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Università degli studi Roma Tre

Abstract. We study, in the context of object/relational mapping tools,
the problem of describing mappings between inheritance hierarchies and
relational schemas. To this end, we introduce a novel mapping model,
called M2ORM2+HIE , and investigate its mapping capabilities. We first
show that M2ORM2+HIE subsumes three well-know basic representa-
tion strategies for mapping a hierarchy to relations. We then show that
M2ORM2+HIE also allows expressing further mappings, e.g., where the
three basic strategies are applied independently to different parts of a
multi-level hierarchy. We describe the semantics of M2ORM2+HIE in
term of how CRUD (i.e., Create, Read, Update, and Delete) operations
on objects (in a hierarchy) can be translated into operations over a corre-
sponding relational database. We also investigate correctness conditions.

1 Introduction

Enterprise applications are often developed using an object-oriented program-
ming language (e.g., Java or C#) and a relational database. In this common
case, applications need to load data from the database, create objects to repre-
sent this data in main memory, perform computations involving these objects,
and store changes to objects back in the database. Object/relational mapping
tools (or, simply, ORM tools) are frameworks for storing and retrieving per-
sistent objects; their goal is to support the complex activity of managing the
connections between objects and a relational database. ORM tools allow the
programmer to manage the persistence of objects by means of standard API’s,
such as the JDO [11] or the ODMG ones [7], that is, the same way he would
use objects in an object database. Persistence is transparent to the program-
mer, since he does not know actual implementation details. The bridge between
objects and underlying relations is realized on the basis of a data mapping spec-
ification.

The meet-in-the-middle approach is a mapping strategy for ORM tools. It
assumes that data classes (e.g., classes in the application logic holding persistent
data) and a relational database have been developed in an independent way. The
developer should also describe the correspondences between data classes and the
relational database. These correspondences describe a “meet in the middle” be-
tween the object schema and the relational schema; they are used by the ORM
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tool to let objects persist by means of the database. The meet-in-the-middle
approach is very versatile, since modifications in data classes and/or in the rela-
tional database can be managed by simply redefining the correspondences. There
are several object/relational mapping tools offering the meet-in-the-middle ap-
proach (e.g., [10, 13, 15, 16]). However, current systems support the meet-in-the-
middle approach still in a limited way, especially because they allow defining
only rather restricted kinds of correspondences.

A main limitation imposed by current ORM tools concerns the representa-
tion of inheritance hierarchies. There are three well known main strategies to
represent a class with its subclasses in a relational schema [2, 9]: (i) by using a
single relation; (ii) a relation for each class; and (iii) a relation for each concrete
(sub-)class (especially if the superclass is abstract). in practice, current ORM
tools do not always offer all the three basic representation strategies for inheri-
tance hierarchies. Furthermore, they usually permit to select, for each hierarchy,
a single representation strategy, to be applied to the whole hierarchy.

In previous work [5, 6], we have introduced M2ORM2 (Meet-in-the-Middle
Object/Relational Mapping Model), a model to describe mappings between ob-
ject schemas and relational schemas, to support the transparent management of
object persistence based on the meet-in-the-middle approach. In M2ORM2 it is
possible to express complex correspondences between groups of related classes
and groups of related relations; it is also possible to express correspondences
describing relationships between groups. It turns out that M2ORM2 general-
izes and extends the kinds of correspondences managed by current proposals
and systems, e.g., [10, 11, 13, 15, 16], thus allowing for more possibilities to meet
schemas. However, until now, we did not take account of inheritance hierarchies
in M2ORM2.

In this paper, we study, in the context provided by M2ORM2, the problem of
establishing mappings between inheritance hierarchies and relational schemas.
To this end, we introduce a novel mapping model, called M2ORM2+HIE , and
investigate its mapping capabilities. We show that M2ORM2+HIE subsumes the
three above cited basic representation strategies for mapping hierarchies to re-
lations. Moreover, we show that it also allows expressing further mappings, e.g.,
where the three basic strategies are applied independently to different parts of a
multi-level hierarchy. We present the structure and semantics of M2ORM2+HIE
mappings; more specifically, we describe how CRUD (i.e., Create, Read, Update,
and Delete) operations on objects in an inheritance hierarchy can be translated
into operations over a corresponding relational database. We also discuss the
problem of verifying the correctness of M2ORM2+HIE mappings involving hi-
erarchies. Again, it turns out that M2ORM2+HIE generalizes and extends the
kinds of correspondences managed by current systems.

The paper is organized as follows. Section 2 recalls some preliminary no-
tions, including the M2ORM2 mapping model and the three basic representation
strategies for inheritance hierarchies. Section 3 introduces M2ORM2+HIE , to-
gether with a number of examples. The semantics of M2ORM2+HIE is described
in Section 4. Section 5 discusses conditions for the correctness of M2ORM2+HIE
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mappings. Finally, Section 6 discusses related work and Section 7 draws some
conclusions.

2 Preliminaries

In this section we briefly present the data models and the terminology used in
this paper. We also describe basic notions concerning object/relational map-
pings based on the meet-in-the-middle approach. Finally, we recall three basic
representation strategies for representing hierarchies by means of relations.

2.1 Data Models

Object model. We consider a simple but realistic object model, similar to that of
UML [4] and ODMG [7]. We focus on the structural features of the model.

A class is a set of objects having the same structural (and behavioral) prop-
erties. Each class has a set of attributes associated with it. In this paper we make
the simplifying hypothesis that class attributes are of a same simple type, e.g.,
strings. A class with key is a class in which each object can be identified on the
basis of the value of one of its attributes, called the key attribute of the class.

An association is a binary relation between a pair of classes, whose instances
are links between pairs of objects belonging to the two classes. We consider
navigability and multiplicity of (roles of) associations.

Classes are also related by generalization/specialization relationships. This
relationship is also called inheritance in object-oriented programming, since it
implies attribute, association, and method inheritance from the superclass to
the subclass. We consider single inheritance only. The inheritance relationship
induces inheritance hierarchies (or, simply, hierarchies) on classes. A hierarchy
is a (maximal) rooted tree of classes connected by inheritance relationships.
Because of inheritance, an object may belong to multiple classes; indeed, if an
object belongs to a class C, it belongs to all the superclasses of C as well.
However, as it is customary in object-oriented programming, we assume that
each object o has a unique most specific class, that is, a class C such that o
belongs only to C and the superclasses of C. In a hierarchy, a class C is abstract
if every object that belongs to C must also belong to some subclass of C, that is,
if there cannot be objects whose most specific class is C. By contrast, a class that
is not abstract is called concrete. In hierarchies, leaf classes should be concrete.

An object schema is a set of classes, together with associations and inheri-
tance relationships among such classes. Figure 1 shows a sample object schema,
comprising a hierarchy. Constraint {key} denotes key attributes.

Relational model. In the relational model [8], a relation schema is a set of at-
tributes. We assume that all relation attributes are of a simple type, e.g., strings.
A relational schema is a set of relation schemas. At the instance level, a relation
is a set of tuples over the attributes of the relation.

We consider the following integrity constraints. Attributes can be or not be
non null. Each relation has a primary key (or, simply, key). A key attribute is
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-ssn {key}
-name

Person

-activity

Hobby

-dname {key}
-budget

Department

hobbies

** Practice�

emps

*

dept

1

Membership�

-salary

Employee

-bonus

Manager

-mainOccupation

Clerk

-university

Student

Fig. 1. An object schema

ssn universityRS
S

ssn mainOccRC
C

ssn name salary dept p/eRPE+
PSEC ssn name salary bonus deptRPEM

M

hid activityRHobby

dname budgetRDept

ssn hidRPractice
PSEC ssn hidRPractice

M

Fig. 2. A relational schema

an attribute that belongs to a key; key attributes must be non null. A foreign
key is a non-empty set of attributes of a relation used to reference tuples of
another relation; foreign keys define referential constraints between relations.
Figure 2 shows a sample relational schema. Attributes forming primary keys are
underlined. Referential constraints are denoted by arrows.

2.2 Object/Relational Mappings

Object/relational mapping tools. When an ORM tool is used, objects and links
are manipulated by means of CRUD operations (Create, Read, Update, Delete),
which allow the programmer to create persistent objects, to read persistent ob-
jects (that is, perform a unique search of an object based on its key), as well
as to modify and delete persistent objects. Navigation, formation, breaking, and
modification of persistent links between objects are also possible. In correspon-
dence to such programmatic manipulations of an object schema, an ORM tool
should translate CRUD operations on objects and links into operations over the
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underlying relational database. This translation should happen in an automatic
way, on the basis of a suitable mapping between the object schema and the
relational schema, as described next and in the following of this paper.

The M2ORM2 mapping model. We now briefly describe the M2ORM2 mapping
model [5, 6]. (We refer the reader to our previous work on M2ORM2 for a more
detailed presentation of this mapping model.) For the sake of presentation, we
assume here that the object schema does not contain hierarchies. (This limita-
tion will be removed next.) In M2ORM2, a mapping between an object schema
and a relational schema is represented as a graph, comprising nodes and arcs. A
node describes the correspondences between one or more classes and one or more
relations. Usually, a node contains just one class; if there are more than one, a
class is selected as the primary class of the node and it is related to other (sec-
ondary) classes in the node by associations. Similarly, a node contains usually
just one relation; if there are more than one, a relation is selected as the primary
relation of the node and it is related to other (secondary) relations in the node
by referential constraints. The goal of a node is to describe how to represent an
object of the primary class (and possibly further related objects from secondary
classes) by means of a tuple in the primary relation (and possibly further related
tuples in secondary relations). In a node, data (values) flow between objects and
tuples as described by attribute correspondences, each relating a class attribute
to a relation attribute. A mapping can also contain relationship arcs, each de-
scribing the correspondences between a pair of nodes by relating an association
(between the primary classes of the two nodes) and one or more referential con-
straints (involving the primary relations of the nodes, and possibly others). The
semantics of M2ORM2 is described in Section 4.1.

2.3 Basic Strategies for Mapping Inheritance Hierarchies

The problem of mapping a hierarchy to a set of relations is described in several
textbooks (e.g., [1, 2, 9]) where, among others, three main basic representation
strategies are considered. We now describe these strategies, and exemplify their
application to the simple inheritance hierarchy shown in Fig. 3. In giving names
to relations used to represent hierarchies, we write RT

S to denote the fact that
this relation has attributes for classes in the set S and that it contains a tuple
for each object whose most specific class is a class in the set T . We also write
C ↑ to denote the set comprising a class C together with its superclasses, and
C ↓ to denote the set comprising a class C together with its subclasses. Finally,
symbol + denotes that a type attribute is used.

– Single Relation inheritance (SR): A hierarchy H is represented by a
single relation RH

H+. Relation RH
H+ has attributes for all the attributes of

classes in H; furthermore, RH
H+ has a type attribute to indicate the most

specific class for the object represented by a tuple. An object in the hierarchy
is represented by a single tuple in relation RH

H+. For the hierarchy of Fig. 3,
SR leads to a single relation RABC

ABC+(id, a1, a2, b1, b2, c1, c2, t), where t is the
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type attribute, whose possible values are A, B, or C. SR is called Single
Table inheritance in [9].

– Class Relation inheritance (CR): A hierarchy H is represented by a
relation RC↓

C for each class C in H. Each relation RC↓
C has attributes for the

attributes of the class C it represents; a relation for a subclass also has a
foreign key towards the relation for its (direct) superclass in the hierarchy.
An object in the hierarchy is represented by multiple tuples: if the most
specific class for the object is C, by a tuple in relation RC↓

C which represents
C, together with a tuple for each relation RC′↓

C′ that represents a superclass
C ′ of C. For the hierarchy of Fig. 3, CR leads to relations RABC

A (id, a1, a2),
RB

B(id, b1, b2), and RC
C(id, c1, c2), where attribute id in relations RB

B and RC
C

references relation RABC
A . CR is called Class Table inheritance in [9].

– Concrete Class Relation inheritance (CCR): A hierarchy H is repre-
sented by a relation RC

C↑ for each concrete class C in H. Each relation RC
C↑

has attributes for the attributes of the concrete class C it represents, but also
for attributes for each superclass of C. An object in the hierarchy is repre-
sented by a single tuple in the relation RC

C↑ for the most specific class C of the
object. For the hierarchy of Fig. 3, assuming that class A is abstract, CCR
leads to relations RB

AB(id, a1, a2, b1, b2) and RC
AC(id, a1, a2, c1, c2). However,

if A is concrete, CCR leads to relations RA
A(id, a1, a2), RB

AB(id, a1, a2, b1, b2),
and RC

AC(id, a1, a2, c1, c2). CCR is called Concrete Table inheritance in [9]
and One inheritance path one table in [12].

To the best of our knowledge, current object/relational mapping tools adopt
mainly these three basic strategies, even tough other representation strategies for
inheritance hierarchies are known (e.g., Map classes to a generic structure [1]).

The basic representation strategies can be applied to an inheritance hierarchy
as a whole. In case of a multi-level hierarchy (e.g., where a subclass can have
its own sub-subclasses, etc.), it is also possible to apply different strategies to
distinct parts of the hierarchy. A possible advice is to apply the representation
procedure recursively, starting from the bottom of the hierarchy and representing
one inheritance level at a time [2].

-id {key}
-a1
-a2

A

-b1
-b2

B

-c1
-c2

C

SR RABC
ABC+(id, a1, a2, b1, b2, c1, c2, t)

CR RABC
A (id, a1, a2)
RB

B(id, b1, b2)
RC

C(id, c1, c2)

CCR RB
AB(id, a1, a2, b1, b2)

A is abstract RC
AC(id, a1, a2, c1, c2)

CCR RA
A(id, a1, a2)

A is concrete RB
AB(id, a1, a2, b1, b2)

RC
AC(id, a1, a2, c1, c2)

Fig. 3. A simple hierarchy and three basic relational representations
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In practice, current ORM tools do not always offer all the three above cited
basic representation strategies for hierarchies. Furthermore, they usually permit
to select, for each hierarchy, a single representation strategy, to be applied to the
whole hierarchy. (See Section 6 for a discussion on the management of hierarchies
in current tools.) These facts limit the number of possible mappings that can be
identified among an object schema with hierarchies and a relational database.

3 A Model for Mapping Hierarchies and Relations

We now describe a mapping model for dealing with inheritance hierarchies.
Specifically, we extend M2ORM2 to represent hierarchies by means of a novel
kind of arcs, called inheritance arcs. This extension is called M2ORM2+HIE
(M2ORM2 with inheritance HIErarchies).

In M2ORM2+HIE , a node describes the correspondences between a primary
class and a primary relation, possibly involving other classes (related by associa-
tions and/or inheritance) and other relations (related by referential constraints).

In nodes, apart from attribute correspondences (each relating a class attribute
with a relation attribute), relation attributes can also be related to constant
values by means of literal correspondences.

An inheritance arc from a node N2 to a node N1 represents an inheritance
relationship from the primary class C2 of N2 to the primary class C1 of N1, that
is, the fact that C2 is a (direct) subclass of C1. Normally, an inheritance arc
specifies that attribute and literal correspondences are inherited from the node
for the superclass to the node for the subclass. However, correspondences in a
node can override inherited correspondences.

An inheritance arc can have an associated foreign key correspondence, from
a key attribute of the primary relation in the node for the subclass to the key
attribute of the primary relation in the node for the superclass. This specifies a
referential constraint between the two relations.

In M2ORM2+HIE , some elements can be abstract. An abstract node con-
tains just an abstract class, but no relations. An abstract node defines, implicitly,
an abstract attribute correspondence for each attribute of the class; intuitively,
abstract correspondences specify correspondences that should be provided by
nodes where the abstract correspondences are inherited. An abstract node can-
not contain “concrete” correspondences. An abstract inheritance arc specifies
that the node for the subclass does not inherit correspondences from the node
for the superclass; rather, these correspondences should be considered abstract
correspondences, and they should therefore be redefined in the node for the
subclass. Intuitively, an abstract inheritance arc towards the node for a con-
crete class is similar to an inheritance arc towards the node for an abstract
class.

As in M2ORM2, relationship arcs are also allowed [5, 6].
The following example shows how the mappings implied by the three basic

representation strategies of Section 2.3 can be described in M2ORM2+HIE .
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-id {key}
-a1
-a2

A

-b1
-b2

B

A

id a1 a2 b1 b2 c1 c2 tRABC+
ABC

C

RABC+
ABC

-c1
-c2

C

B

RABC+
ABC id a1 a2 b1 b2 c1 c2 t id a1 a2 b1 b2 c1 c2 t

Fig. 4. SR in M2ORM2+HIE

-id {key}
-a1
-a2

A

-b1
-b2

B

-c1
-c2

C

id a1 a2RA
ABC

id b1 b2RB
B id c1 c2RC

C

RB
B.id {FK} RC

C.id {FK}

Fig. 5. CR in M2ORM2+HIE

Example 1. Consider the schemas of Fig. 3.
In M2ORM2+HIE , the mapping for the translation implied by SR can be

represented using a node for each class, NA, NB, and NC, together with inheri-
tance arcs between them, that is, from NB to NA and from NC to NA. Each node
relates a class of the hierarchy to relation RABC

ABC+; moreover, each node has an
attribute correspondence for each attribute of the class of the node (relating it to
the corresponding relation attribute, e.g., A.a1 to RABC

ABC+.a1). Finally, node NA

has literal correspondence RABC
ABC+.t = A, whereas nodes NB and NC override it

as RABC
ABC+.t = B and RABC

ABC+.t = C, respectively.1 Figure 4 shows this mapping.
The mapping for CR can be represented, again, by using three nodes and

two arcs, as it is shown in Fig. 5. Each node relates a class of the hierarchy to
the corresponding relation, e.g., node NA relates class A to relation RABC

A ; each
node has attribute correspondences for the attributes of the class of the node.
In this case, inheritance arcs carry further information needed to complete the

1 Literal correspondences such as RABC
ABC+.b1 = null in NA are not needed, since this

is the default in M2ORM2.
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-id {key}
-a1
-a2

A {abstract}

-b1
-b2

B

{abstract}

id a1 a2 b1 b2RAB
B

-id {key}
-a1
-a2

A {abstract}

-c1
-c2

C

id a1 a2 c1 c2RAC
C

-id {key}
-a1
-a2

A {abstract}

Fig. 6. CCR in M2ORM2+HIE (class A is abstract)

mapping specification; in particular, the inheritance arc from NB to NA holds a
foreign key correspondence from RB

B .id to RABC
A .id. The case for the arc from

NC to NA is similar.
Figure 6 shows the mapping for CCR when class A is abstract. Again, three

nodes are needed, as well as inheritance arcs between them. Node NA is abstract,
and as such it has abstract correspondences for attributes of class A. Nodes NB

and NC relate concrete classes B and C to relations RB
AB and RC

AC , respectively.
Each node for a concrete class has attribute correspondences for the attributes
of the class of the node, but also for the attributes of their abstract superclass

-id {key}
-a1
-a2

A

-b1
-b2

B

{abstract}

id a1 a2 b1 b2RAB
B

-id {key}
-a1
-a2

A

-c1
-c2

C
id a1 a2 c1 c2RAC

C

-id {key}
-a1
-a2

A

id a1 a2RA
A

{abstract}

Fig. 7. CCR in M2ORM2+HIE (class A is concrete)
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for which an abstract attribute correspondence is inherited, e.g., node NB has
an attribute correspondence between A.a1 and RB

AB.a1.
The mapping for CCR when A is concrete is shown in Fig. 7. Node NA relates

class A to relation RA
A. The mapping contains also abstract inheritance arcs from

NB to NA and from NC to NA. Node NB relates class B to relation RB
AB. NB

has attribute correspondences for the attributes of B, but also for the attributes
of its superclass A, e.g., node NB has an attribute correspondence between A.a1
and RB

AB .a1. The case for node NC is similar. ��
Besides mappings corresponding to the three basic representation strategies

for hierarchies described in Section 2.3, M2ORM2+HIE allows specifying more
complex mappings, as the following example shows.

Example 2. Consider the hierarchy in the object schema of Fig. 1. Assume all the
classes are concrete. Figure 8 shows a complex mapping between this hierarchy
and the relational schema of Fig. 2. (We use letters P , S, E, M , and C to denote
classes Person, Student, Employee, Manager, and Clerk, respectively.) Relation
RPSEC

PE+ has tuples for Persons, Students, Employees, and Clerks (but not for
Managers); relation RS

S holds further data for Students, whereas relation RC
C

holds further data for Clerks; finally, relation RM
PEM holds all information for

Managers. Five nodes are used, together with the three different kinds of arcs

ssn universityRS
S

-ssn {key}
-name

Person

-university

Student

RS
S.ssn {FK}

-salary

Employee

E

-mainOccupation

Clerk

ssn name salary bonus deptRPEM
M

-ssn {key}
-name

Person

-salary

Employee

-bonus

Manager

{abstract}

ssn name salary dept p/eRPE+
PSEC

P

ssn name salary dept p/eRPE+
PSEC

RC
C.ssn {FK}

ssn mainOccRC
C

Fig. 8. A complex mapping over the hierarchy of Fig. 1
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(i.e., with and without foreign key correspondence, and abstract). We can think
of this relational schema not as obtained by applying a single representation
strategy to the whole hierarchy, but rather by applying different strategies to
distinct parts of the same hierarchy. ��

We would like to point out that, to the best of our understanding, none of
the systems we have analyzed (including, among others, [10, 13, 15]) is able to
manage a mapping similar to the one described by Example 2.

4 Semantics of Mappings

In this section we present the semantics of M2ORM2+HIE . We first briefly recall
the semantics of M2ORM2 [5, 6] (where inheritance is not allowed).

4.1 Semantics of M2ORM2

In M2ORM2, a node maps a group of classes (a primary class connected by
one-to-one or many-to-one associations to further secondary classes) to a group
of relations (a primary relation connected by referential constraints to further
secondary relations). The goal of a node is to represent an object o of the primary
class, together with objects in secondary classes that are reachable from o by
means of associations represented within the node, as a tuple to in the primary
relation, together with tuples in secondary relations that are reachable from to
by means of referential constraints represented within the node.

In general, we have the following intuitive semantics for CRUD operations
(applied to an object in the primary class of a node): The creation of an object
o in the primary class is managed as the insertion into the database of tuples (in
the primary and in secondary relations) representing both object o and objects
in secondary classes that are reachable from o; values flow from object (i.e.,
class) attributes to tuple (i.e., relation) attributes. To read an object of the
primary class, given its key, a query over the database is executed to retrieve
the tuples (in the primary and in secondary relations) that represent an object o
in the primary class and objects in secondary classes that are reachable from o;
then, the corresponding objects are created in memory; values flow from tuple
attributes to object attributes. The update of attributes of an object (or the
update of links between them, thereof) is managed by modifying the tuples used
to represent the group of objects. The deletion of an object o in the primary class
is managed by deleting the tuple to in the primary relation used to represent
object o.

We do not describe the semantics of association arcs, since its knowledge is
not needed here.

4.2 Semantics of M2ORM2+HIE

Before defining the semantics of M2ORM2+HIE , it is worth to note that, in
a mapping, a relation may be used to contain tuples representing objects from
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RPSEC
PE+ ssn name salary dept p/e

1234 Paul null . . . P
5678 Sarah null . . . P
9753 Ella 14K . . . E
8642 Charles 15K . . . E

RS
S ssn university

5678 Stanford

RC
C ssn mainOcc

8642 archivist
RM

PEM ssn name salary bonus dept
7007 Maria 25K 12K . . .

Fig. 9. Relations store classes

multiple most specific classes. For example, in the mapping shown in Fig. 8,
relation RPSEC

PE+ contains a tuple for each object whose most specific class is
either Person, Student, Employee, or Clerk. We say that, in a mapping, a relation
R stores class C if it is intended to contain, among others, a tuple for each object
whose most specific class is C. We have the following characterization for the
“stores” relationship:

– let C be a concrete class; the set of relations that store C can be computed
by visiting the node whose primary class is C and all the nodes that can be
reached from it by climbing up inheritance arcs that are not abstract;

– let R be a relation; the set of classes that are stored by R can be computed
by visiting each node containing R and all the nodes that can be reached
from them by going down inheritance arcs that are not abstract (primary
classes only).

Figure 9 shows how relations store classes with respect to the mapping described
in Example 2.

We can now define the semantics for CRUD operations (applied to objects
in an inheritance hierarchy).

Creation. Consider the creation of an object o in the primary class C of a node.
This class will be the most specific class for the object to be created. Object o
has values for the attributes defined in class C, but also for attributes defined in
superclasses of C. Object o will be represented by a tuple for each relation that
stores C; these relations belong to a path, in the graph describing the mapping,
from a node for some superclass C ′ of C to the node for C. Values flow from
attributes of o to tuples representing o, as described by attribute and literal
correspondences. Specifically, attribute and literal correspondences are applied,
in sequence and downwards, from the node for C ′ to the node for C. Tuples that
are identified in this way are inserted into the database.

For example, consider the mapping described by Example 2. The creation
of an object in class Clerk would involve relations RPSEC

PE+ and RC
C , which store

Clerk. The node for Person specifies the value for attributes ssn and name in
RPSEC

PE+ . In the same relation, the node for Employee specifies the value for
attributes salary and p/e (the literal correspondence in this node overrides the
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one in the node for Person). Finally, the node for Clerk specifies the value for
the tuple to be inserted in relation RC

C .

Reading. Consider the reading of an object from a class C, given its key id.
When performing this operation, the retrieved object o should belong to the most
specific class among C and the subclasses of C (this is known as polymorphic
reading). Therefore, the reading starts by identifying, by issuing a number of
database queries q1, q2, . . ., the most specific class C ′ for the object o whose key
is id. Each query qi is relative to some concrete class Ci that is either C or some
subclass of C, and has the goal of checking whether the database represents an
object belonging to Ci whose key is id. Query qi comprises a join of the relations
that store Ci, with selections for the key id and for (possibly inherited) literal
correspondences in the node for Ci. The class C ′ for the object we are reading
is chosen as the most specific class (i.e., the most downwards in the hierarchy)
among those to which the object can belong. Then, the reading proceeds as in
the standard semantics of M2ORM2, by performing a query over the relations
that store C ′ and by creating, in memory, the desired object o. Values flow from
attributes of the retrieved tuples to o (and possibly other related objects), as
described by attribute correspondences.

Consider again the mapping of Example 2. Assume that a (polymorphic)
reading over class Employee has been requested, given the ssn id. Three queries
qe, qm, and qc are performed, to check whether an Employee, a Manager, and/or
a Clerk does exist whose key is id. For example, query qc for Clerk would be:

SELECT * FROM RPSEC
PE+ , RC

C

WHERE RPSEC
PE+ .ssn=id AND p/e=‘E’ AND RPSEC

PE+ .ssn=RC
C.ssn

Assume the result of query qc is not empty. In this case, the most specific class
for the retrieved object will be Clerk ; moreover, the result of query qc will be
used as values for the attributes of the retrieved object.

Update. An update can be the modification of either an attribute of an object
or a link, described by some node. As it is customary in object-oriented pro-
gramming, we assume that modifying the most specific class for an object is not
allowed. In this case, the update of an object o is performed as stated in the
standard semantics of M2ORM2, that is, by modifying tuples used to represent o.

Deletion. The deletion of an object o is performed by deleting tuples used to
represent o. Again, for this case there is no difference with respect to the standard
semantics of M2ORM2.

5 Correctness of Mappings

Correctness is an important aspect of object/relational mappings. Intuitively, a
mapping is correct if it supports, in an effective way, the management of CRUD
operations on objects and links by means of the underlying relational database.
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We now briefly discuss correctness conditions concerning the mapping of in-
heritance hierarchies. For the sake of presentation, we now make the following
assumptions: (i) each class is primary in exactly one node; (ii) each node contains
at most one relation. (For a treatment of cases where the above assumptions do
not hold we refer the reader to previous work [5, 6].) In this case, correctness of
a mapping requires, at least, the following conditions to hold:

– for each concrete class C, each of the attributes of C and of its superclasses is
mapped to exactly one relation attribute (apart from possible foreign keys),
among the relations that store C;

– for each relation R and each class C stored by R, each of the attributes of
R is mapped to at most one class attribute;

– key attributes of classes are related to key attributes of relations;
– class attributes that can be null are related to relation attributes that can

be null.

The mapping described by Example 2 satisfies these conditions, and indeed
it is a correct mapping between (the hierarchy of) the object schema of Fig. 1
and (part of) the relational schema of Fig. 2. We would like to point out that,
using other M2ORM2 mapping features, it is possible to define a correct mapping
between the whole schemas shown by Fig. 1 and 2.

6 Related Work

There are several object/relational mapping tools available today (for a compar-
ison of some tools supporting Java see http://c2.com/cgi/wiki?ObjectRelational-
ToolComparison); some of them also offer the meet-in-the-middle approach (e.g.,
[10, 15]). A mainstream application of ORM tools is supporting container-man-
aged persistence (CMP) of Entity Beans in J2EE application servers [18]. Ma-
jor relational DBMS vendors have recently started offering object/relational
mapping tools based on the meet-in-the-middle approach, e.g., Oracle AS Top-
Link [16] and Microsoft ObjectSpaces [13].

In ORM tools, mappings are usually represented by graphs, as we do in
M2ORM2. For example, in TopLink [16] a mapping comprises descriptors (cor-
responding to nodes) and relationships (corresponding to (relationship) arcs).
Often, each node relates just a single class to just a single relation. Some sys-
tems (e.g., ObjectSpaces [13]) allow expressing more complex mappings between
groups of classes and groups of relations, as we do in M2ORM2.

Most ORM tools take inheritance hierarchies into account. However, they
do not always offer all the three basic representation strategies for inheritance
hierarchies described in Section 2.3. Furthermore, they usually permit to select,
for each hierarchy, a single representation strategy to be applied to the whole
hierarchy. For example, ObjectSpaces [13] allows for all three strategies but, to
the best of our understanding, they cannot be applied separately to different
parts of a single hierarchy. In Hibernate [10], different strategies can be applied
to distinct parts of a same hierarchy, but with some limitations: in particular,
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if C1 and C2 are two direct subclasses of a same class C, it is not possible to
apply SR to C and C1 and CR to C and C2. On the other hand, M2ORM2+HIE
offers more mapping possibilities with respect to object schemas containing hier-
archies. Indeed, none of these systems allows expressing the mapping described
by Example 2.

The “professional” literature is rich of works on several aspects concerning
the implementation of ORM tools. Many contributions on the topic are now
available as book chapters (e.g., [1, 9]) or as web resources (e.g., [14]). On the
other hand, the scientific literature on ORM tools (e.g., [17]), apart from our
previous work [5, 6], is more limited or, simply, outdated by current technology
offerings. The notion of mapping used in this paper is inspired from one proposed
in the context of model management [3].

7 Discussion

In this paper we have introduced M2ORM2+HIE , a mapping model for ob-
ject/relational mapping tools. With respect to our previous work [5, 6], in this
paper we have investigated the problem of managing inheritance hierarchies. It
turns out that, as other mapping tools, M2ORM2+HIE is able to manage the
most common representations for hierarchies. However, unlike other available
systems and proposals, in M2ORM2+HIE it is also possible to represent more
complex mappings involving hierarchies, e.g., where the three basic strategies
are applied independently to different parts of a multi-level hierarchy.

There are a number of aspects related to ORM tools that we would like
to investigate in the context provided by M2ORM2 and M2ORM2+HIE ; these
include: data types, multi-attribute keys, complex attributes, polymorphic asso-
ciations, and cascade semantics. We believe that such features can be introduced
in our mapping model in a graceful way.
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