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Abstract. We think of Match as an operator which takes two graph-like 
structures and produces a mapping between semantically related nodes. We 
concentrate on classifications with tree structures. In semantic matching, 
correspondences are discovered by translating the natural language labels of 
nodes into propositional formulas, and by codifying matching into a 
propositional unsatisfiability problem. We distinguish between problems with 
conjunctive formulas and problems with disjunctive formulas, and present 
various optimizations. For instance, we propose a linear time algorithm which 
solves the first class of problems. According to the tests we have done so far, 
the optimizations substantially improve the time performance of the system.  

1   Introduction 

We think of matching as the task of finding semantic correspondences between 
elements of two graph-like structures (e.g., conceptual hierarchies, classifications, 
database schemas or ontologies). Matching has been successfully applied in many 
well-known application domains, such as schema/ontology integration, data 
warehouses, and XML message mapping. In this paper we concentrate on 
classifications with tree structures. 

Semantic matching, as introduced in [1, 5], is based on the key intuition that labels 
at nodes, which are written in natural language, are translated into propositional 
formulas which codify the intended meaning of the labels themselves. This allows us 
to codify the matching problem into a propositional unsatisfiability problem, which 
can then be efficiently implemented using state of the art propositional satisfiability 
(SAT) solvers [8, 9]. We call concept of a label the propositional formula which 
stands for the set of documents that one would classify under a label it encodes. We 
call concept at a node the propositional formula which represents the set of 
documents which one would classify under a node, given that it has a certain label 
and that it is in a certain position in a tree [5]. As from [5], all previous approaches, 
though implicitly or explicitly exploiting the semantic information codified in graphs, 
differ substantially from our approach in that they compute a syntactic “similarity” 
coefficients between labels in the [0,1] range (see for instance [3, 10] ).  
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The system we have developed, called S-Match [6], takes two classifications and 
computes the strongest semantic relation holding between any pair of nodes. The 
matching problem is articulated into two macro steps, namely element and structure 
level matching. Element level matchers consider only the information on the atomic 
level [7] (the labels of nodes), while structure level matchers consider also the 
structure of the trees. Our goal in this paper is to describe the structure level matching 
algorithm, as it has been implemented within S-Match, and present a set of 
optimizations. In particular, we distinguish between two main classes of problems. In 
the first class all the concepts at nodes are atomic or conjunctive formulas. In the 
second class the concepts at nodes may also contain disjunctive formulas. In the case 
of conjunctive concepts at nodes we present a modification of the original algorithm 
which solves the node matching problem in linear time. With disjunctive concepts we 
present various techniques, which, among the other things, allow us to avoid the 
exponential space explosion which arises when converting disjunctive formulas into 
Conjunctive Normal Form (CNF). This modification is required since all state of the 
art SAT deciders take CNF formulas in input. 

We have evaluated the time performance of the optimized algorithm against its 
basic version and several state of the art matching systems. The optimizations seem to 
improve substantially the time performance of S-Match. In all cases S-Match 
performs better or much better than the unoptimized version and always competes 
well with the other matching systems. In particular, it outperforms them on trees with 
hundreds or thousands of nodes. 

The rest of the paper is organized as follows. Section 2 provides an overview of the 
S-Match tree matching algorithm. Section 3 discusses the basic node matching 
algorithm. The next two sections are dedicated to the two classes of node matching 
problems we have identified. Node matching problems with conjunctive concepts at 
nodes (and their optimizations) are discussed in Section 4, while the node matching 
problems with disjunctive concepts at nodes (and their optimizations) are described in 
Section 5. We discuss the evaluation results in Section 6. Section 7 concludes the 
paper.

2   The Tree Matching Algorithm 

As from [6], the S-Match algorithm is organized according the following four macro 
steps: 

− Step 1: for all labels in the two trees, compute concepts of labels; 
− Step 2: for all nodes in the two trees, compute concepts at nodes; 
− Step 3: for all pairs of labels in the two trees, compute the semantic relations 

between concepts of labels; 
− Step 4: for all pairs of nodes in the two trees, compute the semantic relations 

between concepts at nodes. 

The first two steps represent the pre-processing phase, while the third and the 
fourth steps correspond to the element-level and structure-level matching 
respectively. The semantic relations we consider are: equivalence (=); more general 
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(⊇); less general (⊆); disjointness (⊥); overlapping (∩). When none of the relations 
holds, the special Idk (I don’t know or (?)) relation is returned.  

The version of the algorithm defined in this paper assumes that: 

− There are no negated atomic concepts of labels (one example of negated concept of 
label is Cexcept apple=¬Capple) 

− The information we use, namely the labels of nodes and the knowledge residing in 
WordNet (see below) is all globally consistent. Under this assumption the only 
reason why we get an unsatisfiable formula is because we have found a match 
between two nodes  

In order to understand how the algorithm works, consider for instance the two trees 
depicted in Figure 1a.  

 

Fig. 1. (a): Two trees. (b): The matrix of relations between concepts of labels. (c): The matrix 
of relations between the concepts at nodes (matching result) 

During Step 1 we first tokenize labels. For instance “Wine and Cheese” becomes 
<Wine, and, Cheese>. Then we lemmatize tokens. Thus for instance “Images” 
becomes “image”. Then, an Oracle (at the moment we use WordNet 2.0) is queried in 
order to obtain the senses of the lemmatized tokens. Afterwards, these senses are 
attached to atomic concepts. Finally, complex concepts are built suitably composing 
atomic concepts. Thus, the concept of the label Wine and Cheese is computed as CWine 

and Cheese=<wine, {sensesWN#4}>∨<cheese, {sensesWN#4}>, where <cheese, 
{senesesWN4}> is taken to be the union of the four WordNet senses, and similarly for 
wine. Notice that natural language and is converted into logical disjunction rather than 
conjunction. 

Step 2 takes into account the structural schema properties. The logical formula for 
a concept at a node is constructed most often as the conjunction of the concept of a 
label formulas in the concept path to the root [5]. For example, the concept C2 for the 
node Pictures in Figure 1a is computed as C2=CEurope ∧ CPictures.  

Element level semantic matchers are applied during Step 3. They determine the 
semantic relations holding between pairs of atomic concepts of labels. For example, 
from WordNet we can derive that image and picture are synonyms, and therefore, 
CImages = CPictures. Notice that Image and Picture have 8 and 11 senses in WordNet, 
respectively. In order to determine the senses which are relevant in the current 
context, sense filtering techniques are applied (see [11] for more details). The 
relations between the atomic concepts of labels for the trees depicted in Figure 1a are 
reported in Figure 1b.  
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Element level semantic matchers provide the input to the structure level matcher, 
which is applied in Step 4. This matcher produces the set of semantic relations 
between concepts at nodes (see Figure 1c for example). On this step the tree matching 
problem is reformulated into the set of node matching problems, one for each pair of 
nodes. Further, each node matching problem is reduced to a propositional validity 
problem.  

The pseudo code of the Steps 3 and 4 of the semantic matching algorithm is 
reported in Figure 2. treeMatch takes 2 trees of Nodes (source, target) and 
returns the matrix of semantic relations between concepts at nodes in both trees 
(cNodesMatrix). First, fillCLabMatrix exploit element level semantic 
matchers library in order to fill the matrix of relations between concepts of labels in 
both trees (cLabsMatrix) (line 11). This action corresponds to the third step of the 
tree matching algorithm. Afterwards, two loops over all nodes of source and 
target trees are executed (lines 12-20 and 15-20). Within these loops, the 
propositional formulas corresponding to the concepts at nodes (contextA, 
contextB) are computed by getCnodeFormula (lines 14, 17). 

 
1. Node: struct of  
2.  int nodeId; 
3.  String label; 
4.  String cLabel; 
5.  String cNode; 
 
6.String[][] treeMatch(Tree of Nodes source, target) 
7. Node sourceNode,targetNode; 
8. String[][] cLabsMatrix, cNodesMatrix, relMatrix; 
9. String axioms, context

A
, context

B
; 

10.int i,j; 
11.cLabsMatrix=fillCLabMatrix(source,target); 
12.For each sourceNode in source 
13.  i=getNodeId(sourceNode); 
14.  context

A
=getCnodeFormula (sourceNode); 

15.  For each targetNode in target 
16.    j=getNodeId(targetNode); 
17.    context

B
=getCnodeFormula (targetNode); 

18.    relMatrix=extractRelMatrix(cLabsMatrix, 
          sourceNode, targetNode); 
19.    axioms=mkAxioms(relMatrix); 
20.    cNodesMatrix[i][j]=nodeMatch(axioms,context

A
, 

             context
B
); 

21. return cNodesMatrix; 

 

Fig. 2. The pseudo code of the tree matching algorithm 

relMatrix is calculated in the inner loop by extractRelMatrix (line 18). It 
contains the part of the cLabsMatrix relevant to the particular node matching 
problem. axioms (line 19) contains the conjunction of the propositional formulas in 
relMatrix. For example, the semantic relations in Figure 1b, which are considered 



276 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia 

 

when we match Europe and Pictures are EuropeA= EuropeB, ImagesA= PicturesB. In 
this case axioms is (EuropeA ↔ EuropeB)∧ (ImagesA ↔ PicturesB). Notice that, 
subscripts designate the context (either A or B) to which a propositional variable (or 
concept) belongs. The detailed description of nodeMatch is provided in the next 
section.  

3   The Node Matching Algorithm 

nodeMatch input formulas are combined to obtain the following formula:  

(axioms) → rel(contextA , contextB ), (1) 

where axioms, contextA, contextB are as defined in treeMatch (Figure 2), while 
rel(contextA , contextB ) is the formula corresponding to the semantic relation being 
checked, (namely equivalence, less or more generality, or disjointness). As from [5], 
two nodes match if and only if Eq. 1 is valid, namely if it is true for all possible truth 
assignments to its propositional variables. Given that most of the available 
propositional solvers are satisfiability checkers, the negation of the matching formula 
is checked for unsatisfiability. This yields the following formula  

axioms ∧¬ rel(contextA , contextB ) (2) 

Table 1 reports the resulting matching formulas as a function of the semantic 
relation being tested. Notice that the check for equality is omitted. In fact A = B holds 
iff A⊆B and A⊇B hold.  

Table 1. The relationship between semantic relations and propositional formulas 

rel(a ,b) Translation of rel(a , b) 
in propositional logic 

CNF translation of Eq. 2 

a=b a↔b N/A 
a⊆b a→b axioms∧contextA∧ ¬contextB 
a⊇b b→a axioms∧contextB∧ ¬contextA 
a⊥b ¬(a∧b) axioms∧contextA∧ contextB 

Consider the pseudo code of the node matching algorithm, as described in Figure 3. 
nodeMatch constructs the formulas needed for testing less generality (line 120) 

and more generality (line 150), it converts them to CNF (lines 130, 160) and checks 
for unsatisfiability (lines 140, 170). If both relations hold, then the equivalence 
relation is returned (line 190). Afterwards, the same procedure is repeated for 
disjointness test. If all the tests fail “Idk” is returned (line 290).  

Prior to the discussion of optimizations to our basic solution, let us classify the 
concepts of labels and concepts at nodes. We distinguish between four categories of 
concepts of labels: 
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110.String nodeMatch(String axioms, context

A
, context

B
) 

120.  String formula=And(axioms,context
A
,Not(context

B
)); 

130.  String formulaInCNF=convertToCNF(formula); 
140.  boolean isLG=isUnsatisfiable(formulaInCNF) 
150.  formula=And(axioms, Not(context

A
), context

B
); 

160.  formulaInCNF=convertToCNF(formula); 
170.  boolean isMG= isUnsatisfiable(formulaInCNF); 
180.  if (isMG && isLG)  
190.   return “=”; 
200. if (isLG)  
210.   return “⊆”; 
220. if (isMG)  
230    return “⊇”; 
240. formula= And(axioms, context

A
, context

B
); 

250. formulaInCNF=convertToCNF(formula); 
260. boolean isOpposite= isUnsatisfiable(formulaInCNF); 
270. if (isOpposite)  
280.   return “⊥”; 
290. return “Idk”; 

 

Fig. 3. The pseudo code of the node matching algorithm 

− Atomic: the concept of a label is an atomic proposition. For example, the concept 
of the label Europe is CEurope = <Europe, {sensesWN#1}>, where WN#1 stands 
for a WordNet sense.  

− Conjunctive: the concept of a label is a conjunction. For example, the concept of 
the label transmission gearbox is Ctransmission gearbox  = Ctransmission ∧Cgearbox.  

− Disjunctive: the concept of a label is a disjunction. For example, the concept of the 
label jet and trains and cars is Cjet and trains and cars=Cjet ∨ Ctrain ∨ Ccar. 

− Full proposition at logic: the concept of a label contains both conjunctions and 
disjunctions. For example the concept of the label computers and electrical 
equipment is Ccomputers and electrical equipment=Ccomputer∨ (Celectrical∧Cequipment)

This classification allows us to further distinguish between two classes of concepts 
at nodes, which are at the basis of our optimizations: 

− Conjunctive concepts at nodes: the concept at a node is a conjunction. 
− Disjunctive concepts at nodes: the concept at a node contains both conjunctions 

and disjunctions in any order.  

4   Conjunctive Concepts at Nodes 

4.1   Node Matching Problems 

Consider the two trees depicted in Figure 4a. Notice that they have only atomic 
concepts of labels. Let us consider the matching of gearbox and clutch.  

. 

senses
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Fig. 4. (a): Two trees. (b): The matrix of relations between concepts of labels. (c): The matrix 
of relations between concepts at nodes (matching result) 

The relevant semantic relations between concepts of labels are depicted in Figure 
4b. As from Table 1, axioms is:  

(bigA↔hugeB)∧(carA↔autoB) ∧ (transmissionA↔ transmissionB )∧  
(gearboxA→transmissionB) ∧(clutchB→transmissionA)∧ ¬(clutchB∧gearboxA) 

(3) 

which, translated in CNF, becomes: 

(¬bigA∨hugeB)∧(bigA∨¬hugeB)∧(¬carA∨autoB)∧(carA∨¬autoB) ∧  
(¬transmissionA∨ transmissionB ) ∧ (transmissionA∨¬ transmissionB ) ∧  

(¬gearboxA∨transmissionB)∧(¬clutchB∨transmissionA)∧(¬clutchB∨¬gearboxA) 
(4)

As from Step 2 in Section 2, contextA and contextB are constructed by taking the 
conjunction of the concepts of labels in the path to root. Therefore, contextA and 
contextB are:  

bigA∧carA∧transmissionA∧gearboxA (5) 

hugeB∧autoB∧transmissionB∧clutchB  (6) 

while their negations are: 

¬bigA∨¬carA∨¬transmissionA∨¬gearboxA (7) 

¬hugeB∨¬autoB∨¬transmissionB∨¬clutchB  (8) 

Let us consider the formula to be checked for unsatisfiability, as from Table 1. The 
first observation is that axioms remains the same for all the tests, and it contains only 
clauses with two variables, where a clause is a finite disjunction of literals. In the 
worst case it contains 2*nA*nB clauses, where nA and nB are the number of atomic 
concepts of labels in the paths to the root (in our example nA and nB are equal to 4). 
The second observation is that the formulas for less and more generality are very 
similar and differ only in the context formula which is negated. Thus, for instance, in 
the less generality test contextB is negated. This means that Eq. 1 contains one clause 
with nB variables (Eq. 8) in addition to nA clauses with one variable derived from 
contextA (Eq. 5). Finally, again from Table 1, in the case of disjointness test contextA 
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and contextB are not negated. Therefore, Eq. 1 contains nA+nB clauses with one 
variable (Eq. 5 and Eq. 6).  

So far we have concentrated on atomic concepts of labels. The propositional 
formulas remain the same if we move to conjunctive concepts at labels. Consider the 
trees depicted in Figure 5a. Let us consider the matching between transmission 
gearbox and transmission clutch.  

 

Fig. 5. (a): Two trees. (b): The matrix of relations between concepts of labels in the trees. (c): 
The matrix of relations between concepts at nodes (matching result) 

 

Compare the matrices on the Figure 5b and Figure 4b. They are the same. The 
matrix of the relations between concepts of labels unambiguously determines axioms 
(see Eq. 3 and 4). Furthermore, as from Step 2 in Section 2, the propositional 
formulas for contextA and contextB are the same for atomic and for conjunctive 
concepts of labels as long as they “globally” contain the same formulas. In fact, 
concepts at nodes are constructed by taking the conjunction of concepts at labels. 
Splitting a concept of a label with two conjuncts into two atomic concepts has no 
effect on the resulting matching formula. 

4.2   Optimizations 

Let us consider first more and less generality and then disjointness.  

4.2.1   Less and More Generality Tests  
As from Section 4.1, formula (Eq. 1) in this case is as follows: 

 

(9) 

where n is the number of variables in contextA, m is the number of variables in 
contextB. Ai’s belong to contextA, and Bj’s belong to contextB. s, k, p are in the [0..n] 
range, while t, l, r are in the [0..m] range. Axioms can be empty. Eq. 9 is composed of 
clauses with 1 or 2 variables plus one clause with possibly more variables (the clause 
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corresponding to the negated context). The key observation is that the formula in Eq. 
9 is Horn: each clause contains at most one positive literal. Therefore, the satisfiability 
problem can be decided in linear time by the unit resolution rule [2]. Notice, that 
DPLL-based SAT solvers require quadratic time in this case [15]. 

In order to understand how the linear time algorithm works, let us prove the 
unsatisfiability of Eq. 9 in the case of gearbox and clutch. In this case, Eq. 9 
becomes  

((¬ bigA∨hugeB)∧(bigA∨¬ hugeB)∧(¬ carA∨autoB)∧(carA∨¬ autoB)∧  
(¬ transmissionB∨ transmissionA ) ∧ (transmissionB ∨ ¬ transmissionA ) ∧ 

(¬ gearboxA∨ transmissionB) ∧ (¬ clutchB ∨ transmissionA) ∧ 
(¬ clutchB ∨ ¬ gearboxA)) ∧ bigA ∧ carA ∧ transmissionA ∧ gearboxA ∧ 

(¬ hugeB ∨¬ autoB ∨ ¬ transmissionB ∨¬ clutchB) 

(10) 

where the variables from contextA are written in bold.  
First, we assign true to all unit clauses occurring in Eq 10 positively. Notice  

that these are all and only the clauses in contextA. This allows us to discard the  
clauses where contextA variables occur positively (in this case: bigA∨¬hugeB, 
carA∨¬autoB, ¬gearboxA∨transmissionB and ¬clutchB∨transmissionA). The resulting 
formula is  

hugeB ∧ autoB ∧ transmissionB ∧¬ clutchB∧ 
(¬ hugeB ∨ ¬ autoB ∨ ¬ transmissionB∨ ¬ clutchB) (11) 

Notice that this formula does not contain any variable derived from contextA. 
Notice also that, by assigning true to hugeB, autoB and transmissionB and false to 
clutchB we do not derive a contradiction. Therefore, (Eq. 10) is satisfiable. In fact, a 
(Horn) formula is unsatisfiable if and only if the empty clause is derived (and 
satisfiable otherwise).  

Consider again Eq. 11. For this formula to be unsatisfiable all the variables 
occurring in the negation of contextB (¬hugeB∨¬autoB∨¬transmissionB∨¬clutchB in 
our example) should occur positively in the unit clauses obtained after resolving 
Axioms with the unit clauses in contextA (hugeB, autoB and transmissionB in our 
example). But for this to happen, for any Bj in contextB there must be a clause of 
form ¬Ai∨Bj in axioms, where Ai is a formula of contextA. But formulas of the form 
¬Ai∨Bj occur in Eq. 9 if and only if we have the axioms of the form A =Bj and 
Ai⊆Bj. These considerations suggest the following algorithm for testing 
satisfiability: 

− Step 1. Create an array of size m. Each entry in the array stands for one Bj in  
Eq. 9.  

− Step 2. For each axiom of type Ai=Bj and Ai⊆Bj mark the corresponding Bj.  
− Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.  

nodeMatch can be modified as in Figure 6 (the numbers on the left indicate where 
the new code must be positioned): 
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111.  if (contextA and contextB are conjunctive) 
112.    isLG=fastHornUnsatCheck (contextA, axioms,“⊆”); 
113.    isMG=fastHornUnsatCheck (contextB, axioms,“⊇”); 
114.  else 
 

301.boolean fastHornUnsatCheck(String context, axioms,  
       rel); 

302. int m=getNumOfVar(String context); 
303. boolean array[m]; 
304. for each axiom in axioms 
305.  if((getAType(axiom)=”=”)||(getAType(axiom)=rel)) 
306.   int j=getNumberOfSecondVariable(axiom); 
307.   array[j]=true; 
308. for (i=0; i<m; i++) 
309.  if (!array[i]) 
310.   return false; 
311. return true; 

 

Fig. 6. Less and more generality tests optimization pseudo code 

fastHornUnsatCheck implements the three steps above. Step 1 is performed in 
lines (302-303). Then, a loop on axioms (lines 304-307) implements Step 2. The 
final loop (lines 308-310) implements Step 3. 

4.2.2   Disjointness Test 
Using the same notation as in Section 4.2.1, formula (Eq. 1) is as follows: 

(12) 

For example, the formula for testing disjointness between gearbox and clutch is  

(¬ bigA ∨ hugeB) ∧ (bigA ∨ ¬ hugeB) ∧ (¬ carA ∨ autoB) ∧ (carA ∨ ¬ autoB)∧ 
 (¬ transmissionB ∨  transmissionA) ∧ (transmissionB∨¬ transmissionA ) ∧ 

(¬ gearboxA ∨ transmissionB) ∧ (¬ clutchB ∨ transmissionA)∧ 
(¬ clutchB ∨ ¬ gearboxA) ∧ bigA ∧ carA ∧ transmissionA ∧ gearboxA ∧ 

 hugeB ∧ autoB ∧ transmissionB ∧ clutchB 

(13) 

Here again, the formula in Eq. 12 is Horn and thus, similarly to Section 4.2.1, the 
satisfiability of the formula can be decided by unit propagation. After assigning true 
to all the variables in contextA and propagating the results we obtain the following 
formula: 

hugeB∧autoB∧ transmissionB ∧¬clutchB∧hugeB∧autoB∧transmissionB ∧clutchB (14) 
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If we further unit propagate hugeB, autoB and transmissionB (this means that we assign 
true to them), then get the contradiction clutchB∧ ¬clutchB. Therefore, the formula is 
unsatisfiable. This contradiction arises because (¬clutchB∨¬gearboxA) occurs in Eq. 
13, which, in turn, is derived (as from Table 1) from the disjointness axiom 
(clutchB⊥gearboxA). In fact, all the clauses in Eq. 12 contain one positive literal 
except for the clauses in axioms corresponding to disjointness relations. Thus, the key 
intuition here is that if there are no disjointness axioms, then Eq. 12 is satisfiable. On 
the other hand, if there is a disjointness axiom, atoms occurring there are also ensured 
to be either in contextA or in contextB and thus Eq. 12 is unsatisfiable. Therefore, the 
optimization consists of just checking the presence/absence of disjointness axioms in 
axioms.  

The pseudo code of nodeMath can therefore be modified as follows: 

 
231. If (contextA and contextB are conjunctive) 
232.   If (there is disjointness axiom in the axioms) 
233.     isOpposite=true; 
234.   else  
235.     isOpposite=false; 
236. else 

 

Fig. 7. Disjointness test optimization pseudo code 

5   Disjunctive Concepts at Nodes  

5.1   The Node Matching Problem  

Consider the trees depicted in Figure 8a. Notice that the concepts at nodes contain 
disjunctive concepts of labels. Let us consider matching fifties or sixties or seventies 
with twenties or thirties or forties. 

 

Fig. 8. (a): Two trees. (b): The matrix of relations between concepts of labels in the trees. (c): 
The matrix of relations between concepts at nodes (matching result) 

The relations between atomic concepts of labels in both trees are depicted in Figure 
8b. As from the second column of Table 1 axioms is:  
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(carsB ↔autoA) ∧ (jetA↔jetB) (15) 

which can be rewritten as: 

(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧ (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) (16) 

As from Step 2 in Section 2 contextA and contextB are:  

(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA)  (17) 

(jetB∨ trainB∨carsB) ∧(twentiesB ∨thirtiesB∨ fortiesB) (18) 

The negations of contextA and contextB are:  

(¬jetA∧¬cargoA∧¬autoA) ∨ (¬fiftiesA∧¬sixtiesA∧¬seventiesA) (19) 

 (¬jetB∧¬trainB∧¬carsB) ∨ (¬twentiesB∧¬thirtiesB∧ ¬fortiesB) (20) 

Let us consider the formula to be tested for unsatisfiability, as from Table 1. Again, 
axioms is the same for all the tests. As from Section 4.1, it consists up to 2*nA*nB 

clauses with two variables, where nA and nB are the number of atomic concepts of 
labels in the paths to root. In our example nA and nB are both equal to 6. The key 
observation here is that contextA and contextB may contain any number of disjunctions. 
Some exist because derived from the labels, while others may be obtained by negating 
contextA or contextB (as from the above example, in the case of less and more 
generality tests). Thus, for instance, as from Table 1 in case of less generality test we 
obtain the formula. 

(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧ (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) ∧ 
(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA) ∧  

((¬jetB ∧¬trainB∧¬carsB) ∨ (¬twentiesB∧¬thirtiesB∧ ¬fortiesB)) 

(21) 

5.2   Optimizations 

With disjunctive concepts at nodes, Eq. 1 is a full propositional formula and no 
hypothesis can be made on its structure. As a consequence its satisfiability must be 
tested using a standard DPLL SAT solver. Thus for instance CNF conversion of Eq. 
21 is  

(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧  (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) ∧ 
(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA) ∧  

((¬jetB∨¬twentiesB)∧ (¬jetB∨¬thirtiesB)∧ (¬jetB∨¬fortiesB)∧ 
(¬trainB∨¬twentiesB)∧ (¬trainB∨¬thirtiesB)∧ (¬trainB∨¬fortiesB)∧ 
(¬carsB∨¬twentiesB)∧ (¬carsB∨¬thirtiesB)∧ (¬carsB∨¬fortiesB)) 

(22) 

In order to avoid the space explosion, which may arise when converting a formula 
to CNF (see for instance Eq. 22), we apply a set of structure preserving 
transformations [14, 4]. The main idea is to replace disjunctions occurring in the 
original formula with newly introduced variables and explicitly state that these 
variables imply the subformulas they substitute. Consider for instance Eq. 21. We 
obtain:  
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(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧  (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) ∧ 
(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA) ∧ (new1∨new2)∧ 

(¬new1∨ ¬jetB∨¬trainB∨¬carB) ∧(¬new2∨¬twentiesB∨¬thirtiesB∨ ¬fortiesB) 
(23) 

Notice that the size of the propositional formula in CNF grows linearly with 
respect to number of disjunctions in original formula.  

To account for this optimization in nodeMatch all calls to convertToCNF are 
replaced with calls to optimizedConvertToCNF, (see Figure 9): 

 
 

130. formulaInCNF=optimizedConvertToCNF(formula); 
... 
160. formulaInCNF=optimizedConvertToCNF(formula); 
... 
250. formulaInCNF=optimizedConvertToCNF(formula); 

 

Fig. 9. The CNF conversion optimization pseudo code 

6   Evaluation Results 

We have implemented the optimizations described above and evaluated the resulting 
system S-Match against the original system and two state of the art matching systems, 
namely COMA [3] and Similarity Flooding (SF) [12] as implemented in Rondo 
system [13]. Let us call S-MatchB the original version without optimizations. Notice 
that S-Match, COMA, and SF exploit different matching techniques and differ 
substantially in the quality  of  matching  results.  See  [6]  for  a  detailed  comparison  

Table 2. The structural properties of the trees in the matching problems 

 
Trees 
max. 
depth 

# of nodes 
per tree 

# of labels 
per tree 

Average # 
of labels per 

node  

Concepts at 
nodes 

Cornell-Washington 
with atomic concepts 

of labels 
10/8 253/220 253/220 1/1 Conjunctive 

Handmade trees with 
disjunctive concepts 

of labels 
10/10 10/10 30/30 3/3 Disjunctive 

Looksmart-Yahoo 10/8 140/74 222/101 1,58/1,36 
Conjunctive 
Disjunctive 

Yahoo-Standard 3/3 333/115 965/242 2,9/2,1 
Conjunctive 
Disjunctive 

Google-Yahoo 11/11 561/665 722/945  1,28/1,42 
Conjunctive 
Disjunctive 

Google-Looksmart 11/16 706/1081 1048/1715 1,48/1,63 
Conjunctive 
Disjunctive 
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among these systems. In this evaluation we have concentrated only on the time 
performance of the systems. The tests have been performed on a P4 computer with 
512 MB of RAM installed. The systems were limited to allocate no more than 512 
MB of memory. 

The systems have been tested on the six matching problems which can be found at 
http://dit.unitn.it/~accord/. Table 3 reports the properties of these problems. 

6.1   Conjunctive Concepts at Nodes 

On this problem S-MatchB works two times faster than COMA. In fact, in this case the 
DPLL SAT solver of S-Match runs in polynomial time. S-Match instead works more 
than 5 times faster than COMA. However it still runs about 17% slower than SF. This 
can be explained by noticing that in SF the similarities between the labels of nodes 
obtained by a simple and fast string matcher, and propagated through a graph 
structure using a fix point algorithm. This algorithm is very fast and, on these 
examples, it converges after a few iterations. The drawback of SF, as the last test 
below shows, is that it requires a much larger amount of memory.  

 

Fig. 10. Execution time of the matching systems 

6.2   Disjunctive Concepts at Nodes 

Let us consider the test with handmade trees. As from Figure 10b, S-Match works 
about 4 orders of magnitude faster than S-MatchB, about 4 times faster than COMA, 
and as fast as SF. The significant improvement of the optimized algorithm can be 
explained by considering that S-MatchB does not control the exponential space 
explosion on such trees. In fact, the biggest formula in this case consists of about 
118000 clauses. The optimization introduced in the Section 5.2 reduces this number 
to about 20-30 clauses.  

We have then considered 4 matching problems involving real world 
classifications. Three of them, Looksmart-Yahoo, Google-Yahoo, and Google-
Looksmart, involve web directories. The forth involves parts of the Yahoo and the 
Standard catalogues which describe business activities. The results obtained for the 
Looksmart-Yahoo matching problem are depicted in Figure 11a. In this case the 
trees contain about 100 nodes each. S-Match works about 18% faster than S-MatchB 
and about 2 % slower than COMA. SF works about 3 times faster. The relatively 
poor improvement (18%) can be explained by the fact that our optimizations are 
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implemented in a straightforward way. The higher implementational constants on 
small trees (like Looksmart-Yahoo) can overcome the order of growth the 
complexity function.  

Figure 11b reports the results obtained for the Yahoo-Standard matching problem. 
S-Match works about 40% faster than S-MatchB. It performs 1% faster than COMA 
and about 5 times slower than SF. The relatively small improvement in this case can 
be explained by noticing that the maximum depth in both trees is 3 and that the 
average number of labels at node is about 2. The optimizations can not significantly 
influence on the system performance. 

 

Fig. 11. Execution time of the matching systems 

 

Fig. 12. Execution time of the matching systems 

The next two matching problems are much bigger than the previous ones. They 
contain hundreds and thousands of nodes. On these trees SF went out of memory. 
Therefore, we provide the results only for the other systems. The results are reported 
in Figure 12a. S-Match is more than 6 times faster than S-MatchB. COMA performs 
about 5 times slower than the optimized version. These results suggest that the 
optimizations described in this paper are better suited for big schemas. The results of 
the biggest matching problem, involving Google-Looksmart, are presented in Figure 
12b. In this case S-Match performs about 9 times faster than COMA, and about 7 
times faster than S-MatchB.  

8   Conclusion 

We have presented a structure level semantic matching algorithm and proposed 
several optimizations to its original version. In particular we have distinguished 
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between two main classes of problems, namely the problems with conjunctive and 
with disjunctive concepts at nodes. For the first class of problems we have presented a 
modification to the original algorithm which solves the node matching problem in 
linear time. With disjunctive concepts we have presented various techniques, which 
allow us to avoid the exponential space explosion which arises when converting 
disjunctive formulas into CNF. We have evaluated S-Match against several state of 
the art matching systems and against the original unoptimized version, S-MatchB. The 
results thorough preliminary are promising. S-Match always performs better than S-
MatchB. Furthermore, in most cases S-Match competes well, in terms of time 
performance, with various state of the art matching systems. Optimizations are most 
effective on big trees with hundreds and thousands of nodes.  
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Appendix A. The Pseudo Code of the Optimized S-Match 
Algorithm 

1. Node: struct of  
2.  int nodeId; 
3.  String label; 
4.  String cLabel; 
5.  String cNode; 
 
6.String[][] treeMatch(Tree of Nodes source, target) 
7. Node sourceNode,targetNode; 
8. String[][] cLabsMatrix, cNodesMatrix, relMatrix; 
9. String axioms, contextA, contextB; 
10.int i,j; 
11.cLabsMatrix=fillCLabMatrix(source,target); 
12.For each sourceNode in source 
13. i=getNodeId(sourceNode); 
14. contextA=getCnodeFormula (sourceNode); 
15. For each targetNode in target 
16.  j=getNodeId(targetNode); 
17.  contextB=getCnodeFormula (targetNode); 
18.  relMatrix=extractRelMatrix(cLabMatrix, 
         sourceNode, targetNode); 
19.  axioms=mkAxioms(relMatrix); 
20.  cNodesMatrix[i][j]=nodeMatch(axioms, 
           contextA, contextB); 
21. return cNodesMatrix; 
 

110.String nodeMatch(String axioms, contextA, contextB) 
111. if (contextA and contextB are conjunctive) 
112.  isLG= fastHornUnsatCheck (contextA, axioms, “⊆”) 
113.  isMG= fastHornUnsatCheck (contextB, axioms,“⊇”) 
114. else 
120. String formula=And(axioms,contextA,Not(contextB)) 
130. String formulaInCNF=optimizedConvertToCNF(formula) 
140.  boolean isLG=isUnsatisfiable(formula) 
150.  formula=And(axioms, Not(contextA), contextB); 
160.  formulaInCNF= optimizedConvertToCNF (formula); 
170.  boolean isMG= isUnsatisfiable(formula); 
180. if (isMG && isLG)  
190.  return “=”; 
200.if (isLG)  
210.  return “⊆”; 
220.if (isMG)  
230   return “⊇”; 
231. If (contextA and contextB are conjunctive) 
232.   If (there is disjointness axiom in the axioms) 
233.     isOpposite=true; 
234.   else  
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235.     isOpposite=false; 
236. else 
240.  formula= And(axioms, contextA, contextB); 
250.  formulaInCNF= optimizedConvertToCNF (formula); 
260.  boolean isOpposite= isUnsatisfiable(formula); 
270.if (isOpposite)  
280.  return “⊥”; 
290.return “Idk”; 
 

301.boolean fastHornUnsatCheck(String context, axioms, 
rel) 

302. int m=getNumOfVar(String context); 
303. boolean array[m]; 
304. for each axiom in axioms 
305.  if((getAType(axiom)=”=”)||(getAType(axiom)= rel)) 
306.   int j=getNumberOfSecondVariable(axiom); 
307.   array[j]=true; 
308.  for (i=0; i<m; i++) 
309.   if (!array[i]) 
310.    return false; 
311. return true; 
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