Ontology-Based Policy Specification and Management

Wolfgang Nejdl!, Daniel Olmedilla®,
Marianne WinslettZ, and Charles C. Zhang2

1 L3S Research Center and University of Hannover, Germany
{nejdl, olmedilla}@l3s.de
2 Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
{winslett, cczhang}@cs.uiuc.edu

Abstract. The World Wide Web makes it easy to share information and re-
sources, but offers few ways to limit the manner in which these resources are
shared. The specification and automated enforcement of security-related poli-
cies offer promise as a way of providing controlled sharing, but few tools are
available to assist in policy specification and management, especially in an open
system such as the Web, where resource providers and users are often strangers
to one another and exact and correct specification of policies will be crucial.
In this paper, we propose the use of ontologies to simplify the tasks of policy
specification and administration, discuss how to represent policy inheritance and
composition based on credential ontologies, formalize these representations and
the according constraints in Frame-Logic, and present POLICYTAB, a prototype
implementation of our proposed scheme as a Protégé plug-in to support policy
specification.

1 Introduction

Open distributed environments like the World Wide Web offer easy sharing of infor-
mation, but provide few options for the protection of sensitive information and other
sensitive resources, such as Web Services. Proposed approaches to controlling access to
Web resources include XACML [4], SAML [5], WS-Trust [3] and Liberty-Alliance[1].
All of these approaches to trust management rely on the use of vocabularies that are
shared among all the parties involved, and declarative policies that describe who is al-
lowed to do what. Some of these approaches also recognize that trust on the Web and
in any other system where resources are shared across organizational boundaries must
be bilateral.

Specifically, the Semantic Web provides an environment where parties may make
connections and interact without being previously known to each other. In many cases,
before any meaningful interaction starts, a certain level of trust must be established from
scratch. Generally, trust is established through exchange of information between the two
parties. Since neither party is known to the other, this trust establishment process should
be bi-directional: both parties may have sensitive information that they are reluctant to
disclose until the other party has proved to be trustworthy at a certain level. As there are
more service providers emerging on the Web every day, and people are performing more

A. Gémez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 290 r 005.
(© Springer-Verlag Berlin Heidelberg 2005

Ontology-Based Policy Specification and Management 291

sensitive transactions (e.g., financial and health services) via the Internet, this need for
building mutual trust will become more common.

To make controlled sharing of resources easy in such an environment, parties will
need software that automates the process of iteratively establishing bilateral trust based
on the parties’ access control policies, i.e., trust negotiation software. Trust negotiation
differs from traditional identity-based access control and information release systems
mainly in the following aspects:

1. Trust between two strangers is established based on parties’ properties, which are
proved through disclosure of digital credentials.

2. Every party can define access control and release policies (policies, for short) to
control outsiders’ access to their sensitive resources. These resources can include
services accessible over the Internet, documents and other data, roles in role-based
access control systems, credentials, policies, and capabilities in capability-based
systems. The policies describe what properties a party must demonstrate (e.g., own-
ership of a driver’s license issued by the State of Illinois) in order to gain access to
a resource.

3. Two parties establish trust directly without involving trusted third parties, other than
credential issuers. Since both parties have policies, trust negotiation is appropriate
for deployment in a peer-to-peer architecture such as the Semantic Web, where a
client and server are treated equally. Instead of a one-shot authorization and authen-
tication, trust is established incrementally through a sequence of bilateral credential
disclosures.

A trust negotiation process is triggered when one party requests to access a resource
owned by another party. The goal of a trust negotiation is to find a sequence of creden-
tials (C4, ..., Ck, R), where R is the resource to which access was originally requested,
such that when credential C; is disclosed, its policy has been satisfied by credentials
disclosed earlier in the sequence or to determine that no such credential disclosure se-
quence exists.

The use of declarative policies and the automation of the process of satisfying them
in the context of such a trust negotiation process seem to be the most promising ap-
proach to providing controlled access to resources on the Web. However, this approach
opens up a new and pressing question: what confidence can we have that our poli-
cies are correct? Because the policies will be enforced automatically, errors in their
specification or implementation will allow outsiders to gain inappropriate access to our
resources, possibly inflicting huge and costly damages. Unfortunately, real-world poli-
cies [10] tend to be as complex as any piece of software when written down in detail;
getting a policy right is as hard as getting a piece of software correct, and maintaining
a large number of them is only harder.

In this paper, we take an ontology-based approach to address this problem. Sec-
tion 2 discusses the use of ontologies for providing abstraction and structuring for pol-
icy specification, and further formalizes these concepts and constraints in Frame-Logic /
F-Logic [17]. Section 3 describes our proof-of-concept implementation, POLICYTAB, a
Protégé [2] plug-in to support policy specification. We discuss related work in section 4
and give future research directions and conclusions in section 5.

292 W. Nejdl et al.

2 Using Ontologies to Ease Policy Specification and Management

Ontology-based structuring and abstraction help maintain complex software, and so do
they with complex sets of policies. In the context of the Semantic Web, ontologies pro-
vide formal specification of concepts and their interrelationships, and play an essential
role in complex web service environments [7], semantics-based search engines [13] and
digital libraries [21].

One important purpose of these formal specifications is sharing of knowledge be-
tween independent entities. In the context of trust negotiation, we want to share informa-
tion about credentials and their attributes, which is needed for establishing trust between
negotiating parties. Figure 1 shows a simple example ontology for credential IDs.

Each credential class can contain its own attributes; e.g., a Cisco Employee ID creden-
tial has three attributes: name, rank and depar tment. Trust negotiation is attributed-
based and builds on the assumption that each of these attributes can be protected and
disclosed separately. While in some approaches (e.g. with X.509 certificates) creden-
tials and their attributes are signed together as a whole by the credential issuer, in this
paper we will rely on cryptographic techniques such as [19] which allow us to disclose
credentials with different granularities, hiding attributes not relevant to a given policy.

In trust negotiation, a party’s security policies consist of constraints that the other
party has to satisfy; e.g. it has to produce a proof that it owns a certain credential,
and that one of the credential attributes has to be within a certain range. Assuming a
casino requires any customer’s age to be over 21 and requires a state ID to testify that,
the policy for its admits service can be represented as the following logic program,
which uses a simplified version of the PEERTRUST [18, 15] policy language:

Casino:

allowedInCasino(Requester) «—
type(Credentialldentifier, “State_Id”") @ Issuer @ Requester,
issuedFor(Credentialldentifier, Requester) @ Issuer @ Requester,
age(Credentialldentifier, Age) @ Issuer @ Requester,
Age > 21.

Id

s

Enterprise_Issued_Id Government_Issued_Id

isa Iisn 5a isa

Cisco_Employee_Id
IEM_Employee_Id State_Id DL
- department | String
name ‘ String - age | Integer age ‘ Integer
name | String
rank ‘ String name |String name |String
rank | String

Fig. 1. Simple ID Credential Ontology

Ontology-Based Policy Specification and Management 293

In this example, the first two statements in the body of the rule require the requester
to prove that he owns a credential of type State_Id issued by Issuer!. If the re-
quester proves that he has it (notice that information about attributes has not been dis-
closed so far, except for the 1 ssuedFor attribute), the casino asks for the value of the
attribute age in the presented credential. Then it verifies whether the requester’s age is
over 21 and, if successful, admits the requester into the casino.

2.1 Sharing Policies for Common Attributes

Often, credentials share common attributes, and these attributes might share the same
policies. Figure 1 shows an example of a simple credential hierarchy, where the con-
crete credential classes used are depicted in the leaves of the hierarchy. The upper part
of the hierarchy represents the different abstract classes: the root represents any ID,
which is partitioned into different subclasses according to the issuer of the credential,
distinguished between Government _Issued and Enterprise_Issued IDs. The
leaf nodes represent concrete classes which contain the attributes such as name, age,
and rank.

This somewhat degenerated hierarchy however does not yet allow for policy re-use.
For this we have to exploit attribute inheritance. In our example, all leaf nodes share the
Name attribute, which therefore can be moved up to the root class Id. We are now able
to specify common policies for the Name attribute at the Id level. Similarly, we will
move Rank up so that it becomes an attribute of Enterprise Issued_Id, and Age
an attribute of Government_Issued-_Id. A subclass automatically inherits its super-
class’s attributes, which might be local or inherited from the superclass’s superclass. In
the following, we will use Frame-Logic / F-Logic [17] to represent these constraints.
So, in the context of F-Logic, we use type inheritance (also structural
inheritance) to represent this constraint, which is defined as

If Ik p[mthdQq,...,q ~>s] and I =71 ::p then I = r[mthdQq,..., qx ~>s]

where the symbol = > denotes either => or=>>, [is any F-structure and r :: p
represents the fact that “r is subclass of p” .

This leads to the refined ontology as described in figure 2, where each leaf node
has the same set of attributes as in figure 1, but inherits them from higher levels. This
makes it possible to specify shared policies for these shared attributes, similar to method
inheritance in object oriented programming languages.

2.2 Composing and Overriding Policies

Now, given such credential ontologies, we can specify security policies at different
levels. Being able to inherit and compose these security policies simplifies policy main-
tenance, though of course we have to distinguish between the case where we compose

! As an extra hint, in the PEERTRUST language, for a statement such that “lit; @ Authority”,
Authority specifies the peer who is responsible for evaluating lt; or has the authority to evalu-
ate lit;. In addition, Authority can be a nested term containing a sequence of authorities, which
are then evaluated starting at the outermost layer.

294 W. Nejdl et al.

Id

name ‘ String

»
isa \Ql

Enterprise_Issued_Id Government_Issued_Id

rank | String age | Integer

isa Kisa fsa isa

Cisco_Employee_Id

State_Id DL

IBM_Employee_Id

department | String

Fig. 2. Refined ID Credential Ontology

inherited and local policies and the case where the local policy specified for an attribute
of a specific class overrides the policy inherited from a superclass. In this paper we will
describe mandatory policies and default polices.

To model a policy in F-Logic, we have the following signature declaration for the
classpolicy

policy [
name => string,
value => string,
type => string
1

where name is the unique name of the policy, value is the text that describes the
policy (expressed in a suitable policy language)) and type describes if the policy is
default or mandatory. To express the constraint that type can only contain the strings
“Default” or “Mandatory” and only one of them at the same time, we define the follow-
ing integrity constraint

false « C' : policy, C[type ->V],not V.= “Default” ,not V.= “Mandatory”

Moreover, we want to assure that any class in our knowledge base has the possibility
to define policies. Therefore we need to declare a meta class called metaClass from
which all the classes will be an instance.

metaClass [
policySlot ~ =>> policy,
overallPolicy =>> policy

This meta class contains a property policySlot whose value is a set of policies
(possibly empty) attached to the class and a property overallPolicy whose value

Ontology-Based Policy Specification and Management 295

is the set of policies (possibly empty) of all the policies, directly attached to the class
and inherited from superclasses, that apply to this class. The derivation rule

C2[overall Policy ->> P| < C2 :: C1,C1|policySlot ->> P] (1)

assures that any policy in a direct superclass is inherited to the subclass. We further
have
Cloverall Poliy ->> P| «— C|[policySlot ->> P) (2)

to add the policies attached to the the current class (C' :: C is not true in F-Logic?).
Finally, in order to assure that any class in the knowledge base (except the policy
class defined above) will be an instance of metaClass we need the following deriva-
tion rule
C : metaClass < not C = policy,not C : policy 3)

Figure 4 depicts the hierarchy of classes and instances in our driver license example.

Mandatory Policies. Mandatory policies are used when we want to mandate that poli-
cies of a higher level are always enforced at lower levels. Assume the ontology depicted
in figure 3 and that we want to hire an experienced driver to accomplish a certain highly
classified and challenging task. Before we show the details of the task to an interested
candidate, we want the candidate to present a driver’s license, which can be proved to
satisfy the following mandatory policies as specified at the different levels:

Driver_License

‘ Hawaii_DL ‘

TexastL‘ ‘ ‘ ‘I]]inoistL‘

Fig. 3. Driver License Ontology

At the Driver_License level, we enforce generic requirements for driver li-
censes; e.g., a driver license has to be signed by a federally authorized certificate au-
thority and must not have expired.

At the Civilian DL level, we require that the driver license is non-commercial,
assuming commercial drivers may have a conflict of interests in the intended task.

At the T11inois_DL level, we require that the category of the driver license is
not F', assuming F’ licenses are for farm vehicles only. At the Military DL level, we

2 In the F-Logic notation, the operator C1 :: C2 represents “C1 is subclass of C2” while
C1: C2means “C1 is an instance of C2”

296 W. Nejdl et al.

% meuClhs |

LN
i .
- s }
o driver_livense _
y) signed Lio S i
P policySlnt = —— | \
yearsExperience \
g -

Fio i palieySloe falicySkt s LT

P ¥ | T |
yearsLaperience sigmel ol | . h
; ! I T civilian_DL ! | military_ DL
miune = FEAMSLAPeT e
| yearstiay P S—— ! [policySiot = | passengervaicles
Lype = (&} 4 * .-'l
- s ulicy Sl

-

- - monCommercial z - passeagerVehicles
tesas_DL illimeis_DL
naime: = | nordZomimere ial hawaii DL name = |1\:|s.l.cn;'c|'\-'cl'.ic1:s
palicySkd = | vearskixperience relicySlo = categoryMNalld
e = o) type = Ll
palicy Sk by Skt
¥
yearsFxperience? categnryNorF
e - | ysurslaperine e = | cateporeNoll
Ly = M e = M

Fig. 4. Driver License Knowledge Base

can specify policies such as “the driver license must be for land passenger vehicles” as
opposed to fighter planes or submarines.

So for an Illinois driver, the overall policy is: must hold a valid driver license, as
qualified by the policy at the Driver_License level; must hold a non-commercial driver
license, as required by the Civilian_DL policy; and the driver license must not be for
farm vehicles only. The advantage of using mandatory policies here is twofold: first,
shared policies such as the generic driver license requirements are only specified once
at a higher level, which means a more compact set of policies; second, it gives a cleaner
and more intuitive logical structure to policies, which makes the policies easier to spec-
ify and manage.

Default Policies. Let us now assume that all driver licenses include the specification of
driving experience, expressed in years of driving. Suppose that a specific task requires
the following policy: in most cases, 4 years’ driving experience is required; however,
if the driver comes from Texas, he/she needs only 3 years’ experience (assuming it is
harder to get a driver’s license in Texas).

To simplify the specification of this policy, we can use the default policy construct.
A superclass’s default policy is inherited and enforced by a subclass if and only if the
child does not have a corresponding (overriding) policy. In our example, we can specify
at the Driver_License level that the driving age has to be at least 4 years; then at
the Texas_DL level, specify an overriding policy that the driving age has to be at least
3 years.

It is of interest to note that the same result can be achieved here without using de-
fault policies: we can move the shared 4-year mandatory policy down to every concrete
driver license class except Texas_DL, where we require 3 years. However, the power
of policy sharing is lost.

Ontology-Based Policy Specification and Management 297

To summarize, on one hand, mandatory policies must be enforced at lower levels
in the hierarchy, that is, they can not be overridden. On the other hand, default policies
are inheritable, but they can be overridden at lower levels. In order to formalize this, we
assume that if two policies have the same value in the property name, the most specific
one overrides the other one. Taking that into account, we need to refine equation (1) in
a way that overridden policies are not included in the overall policy. The derivation rule
would be

C2|overall Policy ->> P] —C2 :: C1,C1[policySlot ->> P, 4)
not(C2[policySlot ->> P2, P2[name -> N|, Plname -> N|)

Finally, only default policies can be overridden and therefore we need the following
integrity constraint to avoid that mandatory policies are overridden

false —C2 : C1,C1policySlot ->> P1], C2[policySlot ->> P2], (5)
Pl[name -> N, type -> “Mandatory”], P2[name -> N|

3 PoLICYTAB: Making Protégé a Policy Management Tool

To support policy specification as discussed in the previous sections, we have imple-
mented POLICYTAB (available at http://www.13s.de/peertrust/, a plug-in
for the ontology editor Protégé. We chose Protégé because it is widely used and is exten-
sible by means of plug-ins. The POLICYTAB plug-in adds a new tab to the main window
of Protégé (see figure 5 for an example), which consists of the following elements:

T o | T YT T T S 1
frojrl P10 Sndi= Hep

hFEW = BB rE AR
GE TR e | e (i |
[AT S T

AT O Y e DT i

Hamz Do meilaan Commams W €+ -
[nziz o

Teplw: Aews ¥ MO W eE
o Faels Palzins .

...... T M- 1
prrs Siin; culed sirga M=l D=0
&l suesae sn; rzuled shge M=l D=0

Anarhae Pk W G 4 - &

Clzs Zalclz: g

[EEA Gemiriten Paliy.

N e =
Herring
Pl iy
iy

mersEspenenoe

Fig. 5. Screenshot of the POLICYTAB plug-in

298 W. Nejdl et al.

— The Class Relationship Pane. This panel on the upper left corner of the window
displays the existing classes in the knowledge base as a tree.

— The Superclass Pane. This panel on the lower left corner shows the superclasses of
the class currently selected in the Class Relationship Pane.

— The PolicyView Form. This form occupying the upper right part of the window
contains the information of the class currently selected in the Class Relationship
Pane.

— The Associated Policies Pane. This pane at the lower right part of the window dis-
plays the policies attached to the current selected class or to the current selected
slot.

We describe the PolicyView Form and the Associated Policies Pane in more detail
in the following sections.

3.1 The PolicyView Form

The PolicyView Form contains the information related to the currently selected class
(see figure 5). Each class has the usual properties available in Protégé

Name: the name of the class

— Documentation: extra comments and explanations

Role: describes if the class is concrete or abstract
Constraints: specify constraints to the class

Template Slots: show the different properties of the class

In Protégé, a class’s properties are called slots. To add a slot to the current class,
click the + icon for the Template Slots table, a slot creation dialog will pop up
(see figure 6), where you can specify the new slot’s name, type, etc. POLICYTAB auto-
matically checks name conflicts, and does not permit the specification of a slot with the
same name as in one of its superclasses.

3.2 The Associated Policies Pane

The Associated Policies Pane displays the policies that apply to the currently selected
class, i.e. the overall set of policies that should be satisfied by a requester in order
to get access to the resource represented by the class. A policy’s type can be either
mandatory or default. Overriding of policies is done by explicitly selecting which
class to be overridden (the combobox Overridden Policy shows only overridable
policies or Nothing as valid values)®. POLICYTAB’s automatic overridability check-
ing prevents the user from unintentionally overriding a mandatory policy and hence
reduces policy specification errors.

This pane contains two different tabs: Class Policiesand Slot Policies
(see figure 7). Class policies are specified to protect the whole class and correspond

? As to our knowledge there not exists yet an F-Logic inference engine integrated in Protégé, our
current implementation “hard-codes” in the plug-in the inference rules presented in the paper.

Ontology-Based Policy Specification and Management 299

T f Issuer. | (type=Policylaggedsiot) s OX
C »
Marne Docurnentation Template Walue VY C + =
|Issuer | The issuer of the Driver License
“alue Type
|String '| Default AL EO =
Cardinality

[v] required at least 1
[Z] multiale at rnost 1| Domain VY C + -

[T driver_license

MinimLm Maximum Inverse Slot V C + -

Attached Policy W C + =
kD protectlssuer

Fig. 6. New Slot Creation

|\ Class Policies I SIot Policies |
illinois_DL i
© (T civilian_DL | x H = ‘
@ (© driver_license Marne | Type | Polic | Defining Cls | COnverridden Polic
[-THING [T] caregoryf i DL's category not F lilinais_DL Nuothing
nanCormmercial 'H DL non commercial ;c\\AHan,DL MNathing
signed lad Signed by federally authority driver_license Nothing
vearsExperience D [Minimum 4 years experience _driver_license Nothing

Fig. 7. View of overall policy applicable to a class

to the concepts described in section 2. The slot policies are protectors for each spe-
cific property, and have a finer-grained protection. A requester has to satisfy the rel-
evant slot policies in addition to the class polices in order to access a certain prop-
erty of the class. This is crucial in Trust negotiation as the process relies on disclosure
of party’s properties, not necessarily whole credentials. The tab Slot Policies
displays the policies that apply to the slot currently selected in the PolicyView form.
Both class policies and slot policies are inherited by the subclasses in the
hierarchy.

Once a class is selected in the Class Relationship Pane, the Associated Policies Pane
shows this class’s inheritance hierarchy as well as its class level policies. For each sin-
gle policy it displays the name, the type (mandatory or default), the string with
the policy description, the class where that policy is defined and the class whose cor-
responding policy is overridden (or Nothing if there isn’t any). Automatic resolution
of overriding and inheritance gives the user a clear view of the current class’s effective
policies, and showing the original defining class of the inherited policies in addition to
the policy tree helps the user understand the policy composition hierarchy and capture
the intuitions and implications behind it.

300 W. Nejdl et al.

4 Related Work

Recent work in the context of the Semantic Web has focused on how to describe se-
curity requirements. KAoS and Rei policy languages [16,22] investigate the use of
ontologies for modeling speech acts, objects, and access types necessary for specifying
security policies on the Semantic Web. Hierarchies of annotations to describe capabili-
ties and requirements of providers and requesting agents in the context of Web Services
are introduced in [11]. Those annotations are used during the matchmaking process to
decide if requester and provider share similar security characteristics and if they are
compatible.

Ontologies have also been discussed in the context of digital libraries for concepts
and credentials [6]. An approach called “most specific authorization” is used for con-
flict resolution. It states that policies specified on specific elements prevail over policies
specified on more general ones. In this paper we explore complementary uses of ontolo-
gies for trust negotiation, through which we target iterative trust establishment between
strangers and the dynamic exchange of credentials during an iterative trust negotiation
process that can be declaratively expressed and implemented. Work done in [9] defines
abstractions of credentials and services. Those abstractions allow a service provider to
request for example a credit card without specifically asking for each kind of credit card
that it accepts. We add to this work in the context of policy specification the concept of
mandatory and default policies.

Ontology-based policy composition and conflict resolving have also been been dis-
cussed in previous work. Policy inheritance is done by implication in [12], but it does
not provide any fine-grained overriding mechanism based on class levels. Default prop-
erties are discussed in [14], short of generalizing the idea to policies. The approaches
closest to our default and mandatory policy constructs are the weak and strong autho-
rizations in [8], where a strong rule always overrides a weak rule, and SPL in [20],
which forces the security administrator to combine policies into a structure that pre-
cludes conflicts. Compared to these approaches, we find ours particularly simple and
intuitive, while its expressiveness well serves general trust negotiation needs.

5 Conclusions and Future Research Directions

Ontologies can provide important supplemental information to trust negotiation agents
both at compile time to simplify policy management and composition. This paper has
explored some important benefits of using ontologies.

For compile time usage, ontologies with their possibility of sharing policies for
common attributes provide an important way for structuring available policies. In this
context we propose two useful strategies to compose and override these policies, build-
ing upon the notions of mandatory and default policies, and formalize the constraints
corresponding to these kinds of policies using F-Logic. We also present a prototype im-
plementation, POLICYTAB, which shows that the proposed policy specification mecha-
nism is implementable and effective.

Future work will investigate multiple inheritance and resolution of conflicting poli-
cies in ontology hierarchies, and whether we need disjunction for composing these poli-

Ontology-Based Policy Specification and Management 301

cies. We are also working on a closer integration into our PEERTRUST system, with suit-
able import/export facilities to and from POLICYTAB. Finally, an interesting research
area to consider in the future is policy validation, i.e. whether the final ontologies plus
policy rules are consistent and correct with respect to a set of background constraints.

Acknowledgments

The authors thank Rubén Lara for useful discussions and help in the modeling with
F-Logic and the anonymous reviewers for their useful comments. The research of
Nejdl and Olmedilla was partially supported by the projects ELENA (http://
www.elena-project.org, IST-2001-37264) and REWERSE (http://
rewerse.net, IST-506779). The research of Winslett was supported by DARPA
(N66001-01-1-8908), the National Science Foundation (CCR-0325951,I1S-0331707)
and The Regents of the University of California.

References

1. Liberty Alliance Project. http://www.projectliberty.org/about/whitepapers.php.

2. The Protégé Ontology Editor and Knowledge Acquisition System. http://
protege.stanford.edu/.

3. Web Services Trust Language (WS-Trust) Specification. http://www-106.ibm.com/
developerworks/library/specification/ws-trust/.

4. Xacml 1.0 specification http://xml.coverpages.org/ni2003-02-11-a.html.

5. Assertions and protocol for the oasis security assertion markup language (saml); committee
specification 01, 2002.

6. N. R. Adam, V. Atluri, E. Bertino, and E. Ferrari. A content-based authorization model for
digital libraries. IEEE Transactions on Knowledge and Data Engineering, 14(2):296-315,
2002.

7. A. Ankolekar. Daml-s: Semantic markup for web services.

8. E. Bertino, S. Jojodia, and P. Samarati. Supporting multiple access control policies in
database systems. In IEEE Symposium on Security and Privacy, pages 94-109, Oakland,
CA, 1996. IEEE Computer Society Press.

9. P. Bonatti and P. Samarati. Regulating Service Access and Information Release on the Web.
In Conference on Computer and Communications Security, Athens, Nov. 2000.

10. Cassandra policy for national ehr in england.
http://www.cl.cam.ac.uk/users/mywyb2/publications/ehrpolicy.pdf.

11. G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml web services:
Annotation and matchmaking. In Proceedings of the 2nd International Semantic Web Con-
ference, Sanibel Island, Florida, USA, Oct. 2003.

12. W. Emayr, F. Kastner, G. Pernul, S. Preishuber, and A. Tjoa. Authorization and access
control in iro-db.

13. M. Erdmann and R. Studer. How to structure and access xml documents with ontologies.
Data and Knowledge Engineering, 36(3), 2001.

14. R. Fikes, D. McGuinness, J. Rice, G. Frank, Y. Sun, and Z. Qing. Distributed repositories of
highly expressive reusable knowledge, 1999.

15. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. In Ist First European Semantic Web Symposium, Heraklion, Greece, May 2004.

302

16.

17.

18.

19.

20.

21.

22.

W. Nejdl et al.

L. Kagal, T. Finin, and A. Joshi. A policy based approach to security for the semantic web.
In 2nd International Semantic Web Conference, Sanibel Island, Florida, USA, Oct. 2003.
M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. J. ACM, 42(4):741-843, 1995.

W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: automated trust negotiation for peers
on the semantic web. In Workshop on Secure Data Management in a Connected World
(SDM’04), Toronto, Aug. 2004.

P. Persiano and I. Visconti. User privacy issues regarding certificates and the tls protocol. In
Conference on Computer and Communications Security, Athens, Nov. 2000.

C. Ribeiro and P. Guedes. Spl: An access control language for security policies with complex
constraints, 1999.

S. B. Shum, E. Motta, and J. Domingue. Scholonto: an ontology-based digital library server
for research documents and discourse. Int. J. on Digital Libraries, 3(3):237-248, 2000.

G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Semantic web
languages for policy representation and reasoning: A comparison of KAoS, Rei and Ponder.
In 2nd International Semantic Web Conference, Sanibel Island, Florida, USA, Oct. 2003.

	Introduction
	Using Ontologies to Ease Policy Specification and Management
	Sharing Policies for Common Attributes
	Composing and Overriding Policies

	POLICYTAB: Making Prot$\acute{\rm e}$g\acute{e} a Policy Management Tool
	The PolicyView Form
	The Associated Policies Pane

	Related Work
	Conclusions and Future Research Directions
	Acknowledgments
	References

