), which are useful when little or nothing is known about the actual types of
incoming messages. Run-time type checks ensure that substitutions arising from
pattern matching respect the types statically assigned to variables. Run time
safety carries over. We shall argue that dynamic abstractions, combined with
code mobility and subtyping, can provide linguistic support to such tasks as
publishing and querying services.

There have been a number of proposals for integrating XML manipulation
primitives into statically typed languages. We conclude (Section 6) with some
discussion on recent related work in this field, and with a few directions for future
extensions.

2 Untyped XPi

Syntax. We assume a countable set of variables V , ranged over by x, y, z, . . . ,
a set of tags F , ranged over f,g,. . . , and a set of basic values BV v, w,
We leave BV unspecified (it might contain such values as integers, strings, or
Java objects), but assume that BV contains a countable set of names N , ranged
over by a, b, c, N is partitioned into a family of countable sets called sorts
S ,S ′, We let u range over N ∪V and x̃, . . . denote a tuples of variables.

Definition 1 (messages, patterns and processes). The set M of XPi mes-
sages M, N, . . ., the set Q of XPi patterns Q, Q′, . . . and the set P of XPi pro-
cesses P, R, ... are defined by the syntax in Table 1. In Qx̃, we impose the following
linearity condition: x̃ is a tuple of distinct names and each xi ∈ x̃ occurs at most
once in Q.

In the style of XDuce [15, 16] and CDuce [3] XML documents are represented in
XPi as tagged ordered list that can be arbitrarily nested; these are the messages
being exchanged among processes. A message can be either a basic value, a
variable, a tagged message, a list of messages, or an abstraction. The latter take
the form (Qx̃)P, where variables x̃ represent formal parameters, to be replaced by
actual parameters at run-time. A pattern is simply an abstraction-free message.
For the sake of simplicity, we have ignored tag-variables that could be easily
accommodated. Also, note that patterns do not allow for direct decomposition
of documents into sublists (akin to the pattern p, p’ in XDuce). The latter can
be easily encoded though, as we show later in this section.

Process syntax is a variation on the π-calculus. In particular, asynchronous
(non blocking) output on a channel u is written u〈M〉, and u is said to occur in
output subject position. Nondeterministic guarded summation ∑i∈I ai.Ai waits for
any message matching Ai’s pattern at channel ai, for some i ∈ I, consumes this

50 Lucia Acciai and Michele Boreale

Table 1. Syntax of XPi messages, patterns and processes.

Message M ::= v Value

| x Var

| f (M) Tag

| LM List

| A Abstraction

List of messages LM ::= [] Empty list

| x Var

| M ·LM Concatenation

Abstraction A ::= (Qx̃)P Pattern and Continuation

| x Var

Pattern Q ::= v Value

| x Var

| f (Q) Tag

| LQ List

List of patterns LQ ::= [] Empty list

| x Var

| Q ·LQ Concatenation

Process P ::= u〈M〉 Output

| ∑i∈I ai.Ai Guarded Summation

| P else R Else

| P1|P2 Parallel

| !P Replication

| (νa)P Restriction

message and continues as prescribed by Ai; names ai are said to occur in input
subject position. Note that the syntax forbids variables in input subject position,
hence a received name cannot be used as an input channel; in other words,
names are passed around with the output capability only. Parallel composition
P1|P2 represents concurrent execution of P1 and P2. Process P else R behaves like
P, if P can do some internal reduction, otherwise reduces to R. This operator
will be useful for coding up, e.g., if-then-else, without the burden of dealing with
explicit negation on pattern. Replication !P represents the parallel composition
of arbitrarily many copies of P. Restriction (νa)P creates a fresh name a, whose

XPi: A Typed Process Calculus for XML Messaging 51

initial scope is P. Usual binding conventions and notations (alpha equivalence
=α, free and bound names fn(·) and bn(·), free and bound variables fv(·) and
bv(·)) apply. We let M cl be the set of closed messages and P cl be the set of
closed processes.

Notations. The following abbreviations for messages and patterns are used:
[M1,M2, . . . ,Mk−1,Mk] stands for M1 · (M2 · (. . . (Mk−1 · (Mk · [])) . . .)), while
f [M1,M2, . . . ,Mk−1,Mk] stands for f ([M1,M2, . . . ,Mk−1,Mk]). The following abbre-
viations for processes are used: 0, a1.A1 and a1.A1 + a2.A2 + · · ·+ an.An stand for
∑{i∈I} ai.Ai when |I| = 0, |I| = 1, and |I| = n, respectively; (νa1, . . . ,an)P = (νã)P
stands for (νa1) . . . (νan)P. We sometimes save on subscripts by marking binding
occurrences of variables in abstractions by a ‘?’ symbol, or by replacing a binding
occurrence of a variable by a don’t care symbol, ‘ ’, if that variable does not
occur in the continuation process. E.g. ([f [?x],g[]])P stands for ([f [x],g[y]]{x,y})P
where y /∈ fv(P).

Our list representation of XML ignores algebraic properties of concatenation
(such as associativity, see [16]). We simply take for granted some translation
from actual XML documents to our syntax. The following example illustrates
informally what this translation might look like.

Example 1. An XML document encoding an address book (on the left) and its
representation in XPi (on the right)1:
<addrbook> addrbook[person[name("John Smith"),

<person> tel(12345),

<name>John Smith</name> emailaddrs[email("john@smith"),

<tel>12345</tel> email("smith@john")]

<emailaddrs>],

<email>john@smith</email> person[name("Eric Brown"),

<email>smith@john</email> tel(678910),

</emailaddrs> emailaddrs[]

</person>]

<person>]

<name>Eric Brown</name>

<tel>678910</tel>

<emailaddrs></emailaddrs>

</person>

</addrbook>.

Note that a sequence of tagged documents such as <tag1>M</tag1>
<tag2>N</tag2>· · · is rendered as an ordered list [tag1(M), tag2(N),· · ·]. A
pattern that extracts name and telephone number of the first person of the
address book above is: Qxy = addrbook[person[name(?x),tel(?y),_],_].

Reduction semantics. A reduction relation describes system evolution via inter-
nal communications. Following [18], XPi reduction semantics is based on struc-
tural congruence ≡, defined as the least congruence on processes satisfying the
laws in Table 2. The latter permit certain rearrangements of parallel composi-
tion, replication, and restriction. The relation ≡ extends to abstractions, hence
1 We shall prefer the typewriter font whenever useful to improve on readability.

52 Lucia Acciai and Michele Boreale

Table 2. Structural congruence.

P =α R ⇒ P ≡ R

P|R ≡ R|P
(P|R1)|R2 ≡ P|(R1|R2)

P|0 ≡ P

!P ≡ P|!P
(νa)(P|R) ≡ P|(νa)R if a /∈ fn(P)

(νa)0 ≡ 0

(νa)(νb)P ≡ (νb)(νa)P

Table 3. Reduction semantics.

(com)
j ∈ I a j = a, A j = (Qx̃)P, match(M,Q,σ)

a〈M〉 | ∑
i∈I

ai.Ai → Pσ

(struct)
P ≡ P′, P′ → Q′, Q′ ≡ Q

P → Q (ctx)
P → P′

(νã)(P|R) → (νã)(P′|R)

(else1)
P → P′

P else Q → P′ (else2)
P �

P else Q → Q

to messages, in the expected manner. The reduction semantics also relies on a
standard matching predicate, that matches a (linear) pattern against a closed
message and yields a substitution.

Definition 2 (substitutions and matching). Substitutions σ,σ′, ... are finite
partial maps from the set V of variables to the set M cl of closed messages. We
denote by ε the empty substitution. For any term t, tσ denotes the result of
applying σ onto t (with alpha-renaming of bound names and variables if needed).
Let M be a closed message and Q be a linear pattern: match(M,Q,σ) holds true
if and only if dom(σ) = fv(Q) and Qσ = M; in this case, we also say that M
matches Q.

Definition 3 (reduction). The reduction relation, → ⊆ Pcl ×Pcl, is the least
binary relation on closed processes satisfying the rules in Table 3.

Derived constructs and examples. XPi allows for straightforward definition of a
few powerful constructs, that will be used in later examples. In the following,
we shall freely use recursive definitions of processes, that can be coded up using
replication [18].

– Application. A functional-like application for abstractions, A•M, can be de-
fined as (νc)(c〈M〉|c.A), for any c /∈ fn(M,A).

XPi: A Typed Process Calculus for XML Messaging 53

– Case. A pattern matching construct relying on a first match policy, written

Case M of (Q1)x̃1 ⇒ P1, (Q2)x̃2 ⇒ P2, · · · ,(Qk)x̃k ⇒ Pk

evolves into P1 if M matches Q1 (with substitutions involved), otherwise
evolves into P2 if M matches Q2, and so on; if there is no match, the process is
stuck. This construct can be defined in XPi as follows (assuming precedence
of • on else and right-associativity for else):

(Q1)x̃1 P1 •M else (Q2)x̃2 P2 •M else · · · else (Qk)x̃k Pk •M .

– Decomposition. A process that attempts to decompose a message M into
two sublists that satisfy the patterns Qx̃ and Q′

ỹ and proceeds like P (with
substitutions for x̃ and ỹ involved), if possible, otherwise is stuck, written: M
as Qx̃, Q′̃

y ⇒ P, can be defined as the recursive process R([[], M]), where:

R([l,x]) = Case x of ?y ·?w ⇒ (Case l@y of Qx̃ ⇒ (Case w of Q′̃
y ⇒ P,

⇒ R([l@y, w])),

⇒ R([l@y,w])).
Here we have used a list-append function @, which can be easily defined
via a call to a suitable recursive process. Most common list manipulation
constructs can be easily coded up in this style. We shall not pursue this
direction any further.

Example 2 (a web service). Consider a web service WS that offers two different
services: an audio streaming service, offered at channel stream, and a download
service, offered at channel download. Clients that request the first kind of service
must specify a streaming channel and its bandwidth ("high" or "low"), so that
WS can stream one of two mp3 files (vlow or vhigh), as appropriate. Clients that
request download must specify a channel at which the player will be received. A
client can run the downloaded player locally, supplying it appropriate parameters
(a local streaming channel and its bandwidth). We represent streaming on a
channel simply as an output action along that channel:

W S

=!(stream.(req_stream[bandwidth("low"),channel(?x)])x〈vlow〉

+ stream.(req_stream[bandwidth("high"),channel(?y)])y〈vhigh〉
+ download.(req_down(?z))z〈Player〉).

Player is an abstraction:

Player

= (req_stream[bandwidth(?y),channel(?z)])(Case y of "low" ⇒ z〈vlow〉

"high" ⇒ z〈vhigh〉).

Note that the first two summands of WS are equivalent to stream.Player. How-
ever, the extended form written above makes it possible a static optmization of
channels (see Example 5).
A client that asks for low bandwidth streaming, listens at s and then proceeds
like C is:

54 Lucia Acciai and Michele Boreale

C1

= (νs)(stream〈req_stream[bandwidth("low"),channel(s)]〉 |s.(?v)C).

Another client that asks for download, then runs the player locally, listening at
a local high bandwidth channel s is C2 defined as:

(νd, s)(download〈req_down(d)〉 | d.(?xp)(xp •
req_stream[bandwidth("high"),channel(s)] |s.(?v)C)).

Encryption and decryption. Cryptographic primitives are sometimes used in
distributed applications to guarantee secrecy and authentication of transmitted
data. As a testbed for expressiveness, we show how to encode shared-key en-
cryption and decryption primitives à la spi-calculus [1] into XPi. We shall see
an example of application of these encodings in Section 5. We first introduce
XPicr, a cryptographic extension of XPi that subsumes shared-key spi-calculus,
and then show how to encode XPicr into XPi. Message syntax is extended with
the following clause, that represents encryption of M using N as a key:

M ::= · · · |{M}N (encryption)

where N does contain neither abstractions nor encryptions. Process syntax is
extended with a case operator, that attempts decryption of M using N as a key
and if successful binds the result to a variable x :

P ::= · · · |case M of {x}N in P (decryption)

where N does contain neither abstractions nor encryptions, M is a variable or
a message of the form {M′}N′ and x binds in P. Patterns remain unchanged,
in particular they may not contain encryptions or abstractions. The additional
reduction rule is:

(Dec) case {M}N of {x}N in P → P[M/x].

Next, two translation functions, one for messages ([[·]]) and one for processes
(〈| · |〉), are defined from XPicr to XPi. The translations of messages follow a
familiar continuation-passing style. The relevant clauses of the definition, by
structural induction, are as follows (on the others the functions just go through
the structure of terms):

[[u]] = u

[[{M}N]] = ([N,?x])x〈[[M]]〉

〈|u〈M〉|〉 = u〈[[M]]〉
〈|case M of {x}N in P|〉 = (νr)([[M]]• [N,r] |r.(?x)〈|P|〉).

Following [22], let us define the barb predicate P ⇓ a as follows: there is P′ s.t.
P →∗ P′ and P′ has either an input summand a.A or an output a〈M〉 which are
not in the scope of a (νa), an else or guarded summation. The encoding defined
above is correct, in the sense that it preserves reductions and barbs in both
directions, as stated by the proposition below. Note that, by compositionality,
this implies the encoding is fully abstract w.r.t. barbed equivalence (see e.g. [7]).

XPi: A Typed Process Calculus for XML Messaging 55

Table 4. Syntax of types.

Types T ::= bt Basic type (bt ∈ BT)

|T Top

| T

Bottom

| f (T) Tag (f ∈ F)

| LT List

| T+T Union

| (T)Abs Abstraction

List types LT ::= [] Empty

| ∗T Star

| T ·LT Concatenation

Proposition 1. Let P be a closed process in XPicr.

1. if P → P′ then 〈|P|〉 →∗ 〈|P′|〉;
2. if 〈|P|〉 → P′ then ∃P′′ ∈ XPicr s.t. P′ →∗ 〈|P′′|〉;
3. P ⇓ a if and only if 〈|P|〉 ⇓ a.

3 A Type System

In this section, we define a type system for XPi that disciplines messaging at
the level of channels, patterns and processes. The system guarantees that well-
typed processes respect channels capacities at runtime. In other words, services
are guaranteed to receive only requests they can understand, and conversely,
services offered at a given channel will be consistent with the type declared
for that channel. XPi’s type system draws its inspiration from, but is less rich
than, XML-Schema [13]. Our system permits to specify types for basic values
(such as string or int) and provides tuple types (fixed-length lists) and star types
(arbitrary-length lists); moreover, it provides abstraction types for code mobility.
For the sake of simplicity, we have omitted attributes and recursive types.

Message types and subtyping. We assume an unspecified set of basic types BT
bt, bt’,... that might include int, string, boolean, or even Java classes. We assume
that BT contains a countable set of sort names in one-to-one correspondence
with the sorts S ,S ′, ... of N ; by slight abuse of notation, we denote sort names
by the corresponding sorts.

Definition 4 (types). The set T of types, ranged over by T, S, . . . , is defined
by the syntax in Table 4.

Note the presence of the union type T+T’, that is the type of all messages of
type T or T’, and of the star type ∗T, that is the type of all lists of elements

56 Lucia Acciai and Michele Boreale

of type T. (T)Abs is the type of all abtractions that can consume messages of
type T. Finally, note the presence of T and

T

types. T is simply the type of all
messages. On the contrary, no message has type

T

, but this type is extremely
useful for the purpose of defining channel types, as we shall see below.

Notation. The following abbreviations for types are used: [T1,T2, . . . ,Tk−1,Tk]
stands for T1 · (T2 · (. . . (Tk−1 · (Tk · [])) . . .)), while f [T1,T2, . . . ,Tk−1,Tk] stands for
f ([T1,T2, . . . ,Tk−1,Tk]).

Example 3. A type for address books, on the left (see message M in Example 1),
and a type for all SOAP messages, consisting of an optional header and a body,
enclosed in an envelope, on the right:

addrbook[*person[name(string), envelope[[] + header(T),

tel(int), body(T)

emailaddrs(*email(string))]]].

Next, we associate types with channels, or more precisely with sorts. This is done
by introducing a “capacity” function.

Definition 5. A capacity function is a surjective map from the set of sorts to
the set of types.

In the sequel, we fix a generic capacity function. We shall denote by ch(T) a
generic sort that is mapped to T. Note that, by surjectivity of the capacity
function, for each type T there is a sort ch(T). In particular, ch(T) is the sort of
channels that can transport anything. In practice, determining capacity T of a
given channel a, i.e. that a belongs to ch(T), might be implemented with a variety
of mechanisms, such as attaching to a an explicit reference to T’s definition. We
abstract away from these details.

List and star types and the presence of T and

T

naturally induce a subtyping
relation. For example, a service capable of processing messages of type T = f (∗
int) must be capable of processing messages of type T’ = f [int, int], i.e. T’ is a
subtype of T. Subtyping also serves to lift a generic subtyping preorder on basic
types, ≺, to all types.

Definition 6 (subtyping). The subtyping relation <⊆ T ×T is the least re-
flexive and transitive relation closed under the rules of Table 5.

Note that we disallow subtyping on abstractions. The reason for this limitation
will be discussed shortly after presenting the type checking system (see Remark
1). Also note that subtyping is contravariant on sorts capacities (rule (Sub-

Sort)): this is natural if one thinks of a name of capacity T as, roughly, a
function that can take arguments of type T. As a consequence of contravariance,
for any T, we have ch(T) < ch(

T

), that is, ch(

T

) is the type of all channels.

Type checking. A basic typing relation v : bt on basic values and basic types is
presupposed, which is required to respect subtyping, i.e. whenever bt ≺ bt’ and
v : bt then v : bt’. We further require that for each bt there is at least one v : bt,

XPi: A Typed Process Calculus for XML Messaging 57

Table 5. Rules for subtyping.

(Sub-Sort)
T < T’

ch(T’) < ch(T)

(Sub-Top)
T < T

(Sub-Bottom) T

< T

(Sub-Basic)
bt1≺ bt2

bt1 < bt2
(Sub-Tag)

T’ < T

f (T’) < f (T)

(Sub-Star1) [] < ∗T (Sub-Star2)
T’ < T, LT < ∗T

T’ ·LT < ∗T

(Sub-Star3)
T’ < T

∗T’ < ∗T (Sub-List)
T1 < T’1, LT < LT’

T1 ·LT < T’1 ·LT’

(Sub-Union1)
T < T’ or T < T”

T < T’+T”
(Sub-Union2)

T’ < T, T”< T

T’+T”< T

and that for each v the set of bt’s s.t. v : bt has a minimal element. On names
and sort names the basic typing relation is the following: a : S iff a ∈ S ′ for some
S ′ < S .

Contexts Γ,Γ′, ... are finite partial maps from variables V to types T , some-
times denoted as sets of variable bindings {xi : Ti}i∈I (xi’s distinct). We denote the
empty context by /0. Assume x̃ a set of variables; we denote by Γ−x̃ the context ob-
tained from Γ by removing the bindings for the variables in x̃, and by Γ|x̃ the con-
text obtained by restricting Γ to the bindings for the variables in x̃. The subtyping
relation is extended to contexts by letting Γ1 < Γ2 iff dom(Γ1) = dom(Γ2) and
∀x ∈ dom(Γ1) it holds that Γ1(x) < Γ2(x). Union of contexts Γ1 and Γ2 having dis-
joint domains is written as Γ1∪Γ2 or as Γ1, Γ2 if no ambiguity arises. Sum of con-
texts Γ1 and Γ2 is written as Γ1 +Γ2 and is defined as (Γ1 +Γ2)(x) = Γ1(x)+Γ2(x)
if x ∈ dom(Γ1)∩dom(Γ2), otherwise (Γ1 +Γ2)(x) = Γi(x) if x ∈ dom(Γi) for i = 1,2.

Type checking relies on a type-pattern matching predicate, tpm(T,Q,Γ),
whose role is twofold: (1) it extracts from T the types expected for variables
in Q after matching against messages of type T, yielding the context Γ, (2) it
checks that Q is consistent with type T, i.e. that the type of Q is of a subtype
of T under Γ.

Definition 7 (type-pattern match). The predicate tpm(T,Q,Γ) is defined by
the rules in Table 6.

As expected, type checking works on an annotated syntax, where each Qx̃ is
decorated by a context Γ for its binding variables x̃, written Qx̃ : Γ, with x̃ =
dom(Γ), or simply Q : Γ, where it is understood that the binding variables of Q
are dom(Γ). For notational simplicity, we shall use such abbreviations as a.(f [?x :
T,?y : T’])P instead of a.(f [x,y] : {x : T,y : T’})P, and assume don’t care variables
‘ ’ are always annotated with T. Reduction semantics carries over to annotated
closed processes formally unchanged.

58 Lucia Acciai and Michele Boreale

Table 6. Matching types and patterns.

(tpm-Top)
Q �= x

tpm(T,Q,Γ) , ∀x ∈ fv(Q) : Γ(x) = T

(tpm-Empty) tpm([], [], /0) (tpm-Var) tpm(T,x,{x : T})

(tpm-Value)
v : bt

tpm(bt,v, /0) (tpm-Tag)
tpm(T,Q,Γ)

tpm(f (T), f (Q),Γ)

(tpm-Star1) tpm(∗T, [], /0) (tpm-Star2)
tpm(T,Q,Γ1), tpm(∗T,LQ,Γ2)

tpm(∗T,Q ·LQ,Γ1 ∪Γ2)

(tpm-List)
tpm(T,Q,Γ1), tpm(LT,LQ,Γ2)

tpm(T ·LT,Q ·LQ,Γ1 ∪Γ2)

(tpm-Union)
tpm(T0,Q,Γ0) or tpm(T1,Q,Γ1)

tpm(T0 +T1,Q,Γ) , where:

Γ =
{

Γ0 +Γ1 if tpm(T0,Q,Γ0) and tpm(T1,Q,Γ1)
Γi if tpm(Ti,Q,Γi) and for no Γ′ tpm(Ti+1mod2,Q,Γ′), i = 0,1

In what follows, we shall use the following additional notation and termi-
nology. We say that a type T is abstraction-free if T contains no subterms of
the form (T’)Abs. A context Γ is abstraction-free if for each x ∈ dom(Γ), Γ(x) is
abstraction-free. We use Γ� u∈ ch(T) as an abbreviation for: either u = a∈ ch(T)
or u = x ∈ V and Γ(x) = ch(T).

The type checking system, defined on open terms, consists of two sets of
inference rules, one for messages and one for processes, displayed in Table 7 and 8,
respectively. These two systems are mutually dependent, since abstractions may
contain processes, and processes may contain abstractions. Note that the system
is entirely syntax driven, i.e. the process P (resp. the pair (M,T)) determines the
rule that should be applied to check Γ � P (resp. Γ � M : T).

The most interesting of these rules is (tm-Abs). Informally, Γ � A : (T)Abs
ensures that under Γ the following is true: (1) abstraction A = (Qx̃ : ΓQ)P behaves
safely upon consuming messages of type T (because the type at which the actual
parameters will be received is a subtype of the type declared for formal param-
eters, (Γ1)|x̃ < ΓQ, and because of Γ,ΓQ � P : ok); (2) the pattern Q is consistent
with type T, i.e. essentially the run-time type of Q is a subtype of T (because of
type-pattern match and of Γ|ỹ < (Γ1)|ỹ). This guarantees existence of a message
of type T that matches the pattern. Moreover, no ill-formed pattern will arise
from Q (abstraction-freeness).

Rule (t-In) checks that an abstraction A residing at channel a ∈ ch(T) can
safely consume messages of type T, and that there do exist messages of type T
that match the pattern of A. Conversely (t-Out) checks that messages sent at
u be of type T. Input and summation (rule (t-Sum)) are dealt with separately
only for notational convenience. Finally, it is worth to notice that, by definition

XPi: A Typed Process Calculus for XML Messaging 59

Table 7. Type system for messages.

(tm-Empty) Γ � [] : [] (tm-Top) Γ � M : T

(tm-Value)
v : bt

Γ � v : bt
(tm-Var)

Γ(x) < T
Γ � x : T

(tm-Tag)
Γ � M : T

Γ � f (M) : f (T) (tm-List)
Γ � M : T, Γ � LM : LT
Γ � (M ·LM) : (T ·LT)

(tm-Star1) Γ � [] : ∗T (tm-Star2)
Γ � M : T, Γ � LM : ∗T

Γ � (M ·LM) : ∗T

(tm-Union)
Γ � M : T or Γ � M : T’

Γ � M : T+T’

(tm-Abs)

tpm(T,Q,Γ1), (Γ1)|x̃ < ΓQ, (Γ1)|ỹ > Γ|ỹ, Γ,ΓQ � P : ok
Γ � (Q : ΓQ)P : (T)Abs

where x̃ = dom(ΓQ), ỹ = fv(Q)\ x̃ and (Γ1)|ỹ is abstraction-free

Table 8. Type system for processes.

(t-In) a ∈ ch(T), Γ � A : (T)Abs
Γ � a.A : ok

(t-Out) Γ � u ∈ ch(T), Γ � M : T
Γ � u〈M〉 : ok

(t-Sum)
∀i∈I, Γ � ai.Ai : ok |I| �= 1

Γ � ∑
i∈I

ai.Ai : ok

(t-Rep)
Γ � P : ok
Γ � !P : ok (t-Par)

Γ � P : ok, Γ � R : ok
Γ � (P|R) : ok

(t-Res)
Γ � P : ok

Γ � (νa)P : ok (t-Else)
Γ � P : ok, Γ � R : ok

Γ � P else R : ok

of a : S , rule (tm-Value) entails subsumption on channels (i.e. Γ � a : S and
S < S ′ implies Γ � a : S ′). The remaining rules should be self-explanatory.

In the sequel, for closed annotated processes P, we shall write P : ok for
/0�P : ok, and say that P is well-typed. Similarly for M : T, for closed annotated M.

Example 4. Assume a ∈ ch(∗int) and b ∈ ch(f [int,∗int]). Then P : ok, where:

P = a.(?y : ∗int)b.(f [?x : int,y])a〈x · y〉 | a〈[4,5]〉 | a〈[4,5,6]〉.
Note that, if we change the sort of b into ch(f [int, [int,int]]), then P is not well-
typed, as rule (tm-Abs) fails on A = (f [?x : int,y])a〈x · y〉. This is intuitively
correct, because a possible run-time type of A is (f [int, [int,int,int]])Abs, which is
not consistent with the capacity associated to b, that is f [int, [int,int]].

To illustrate the use of ch(T) and ch(

T

), and contravariance on sort names,
consider a “link process” ([7]) that constantly receives any name on a and sends
it along b. This can be written as !a.(?x : ch(

T

))b〈x〉. This process is well-typed
provided a ∈ ch(ch(T)), for some T, and that b ∈ ch(ch(

T

)).

60 Lucia Acciai and Michele Boreale

Remark 1 (on abstractions and subtyping). To see why we disallow subtyping
on abstractions, consider the types T = [f (int), f (int)] and ∗ f (int) = T’. Clearly
T < T’. Assume we had defined subtyping covariant on abstractions, so that
(T)Abs < (T’)Abs. Now, clearly A = (?x : T)0 :(T)Abs, but not A : (T’)Abs (the
condition (Γ1)|x̃ < ΓQ of (tm-Abs) fails). In other words, a crucial subtyping
property would be violated.

On the other hand, assume we had defined subtyping contravariant on ab-
stractions, so that (T’)Abs < (T)Abs. Consider A′ = (Q : ΓQ)0, where Q : ΓQ =
[f (?x : int), f (?y : int), f (?z : int)]; clearly A′ : (T’)Abs, but not A′ : (T)Abs (simply
because there is no type-pattern match between T and Q). This would violate
again the subtyping property.

Typing rules for application and case. The rules below can be easily derived from
the translation of derived constructs application and case to the base syntax. In
the following, we let TM,Γ denote the exact type of M under Γ, obtained from M
by replacing each x by Γ(x), each name a ∈ ch(T) by ch(T), each other v by the
least type bt s.t. v : bt, and, recursively, each abstraction subterm (Q : ΓQ)P by
(TQ, Γ∪ΓQ)Abs. The rule for application is:

(t-Appl)
Γ � A : (TM,Γ)Abs

Γ � A•M : ok .

that is easily proven sound recalling that A •M = (νc)(c.A|c〈M〉) (c fresh), and
assuming that c is chosen s.t. c ∈ ch(TM,Γ).

Concerning Case, first note that the typed version of this construct contem-
plates annotated patterns, thus: Case M of Q1 : ΓQ1 ⇒ P1, . . . , Qk : ΓQk ⇒ Pk : ok.
Then, relying on the rule for application, the typing rule for case can be written
as:

(t-Case)
∀i = 1, . . . ,k : Γ � (Qi : ΓQi)Pi •M : ok

Γ � Case Mof Q1 : ΓQ1 ⇒ P1, . . . ,Qk : ΓQk ⇒ Pk : ok .

Example 5 (a web service, continued). Consider the service defined in Exam-
ple 2. Assume a basic type mp3 of all mp3 files, such that vlow, vhigh : mp3,
and a basic type l-mp3 of low quality mp3 files, s.t. vlow : l-mp3, but not
vhigh : l-mp3. Assume l-mp3 < mp3; note that this implies that ch(mp3) <
ch(l-mp3), i.e. if a channel can be used for streaming generic files, it can
also be used for streaming low-quality files, which fits intuition. Let T be
req_stream[bandwidth(string),channel(ch(mp3))] and fix the following ca-
pacities for channels stream and download: stream ∈ ch(T) and download ∈
ch(req_down(ch((T)Abs))). An annotated version of WS, which permits in prin-
ciple a static optimization of channels (assuming allocation of low-quality chan-
nels is less expensive than generic channels’):

WS =!(stream.(req_stream[bandwidth("low"),channel(?x : ch(l-mp3))])x〈vlow〉
+ stream.(req_stream[bandwidth("high"),channel(?y : ch(mp3))])y〈vhigh〉
+ download.(req_down[?z : ch((T)Abs)])z〈Player〉)

where Player is the obvious annotated version of the player of Example 2. It is
easy to check that Player : (T)Abs and that WS : ok.

XPi: A Typed Process Calculus for XML Messaging 61

4 Run-Time Safety

The safety property of our interest can be defined in terms of channel capacities,
message types, and consistency. First, a formal definition of pattern consistency.

Definition 8 (T-consistency). A type T is consistent if

T

does not occur in
T. A pattern Q is T-consistent if there is a message M : T that matches Q.

Note that all sort names, including ch(

T

), are consistent types by definition. A
safe process is one whose output and input actions are in agreement with channel
capacities, as stated by the definition below. Of course, for input actions it makes
sense to require consistency (condition 2) only if the input channel has in turn
a consistent capacity.

Definition 9 (safety). Let P be an annotated closed process. P is safe if and
only if for each name a ∈ ch(T):

1. whenever P ≡ (ν h̃)(a〈M〉 |R) then M : T;
2. suppose T is consistent. Whenever P ≡ (ν h̃)(S |R), where S is a guarded sum-

mation, a.A a summand of S and Q is A’s pattern, then Q is T-consistent.

Theorem 1 (run-time safety). Let P be a closed annotated process. If P : ok
and P →∗ P′ then P′ is safe.

5 Dynamic Abstractions

Although satisfactory in most situations, a static typing scenario does not seem
appropriate in those cases where little is known in advance on actual types of
data that will be received from the network.

Example 6 (a directory of services). Suppose one has to program an online di-
rectory of (references to) services. Upon request of a service of type T, for any T,
the directory should lookup its catalog and respond by sending a channel of type
ch(T) along a reply channel. If the reply channel is fixed statically, it must be
given capacity ch(

T

), that is, any channel. Then, a client that receives a name at
this channel must have some mechanism to cast at runtime this generic type to
the subtype ch(T), which means going beyond static typing. If the reply channel
is provided by clients the situation does not get any better. E.g. consider the
following service (here we use some syntactic sugar for the sake of readability):

!request.(req[?t : Td,?xrep : ch(Tr)]) let y = lookup(t) in xrep〈y〉
where lookup is a function from some type Td of type-descriptors to the type of all
channels, ch(

T

). It is not clear what capacity Tr the return channel variable xrep

should be assigned. The only choice that makes the above process well typed is to
set Tr = ch(

T

), that is, xrep can transport any channel. But then, a client’s call to
this service like request〈req[vtd,r]〉, where r has capacity ch(T), is not well typed
(because r ∈ ch(ch(T)) and ch(ch(T)) is not a subtype of ch(Tr) = ch(ch(

T

))).

62 Lucia Acciai and Michele Boreale

Even ignoring the static vs. dynamic issue, the schemas sketched above would
imply some form encoding of type and subtyping into XML, which is undesirable
if one wishes to reason at an abstract level. As we shall see below, dynamic
abstractions can solve these difficulties.

The scenario illustrated in the above example motivates the extension of the
calculus presented in the preceding sections with a form of dynamic abstrac-
tion. The main difference from ordinary abstractions is that type checking for
pattern variables is moved to run-time. This is reflected into an additional com-
munication rule, that explicitly invokes type checking. We describe below the
necessary extensions to syntax and semantics. We extend the syntactic category
of Abstractions thus:

A ::= · · · |(|Qx̃ : Γ|)P Dynamic abstraction

with x̃ = dom(Γ). We let D range over dynamic abstractions and A over all ab-
stractions. We add a new reduction rule:

(com-d)
j ∈ I, a j = a, A j = (|Qx̃ : Γ|)P, match(M,Q,σ), ∀y ∈ dom(σ) : σ(y) : Γ(y)

a〈M〉 | ∑
i∈I

ai.Ai → Pσ
.

We finally add a new type checking rule. For this, we need the following addi-
tional notation. Given Γ1 and Γ2, we write Γ1 ≶ Γ2 if dom(Γ1) = dom(Γ2) and
∀x ∈ dom(Γ1) there is a consistent type T s.t. T < Γ1(x) and T < Γ2(x).

(tm-abs-d)

tpm(T,Q,Γ1), (Γ1)|x̃ ≶ ΓQ, (Γ1)|ỹ > Γ|ỹ, Γ,ΓQ � P : ok
Γ � (|Qx̃ : ΓQ|)P : (T)Abs

where ỹ = fv(Q) \ x̃ and (Γ1)|ỹ is abstraction free. The existence of a common
consistent subtype for ΓQ and (Γ1)|x̃ ensures a form of dynamic consistency for
Q, detailed below.

We discuss now the extension of run-time safety. The safety property needs
to be extended to inputs formed with dynamic abstractions. A stronger form of
pattern consistency is needed.

Definition 10 (dynamic T-consistency). An annotated pattern Q : Γ
(fv(Q) = dom(Γ)) is dynamically T-consistent if there is a message M : T s.t.
match(Q,M,σ) and ∀x ∈ dom(σ) we have σ(x) : Γ(x).

Definition 11 (dynamic safety). Let P an annotated closed process. P is dy-
namically safe if for each name a∈ ch(T) conditions 1 and 2 of Definition 9 hold,
and moreover the following condition is true: Suppose T is consistent. Whenever
P ≡ (ν h̃)(S |R), where S is a guarded summation, a.D is a summand of S and
Q : Γ is D’s annotated pattern, then Q : Γ is dynamically T-consistent.

Theorem 2 (run-time dynamic safety). Let P be an annotated closed pro-
cess in the extended language. If P : ok and P →∗ P′ then P′ is dynamically safe.

XPi: A Typed Process Calculus for XML Messaging 63

Example 7 (a directory of services, continued). Consider again the directory of
services. Clients can either request a (reference to a) service of a given type, by
sending a message to channel discovery, or request the directory to update its
catalog with a new service, using the channel publish. Each request to discovery
should contain some type information, which would allow the directory to select a
(reference to a) service of that type, taking subtyping into account. Types cannot
be passed around explicitly. However one can pass a dynamic abstraction that
will do the selection on behalf of the client and return the result back to the
client at a private channel. The catalog is maintained on a channel cat local
to the directory. Thus the directory process can be defined as follows, where
∏i∈I!cat〈ci〉 stands for !cat〈c1〉 | · · · | !cat〈cn〉 (for I = 1, . . . ,n) and the following
capacities are assumed: discovery ∈ ch((ch(

T

))Abs, publish,cat ∈ ch(ch(

T

)).

Directory

= (νcat)(∏i∈I!cat〈ci〉 | ! publish.(?y : ch(

T

))!cat〈y〉
| !discovery.(?x : (ch(

T

))Abs)cat.x)

Note that (ch(

T

))Abs is the type of all abstractions that can consume some
channel. A client that wants to publish a new service S that accepts messages of
some type T at a new channel a ∈ ch(T) is:

C1

= (νa)(publish〈a〉 |S).

A client that wants to retrieve a reference to a service of type T, or any subtype
of it, is:

C2

= (νr)(discovery〈(|?z : ch(T)|)r〈z〉〉 |r.(?y : ch(T))C′).

Suppose r ∈ ch(ch(T)). Assuming S and C′ are well typed (the latter under {y :
ch(T)}), it is easily checked that the global system

P

= Directory |C1 |C2

is well typed too.
In reality, the above solution would run into security problems, as the di-

rectory executes blindly any abstraction received from clients (cat.x). More-
over, services originating from unauthorized clients should not be published.
We can avoid these problems using encryption so to authenticate both ab-
stractions and published services. We rely on the encoding of encryption prim-
itives2 described in Section 2. Assume that every client Cj shares a secret key
k j with the directory. A table associating clients identifiers and keys is main-
tained on a channel table local to the directory (hence secure). Assume that
identifiers id j, ... are of a basic type identifier, that keys k j, ... are names of
a sort Key and let enc(T) be the type of messages {M}k where M : T. Fix
the following capacities: cat ∈ ch(ch(

T

)), table ∈ ch([id(identifier),key(Key)]),
publish ∈ ch(service_p[id(identifier),channel(enc(ch(

T

)))]), and discovery ∈
ch(service_d[id(identifier),abstr(enc((ch(

T

))Abs))]). The process Directorys

is:
2 For the purpose of the present example, we extend the encoding to the typed cal-

culus by [[{M}k]]

= ([k,?x : ch(T)])x〈[[M]]〉, and 〈|case M of {x : T}k in P|〉

= (νr)([[M]] •
[k,r] |r.(|?x : T|)〈|P|〉), with r ∈ ch(T).

64 Lucia Acciai and Michele Boreale

Directorys

= (νcat, table)

(

∏i∈I!cat〈ci〉 | ∏ j∈J!table〈[id(id j),key(k j)]〉
| ! publish.(service_p[id(?x : identifier),channel(?zc : enc(ch(

T

)))])

table.([id(x),key(?xk : Key)])case zc of {y : ch(

T

)}xk in !cat〈y〉
| !discovery.(service_d[id(?x : identifier),abstr(?za : enc((ch(

T

))Abs))])

table.([id(x),key(?xk : Key)])case za of {y : (ch(

T

))Abs}xk in cat.y
)

The client C1 may be rewritten as:

C′
1

= (νa)(publish〈service_p[id(id1),channel({a}k1)]〉 |S)

and C2 as:

C′
2

= (νr)(discovery〈service_d[id(id2),abstr({(|?z : ch(T)|)r〈z〉}k2)]〉 |r.(?y : ch(T))C′).

Suppose a ∈ ch(T′), r ∈ ch(ch(T)) and assume S and C′ are well typed under the
appropriate contexts. The global system

Ps

= (νk1, k2)(Directorys |C′

1 |C′
2)

is well typed too. An attacker may intercept messages on publish or discovery
and may learn the identifiers of the clients, but not the secret shared keys. As
a consequence, it cannot have Directorys publish unauthorized services or run
unauthorized abstractions.

6 Conclusions and Related Work

XPi’s type system can be extended into several directions. We are presently
considering types that would guarantee“responsiveness”of services. A responsive
service would be one that, when invoked at a given a, eventually responds at
a given return address r, possibly after collaborating with other services that
are equally responsive. This extension would be along the lines of Sangiorgi’s
uniform receptiveness [21]. Such a system might be augmented with primitives
for managing quality of service in terms of response time.

A number of proposals aim at integrating XML processing primitives in the
context of traditional, statically typed languages and logics. The most related to
our work are XDuce [16] and CDuce, [3], two typed (functional) languages for
XML document processing. XPi’s list-like representation of documents draws its
inspiration from them. TQL [9] is both a logic and a query language for XML,
based on a spatial logic for the Ambient calculus [10]. All these languages support
query primitives more sophisticated than XPi’s patterns, but issues raised by
communication and code/name mobility, which are our main focus, are of course
absent.

Early works aiming at integration of XML into process calculi, or vice-versa,
are [14] and [4]. Xdπ [14] is a calculus for describing interaction between data and
processes across distributed locations; it is focused on process migration rather
than communication. A type system is not provided. Iota [4] is a concurrent XML
scripting language for home-area networking. It relies on syntactic subtyping, like

XPi: A Typed Process Calculus for XML Messaging 65

XPi, but is characterized by a different approach to XML typing. In particular,
Iota’s type system just ensures well-formedness of XML documents, rather than
the stronger validity, which we consider here.

Roughly contemporary to ours, and with similar goals, are [8] and [11]. The
language πDuce of [8] features asynchronous communication and code/name mo-
bility. Similarly to XDuce’s, πDuce’s pattern matching embodies built-in type
checks, which may be expensive at run-time. The language in [11] is basically a
π-calculus enriched with a rich form of “semantic” subtyping and pattern match-
ing. Code mobility is not addressed. Pattern matching, similarly to πDuce’s,
performs type checks on messages. By contrast, in XPi static type checks and
plain pattern matching suffice, as types of pattern variables are checked stati-
cally against channel capacities. We confine dynamic type checking to dynamic
abstractions, which can be used whenever no refined typing information on in-
coming messages is available (e.g. at channels of capacity T). Both [11] and [8]
type systems also guarantee a form of absence of deadlock, which however pre-
supposes that basic values do not appear in patterns. In XPi, we thought it was
important to allow basic values in patterns for expressiveness reasons (e.g., they
are crucial in the encoding of the spi-calculus presented in Section 2).

References

1. M. Abadi and A.D. Gordon. A Calculus for Cryptographic Protocols: The Spi
Calculus. Information and Computation, 148(1):1-70, Academic Press, 1999.

2. T. Andrews, F. Curbera, and S. Thatte. Business Process Execution Language for
Web Wervices, v1.1, 2003. http://ifr.sap.com/bpel4ws.

3. V. Benzaken, G. Castagna, and A. Frisch. Cduce: An XML-Centric General-
Purpose Language. In Proceedings of the ACM International Conference on Func-
tional Programming, 2003.

4. G.M. Bierman and P. Sewell. Iota: A concurrent XML scripting language with
applications to Home Area Networking. Technical Report 577, University of Cam-
bridge Computer Laboratory, 2003.

5. Biztalk Server Home. http://www.microsoft.com/biztalk/.
6. S. Bjorg and L.G. Meredith. Contracts and Types. Communication of the ACM,

46(10), October 2003.
7. M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi.

Theoretical Computer Science, 195, 1998.
8. A. Brown, C. Laneve, and L.G. Meredith. πDuce: A process calculus with native

XML datatypes. Manuscript. 2004.
9. L. Cardelli and G. Ghelli. TQL: A Query Language Semistruictured Data Based

on the Ambient Logic. Mathematical Structures in Computer Science, 14:285–327,
2004.

10. L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1), 2000.

11. G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the π-calculus.
To appaear in Proc. of LICS’05.

12. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services De-
scription Language 1.1. W3C Note, 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

66 Lucia Acciai and Michele Boreale

13. D.C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, 2001.
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502.

14. P. Gardner and S. Maffeis. Modeling Dynamic Web Data. In Proceedings of DBPL
2003, volume 2921 of LNCS. Springer, 2003.

15. H. Hosoya and B. Pierce. Regular Expression Pattern Matching for XML. Journal
of Functional Programming, 2002.

16. H. Hosoya and B. Pierce. Xduce: A Statically Typed XML Processing Language.
In Proceedings of ACM Transaction on Internet Technology, 2003.

17. M. Merro. Locality and polyadicity in asynchronous name-passing calculi. In Pro-
ceedings of FoSSaCS 2000, volume 1784 of LNCS, pages 238–251. Springer, 2000.

18. R. Milner. The Polyadic π-Calculus: a Tutorial. Technical Report ECS-LFCS-91-
180, LFCS, Dept. of Computer Science, Edinburgh University, 1991.

19. R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes, part I and
II. Information and Computation, 100:1–41 and 42–78, 1992.

20. B. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Process. Mathemat-
ical Structures in Computer Science, 6(5), 1996.

21. D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer
Science, 221, 1999.

22. D. Sangiorgi and R. Milner. Barbed bisimulation. Proc. of Concur’92, LNCS,
Springer, 1992.

23. Web services activity web site, 2002. http://www.w3.org/2002/ws.

	XPi: A Typed Process Calculus for XML Messaging
	1 Introduction
	2 Untyped XPi
	3 A Type System
	4 Run-Time Safety
	5 Dynamic Abstractions
	6 Conclusions and Related Work
	References

