
Firewall Conformance Testing�

Diana Senn, David Basin, and Germano Caronni

ETH Zürich, 8092 Zürich, Switzerland
{dsenn, basin}@inf.ethz.ch, gec@acm.org

Abstract. Firewalls are widely used to protect networks from unautho-
rised access. To ensure that they implement an organisation’s security
policy correctly, they need to be tested. We present an approach that
addresses this problem. Namely, we show how an organisation’s network
security policy can be formally specified in a high-level way, and how
this specification can be used to automatically generate test cases to test
a deployed system. In contrast to other firewall testing methodologies,
such as penetration testing, our approach tests conformance to a speci-
fied policy. Our test cases are organisation-specific — i.e. they depend on
the security requirements and on the network topology of an organisa-
tion — and can uncover errors both in the firewall products themselves
and in their configuration.

1 Introduction

Firewalls are a common and widely deployed technology to control access to
networked systems. Although they are sometimes viewed as an “appliance” that
can be used out of the box, considerable work is required in practice to config-
ure them so that they implement an organisation’s network security policy. To
ensure that this is done properly and that the employed firewalls then behave
as expected, the entire setup must be tested. This is particularly important in
high-security environments like banking or in military settings.

In this paper we present an approach to specification-based firewall testing,
where an organisation’s network security policy comprises the specification. This
can also be called firewall conformance testing, as it tests if the firewalls conform
to the network security policy. Our motivation to follow this path comes from
the fact that there is a wide range of security needs and network topologies, and
a firewall testing procedure should be tailored to both of these. Note that such
testing says nothing about the appropriateness of the security policy itself. For
this, a separate analysis of the security policy is needed.

Our approach is based on the following ideas: First, we propose a formal
language for specifying network security policies. Second, we show how to au-
tomatically generate test cases from formal policies. A test case consists of test

� This work was partially supported by armasuisse. It represents the views of the
authors.

F. Khendek and R. Dssouli (Eds.): TestCom 2005, LNCS 3502, pp. 226–241, 2005.
c© IFIP 2005

Firewall Conformance Testing 227

input, also called test data, and the expected test output. Our test cases consist
of a series of network packets (test data) and a statement per packet whether we
expect this packet to reach its destination or not. We are testing firewalls and use
the term firewall implementation to denote everything that is delivered by the
firewall manufacturer, and the term firewall configuration (or firewall rule set) to
denote its configuration by the customer. By executing the generated test cases
directly on the real network (as opposed to simulation), we can find errors both
in the firewall configuration and in the firewall implementation. These tests can
be done just before deploying a network, or after configuration updates. Note
that we do not explicitly search for all possible bugs in the firewall implementa-
tion as is sometimes done in penetration testing. Rather, our method succeeds
in finding all policy related errors.

The contributions of this paper are a language for the formal specification
of network security policies, the novel combination of different methods for gen-
erating abstract test cases, and an algorithm for generating concrete test cases
from policies. As firewalls can be very complex, we have made some simplifying
assumptions in this paper: We assume that all firewalls are stateful packet fil-
ters1, and we do not test for problems with timing or sequence numbers. Future
work will aim at eliminating these simplifications and at carrying out large-scale
case studies.

This paper is organised as follows: We give a comparison with related work
in Section 2. Then we present our formal policy specification language in Section
3, and the process of test case generation in Section 4. The entire process is then
illustrated on an example in Section 5. We conclude and report on future work
in Section 6.

2 Related Work

Most preexisting work on firewall testing covers different aspects of testing
by hand [Hae97, Sch96]. Constructing these tests relies on human experts who
mainly focus on detecting known vulnerabilities, for example forwarding exter-
nal packets that claim to come from an internal source. Most of this testing falls
under the heading of penetration testing.

Over the last few years, a new approach to firewall testing was taken by
[BMNW99, JW01], which can be called specification-based firewall testing. The
general idea comes from specification-based software testing: The specification is
used to generate test cases, against which the system implementation is tested.
In the case of specification-based firewall testing, the system is the firewall and

1 A packet filter can filter traffic only at OSI Layer 4 (TCP and UDP), whereas an
application level firewall can interpret and filter higher-level protocols. A stateful
packet filter can forward (changed or unchanged), drop, or reject a packet based
on its source IP address, the packet’s source port, its destination IP address, its
destination port, its TCP flags, and the state of the connection the packet belongs
to.

228 D. Senn, D. Basin, and G. Caronni

the specification is a security policy. The difference to penetration testing is sub-
stantial: Whereas penetration testing tends to always use the same test cases, in
specification-based testing they depend on the policy and are designed explicitly
to test conformance with the policy.

These specification-based approaches share some similarities with ours. Wool
et al. [BMNW99, BMNW03, MWZ00, Woo01], for example, gather the configu-
rations of the network and the firewalls, and then simulate the network under
test, i.e. they start with the firewall rules instead of with the policy. In their
simulation, tests can then be executed easily and without doing harm. There
are a number of tools (Firmato [BMNW99, BMNW03], Fang [MWZ00], LFA
[Woo01]) implementing this approach. The disadvantages of this approach are
twofold: First it relies on the correctness of the firewall implementations and
second it needs to interpret the different firewall rule languages (of the different
vendors). Thus it tests a model, which will never model reality perfectly. We
treat firewalls as black boxes and therefore can test firewalls without having to
formalise and provide a semantics for their rule language. Additionally, by car-
rying out tests on the real network, we can find errors in not only the firewall
configuration, but also in the firewall implementation. The advantage of testing
a model, as Wool et al. do, is that there is no interaction with a running system
and that the tests themselves can do no harm.

An approach similar to specification-based firewall testing is to generate the
firewall rules from a formal policy [Gut97, BCG+01]. What firewall rule gener-
ation has in common with specification-based firewall testing is that both need
a formal specification. Guttman [Gut97], for example, takes an approach sim-
ilar to formalising policies as we do, but includes all the low-level details. He
then models the network as a bipartite graph and computes the individual rules
for each firewall from the global policy by completing a graph traversal of this
model. His aim is different from ours: he generates the firewall rules from the
policy, whereas we assume that there are firewall rules whose correctness we
would like to check. What our work has in common is that we also need a formal
policy. However, his policies are specified in a way that they easily become too
detailed and therefore are subject to policy errors. In contrast, in our approach,
we separate the low-level details from the policy, thereby making policies easier
to understand and policy writing less error-prone.

3 A Formal Network Security Policy

A network security policy formalises what kind of traffic is allowed between
different zones. A zone is a part of a network that is separated from the rest of
the network by means of one or more firewalls. In what follows, we will use the
term policy to denote any part of a security policy, be it formal or informal, and
the term formal policy for our formalisation of the network security policy. Note
that in our work, we shall assume that users do not play a role in policies.

Figure 1 illustrates a network with three zones: the public Internet, the de-
militarised zone (DMZ), and the private Intranet of a company. In this example,

Firewall Conformance Testing 229

Fig. 1. A sample graphical network layout

our network also has two servers, a Mailserver and a Webserver, standing in the
DMZ. A policy for this network defines what traffic is allowed to flow between
these different zones. This can be direction dependent (for example, there may
be different restrictions on what connections are allowed to be initiated from
the private zone to the Internet than the other way) and thus we need two rules
per pair of zones. We assume that all clients in a zone are equivalent, in that
differences in their IP addresses have no effect on the firewalls’ behaviours2. In
contrast, we do distinguish between servers, as we would like to be able to state
different policies for different servers. Thus, in the example given, instead of stat-
ing policies for traffic flowing to and from the DMZ, we state individual policies
for the two servers. Policies for traffic within zones need not be specified, since
compliance with these policies cannot be enforced by firewalls.

@ Connections to Private
DMZ → Private: ACCEPT securetraffic
Internet → Private: DENY ∗

@ Connections to the DMZ
∗ → Webserver: ACCEPT webtraffic
∗ → Mailserver: ACCEPT mailtraffic

@ Connections to the Internet
Private → Internet: ACCEPT ∗
DMZ → Internet: DENY ∗

Fig. 2. A sample formal policy

Figure 2 gives an example of a formal policy for the given network, where
lines starting with @ are comments, and where * means everything. The second

2 This represents our uniformity hypothesis.

230 D. Senn, D. Basin, and G. Caronni

line, for example, states that only secure traffic is allowed from the DMZ zone to
the private zone. But which connections are secure? This can change quickly (for
example, when a new ssh weakness is found) and is therefore stated separately
from the policy in what we call keyword definitions. The idea is that our policy is
expressed at a high-level; this way it is both manageable and understandable by
managers as well as security specialists. Because of this, we also use names for
network zones. The low-level details (IP-addresses, etc.), which may be subject to
frequent change, are stored separately in what we call a textual network layout.
The graphical version presented in Figure 1 does not contain these low-level
details.

securetraffic = ssh, scp, https, imaps
webtraffic = http, https
mailtraffic = smtp, imap, imaps

Fig. 3. Keyword definitions

An example of keyword definitions is given in Figure 3. Here the security
engineer has decided that SSH, SCP, HTTPS, and IMAPS are secure proto-
cols. These protocols are application level protocols. At the TCP level — where
stateful packet filters work — they are represented by their TCP port number.

DMZ: 129.132.178.192/27
Private (Intranet): 192.168.1.0/24
Internet: !DMZ, !Private

∗ ∗ ∗
@ Name of the Firewall Interface Comment
FW1 eth0 (0.0.0.1)
FW1 eth1 (129.132.178.193)
FW2 eth0 (129.132.178.194) Packet filter
FW2 eth1 (192.168.1.1) Packet filter

∗ ∗ ∗
@ Name (fac.) IP Service
Mailserver 129.132.178.200 smtp
Mailserver 129.132.178.200 imap
Webserver 129.132.178.197 http

Fig. 4. A sample textual network layout

An example of a textual network layout, providing the low-level details
of the network shown in Figure 1, is given in Figure 4. The first part gives
the IP-address-ranges for the zones in CIDR notation [FLYV93]. For example,
129.132.178.192/27 means that the first 27 bits are used to represent the net-
work and the remaining 5 bits are used to identify hosts, which results in the
30 hosts starting at 129.132.178.193 and ending at 129.132.178.222 (note that
129.132.178.192 represents the network address, and 129.132.178.223 represents

Firewall Conformance Testing 231

the broadcast address). The ! operator represents set complement with respect
to the universe of all possible IP addresses (from 0.0.0.0 to 255.255.255.255) and
thus the third line means that the Internet consists of everything other than
the DMZ and the Private zone. The second part provides the IP addresses of
the firewall-interfaces along with some comments. The last part lists the IP ad-
dresses of the servers together with the service they provide. The stars separate
the different parts and @ again represents comments.

The grammars for formal policies, keyword definitions, and textual network
layout can be found in the Appendix.

4 Test Case Generation

In this Section, we first present our method for test case generation in detail,
before giving a concrete example in Section 5. Our test case generation consists
of two parts. First we generate test tuples from the formal policy. Afterwards
we generate abstract test cases. The idea of the abstract test cases is to test
the correct stateful handling of a protocol by a firewall. For example, a stateful
packet filter may be tested to determine whether it correctly handles TCP traffic.
To generate the concrete test cases, we instantiate the abstract test cases with
the test tuples.

4.1 Abstract Test Cases

We must generate a set of abstract test cases for every protocol we want to
test. Once we have these test cases, we can use them for every test concerning
this protocol. The generation consists of two steps: We first construct a Mealy
automaton describing the protocol for which we want to generate abstract test
cases. Then we generate test cases for this Mealy automaton using the well
known UIO-sequences method [SD88]. We will now explain the generation in
detail.

Mealy Automata

Definition 1. A Mealy automaton is a six-tuple M = (Q,Σ, Γ, δ, λ, q1), where
Q = {q1, q2, ..., q|Q|} is a finite set of states, Σ = {σ1, σ2, ..., σ|Σ|} is a finite
input alphabet, Γ = {γ1, γ2, ..., γ|Γ |} is a finite output alphabet, δ : Q×Σ → Q
is the transition function, λ : Q×Σ → Γ is the output function, and q1 ∈ Q is
the initial state.

In our models, the input of a transition represents the packet (we only model
the parts of it essential for determining the firewall’s action) reaching the firewall,
and the output represents the corresponding packet leaving the firewall. A typical
input has the form x : A → B, where x represents packet information being sent
from source A to destination B. The output packet can either be the same as
the input packet, different from the input packet (i.e. changed by the firewall),

232 D. Senn, D. Basin, and G. Caronni

or non-existent (dropped by the firewall). Thus Σ = Γ ∪ {−}, where the “–”
symbol represents no output.

Test Cases for Mealy Automata
The general idea behind testing a specification given as a Mealy automaton Mspec

is to ensure that every transition of Mspec is correctly implemented, where the
implementation is also assumed to be a Mealy automaton Mimp. This is achieved
by testing every transition in Mspec, say from state si to state sj , according to
the following steps:

1) Bring the implementation automaton Mimp into the initial state s1.
2) Transfer Mimp into the state si.
3) Test the transition (apply its input and see if the output is correct).
4) Verify that Mimp is now in the state sj .

Step one is easy if there is a reliable reset: Just apply the reset input to
go back to the initial state. The TCP protocol, which we present in the next
Section, has such a reliable reset.

Steps two and three can be solved by building a test tree T according to the
following rules and afterwards traversing all the paths [Cho78]:

Level 1: Label the root of T with the initial state of Mspec.
Level (k+1): Examine the nodes in the k-th level from left to right. A node

in the k-th level is terminated if its label is the same as a nonterminal at
some level j, j ≤ k. Otherwise, let Mspeci

denote its label. If on input x,
machine Mspec goes from state Mspeci

to state Mspecj
, then we attach a

branch and a successor node to the node labelled Mspeci
in T . The branch

and the successor node are labelled with x and Mspecj
, respectively.

Step 4 can be achieved by using either the W-method [Cho78], UIO sequences
[SD88], or distinguishing sequences [Gil61, Gil62]. All these methods achieve the
same fault coverage. We have chosen the UIO sequences because they generate
the shortest test cases of the three methods. In brief, a UIO sequence is an in-
put/output sequence x for a state s that distinguishes s from all other states,
i.e. λ(si, x) �= λ(s, x), for all si �= s.

We can now fit the pieces together to generate our abstract test cases: We
take every possible path in the test tree, prepend it with the reset input, and
append the UIO sequence of the end state (of the path). Thus we get a set of
abstract test cases, where every abstract test case consists of a series of I/O
tuples (describing input and expected output). Every abstract test case starts
with the reset input to bring the machine back into its initial state, followed by
a series of I/O tuples to bring the machine into some state si and one I/O tuple
to test the transition from state si to state sj (extracted from the test tree),
and finally a series of I/O tuples (the UIO sequences) to verify that state sj was
reached.

Firewall Conformance Testing 233

4.2 Test Tuples

A test tuple is a four-tuple (sIP, dIP, proto, exp), where sIP and dIP represent
IP addresses, proto is the name of a protocol, and exp ∈ {ACCEPT, DROP}
represents an expectation. A test tuple describes whether a connection from the
source sIP to the destination dIP using protocol proto is allowed by the formal
policy. If the policy allows a connection, we expect the firewalls to let this data
through, and therefore exp in this case would be ACCEPT. If a connection is not
allowed (or explicitly forbidden) by the policy, exp will be DROP. This means
that the test tuples are policy-specific and thus must be generated for every
policy. Note that the statefulness of a connection is not modelled by these test
tuples, but rather by the abstract test cases.

We generate test tuples in two steps. First we combine the formal policy
with the low-level details contained in the keyword definitions and the textual
network layout. This means that we transform every rule

source → destination: action keyword

from the formal policy into n low-level rules, where n is the number of protocols
named in the keyword definitions. In these low-level rules, the names of source
and destination are replaced with the corresponding IP ranges.

These low-level rules can be represented graphically using one two-
dimensional graph per protocol, where the x-axis represents the source IP
addresses and the y-axis represents the destination IP addresses. For each low-
level rule

sIPr dIPr protocol action

the cross-product sIPr × dIPr defines a rectangular region in the graph. We
colour this region according to the given action (grey for ACCEPT, black for
DROP). An example of this is given in Section 5, Figure 7.

In a second step, we choose our test tuples from these low-level rules. This
is necessary because it is generally infeasible to test every possible combination
of IP addresses. However, as we assume uniformity within zones, it is sufficient
to choose for each low-level rule an arbitrary IP from the source IP range and
an arbitrary IP from the destination IP range. As boundary points are a source
of errors in practice, we also select addresses to test these. That is, we choose
the lowest IP address, an arbitrary (intermediate) IP address, and the highest
IP address per range. This results in nine (three times three) test tuples per
low-level rule.

Until now, we just considered what the policy explicitly states. But we should
also test implicit statements, i.e. what is not explicitly allowed is forbidden. This
is best explained on the graphical representation (see Figure 7 for an example). In
the graph, we coloured all the areas where we have an explicit policy statement
(either in grey or black). This means that for all the uncoloured areas there
exists no explicit policy statement. Note that a part of the uncoloured area is
not testable since, as we stated earlier, policies for traffic within zones cannot
be enforced by firewalls. But the rest of the uncoloured areas can be partitioned

234 D. Senn, D. Basin, and G. Caronni

into rectangles and then test tuples can be chosen, analogous to the procedure
given above, where the expectation is set to DROP.

The resulting test tuples are then used to instantiate the abstract test cases.
How this is done is explained in the next Subsection.

4.3 Concrete Test Cases

In the last two Subsections, we have explained the generation of test tuples
and abstract test cases. Recall that abstract test cases test the correct stateful
handling of a protocol, and they contain variables for source and destination
addresses (A and B respectively). Recall further that test tuples are of the form
(sIP, dIP, proto, exp), formalising whether a connection from the IP address sIP
to the IP address dIP using protocol proto is allowed or not. We now explain how
to instantiate the abstract test cases with the test tuples and thereby generate
concrete test cases that test if the policy is correctly implemented in a stateful
manner. Given a test tuple (sIP, dIP, proto, exp) and abstract test cases ai for
the protocol proto, the instantiation proceeds as follows:

– replace every occurrence of A in every ai with sIP,
– replace every occurrence of B in every ai with dIP, and
– if exp == DENY then replace the expected output in every ai with “–”.

The resulting test data represents network packets. These packets can then be
built and injected into the actual network and the results can be compared to
the expectations of the given test cases.

In this paper, we only consider the testing of stateful packet filters. This
means that we only need abstract test cases for TCP and UDP, but not for every
possible (application-level) protocol. Thus, instead of instantiating the abstract
test cases generated for proto with test tuples of the form (sIP, dIP, proto, exp),
we instantiate the abstract test cases for TCP with these tuples. To model proto
at the TCP-level, we use the TCP port-number pnum of proto as the destination
port. Thus, B in the abstract test cases is replaced with dIP:pnum (instead of
dIP) in this case, to produce the concrete test cases.

As described above, our abstract test cases are generated from Mealy au-
tomata using the UIO sequences method. The resulting unoptimised test se-
quences have length O(mn2) per automaton, where m denotes the number of
transitions and n denotes the number of states of the automaton (Theorem 3 of
[SD88]). As test sequences can be optimised, i.e. subsequences completely con-
tained in others can be eliminated, the above complexity bound represents the
worst case.

The work needed for generating test tuples is the following: If we have a
policy containing r rules, and at most p protocols per keyword, we get O(rp)
test tuples. The generation of the abstract test cases needs only be done once
per protocol, i.e. this is a one-time cost. The generation of the test tuples and
the instantiation of concrete test cases based on them has to be done once per
policy. As we use each test tuple to instantiate at most O(mn2) abstract test
cases, in the worst case we generate O(rpmn2) concrete test cases.

Firewall Conformance Testing 235

When testing Mealy automata, we can distinguish between two types of er-
rors: operation errors, which are errors in the output function, and transfer
errors, which are errors in the next state function. If the implementation au-
tomaton has the same number of states as the specification automaton, then we
can detect all errors of both kinds, and our abstract test cases are reliable and
valid in the sense described by [GG75]. If there are extra states in the imple-
mentation, the UIO sequences method we use may however miss errors.

If our uniformity hypothesis holds, i.e. the firewall reacts in the same way to
all clients within a zone, then our test tuples represent all possible connections
(between every possible source and destination). Hence instantiating the abstract
test cases with these test tuples, the resulting concrete test cases are reliable and
valid.

5 An Example

Abstract Test Cases for TCP.
A graphical Mealy automaton for the TCP protocol is given in Figure 5. The
automaton is not a full specification: sequence numbers and acknowledgement
numbers have been omitted. Also the input alphabet does not contain all possible
combinations of flags. But the central parts of the protocol are specified. The
respective input and output of each transition are written next to the transition
and are separated by a slash. The input fin: A → B, for example, stands for a
TCP packet sent from A to B, where exactly the fin flag is set. A and B stand
for two hosts and are instantiated with concrete IP addresses later.

Fig. 5. Automaton for TCP

236 D. Senn, D. Basin, and G. Caronni

Fig. 6. Test Tree for TCP

From the Mealy automaton for TCP, we construct a test tree using the
method given in Section 4.1. The test tree for TCP is given in Figure 6: NEW
is the start state of the Mealy automaton and represents level 1 of the test tree.
From the state NEW there are two transitions, one back to NEW and one to
the state SYN A. Thus the states NEW and SYN A represent level 1 of the test
tree. As we already had state NEW in the test tree, the test tree is continued
only for state SYN A.

Proposition 1. The UIO sequences for TCP are:

NEW: (5/-)(2/2)
SYN A: (6/-)(5/5)
SYN B: (7/-)(6/6)(9/9)(10/10)
ESTABLISHED: (8/8)(11/11)
FIN1 A: (7/7)(9/9)(6/6)(2/2)
FIN2 A: (9/9)(6/6)(2/2)
CLOSE A: (6/6)(2/2)
FIN1 B: (6/6)(8/8)(7/7)(2/2)
FIN2 B: (8/8)(7/7)(2/2)
CLOSE B: (7/7)(2/2)

As an example, consider the UIO sequence of the state NEW. On input syn: A
→ B, only the states NEW and SYN A will respond with output syn: A → B;
all the other states will have no output. As the state SYN A, in contrast to state
NEW, will also respond to syn & ack: B → A, we identify the state NEW if we
send the packets syn: A → B and syn & ack: B → A and only see the second
packet behind the firewall.

Firewall Conformance Testing 237

We will now construct two test cases according to the four step procedure
given in Section 4.1. Our first test case should test the transition from state
NEW to itself.

1) Bring the machine into its initial state: (1 / 1).
2) Transfer the machine into state NEW: no action is needed here.
3) Test the transition: (8 / -) is one possibility.
4) Verify that the machine is now in state NEW: (5 / -)(2 / 2) is the UIO

sequence of state NEW.

Thus the resulting test case is (1 / 1)(8 / -)(5 / -)(2 / 2).

Our second test case should test the transition from state SYN B to state ES-
TABLISHED.

1) Bring the machine into its initial state: (1 / 1).
2) Transfer the machine into state SYN B: (2 / 2)(5 / 5).
3) Test the transition: (6 / 6).
4) Verify that the machine is now in state ESTABLISHED: (8 / 8)(11 / 11) is

the UIO sequence of state ESTABLISHED.

Thus the resulting test case is (1 / 1)(2 / 2)(5 / 5)(6 / 6)(8 / 8)(11 / 11). Anal-
ogous to the two examples given, test cases for all the other transitions need to
be constructed.

An Example of Test Tuples
We will illustrate the generation of test tuples on the example of the formal
policy given in Figure 2. Apart from the policy, we need the keyword definitions
given in Figure 3 and some knowledge (i.e. IP addresses) of the network under
test (given in Figure 1). Let us assume that we have the information about the
network under test given in Figure 4.

As an example, we generate test tuples for the HTTPS protocol. HTTPS
is contained in the keywords securetraffic and webtraffic. Therefore we have to
build and colour a graph for all rules of the formal policy except the fourth one.
The result can be seen in Figure 7. In this graph, test tuples are marked by a
circle, and untestable areas are marked with a question mark. One example of
such a test tuple is (129.132.178.192, 192.168.0.255, https, DENY).

An Example of a Concrete Test Case
In this example, we have only generated abstract test cases for TCP. Thus we
instantiate these abstract test cases with the above test tuples, to generate con-
crete test cases. For this, we represent every application level protocol with its
TCP port number (e.g. 443 for HTTPS).

As an example, we present the instantiation of one abstract test case with
two test tuples.

238 D. Senn, D. Basin, and G. Caronni

Fig. 7. Policy for https with test points

Example 1. Test Case Instantiation
an abstract test case for TCP: (1 / 1)(8 / -)(5 / -)(2 / 2).
test tuple 1: (129.132.178.192, 192.168.0.255, HTTPS, DENY)
test tuple 2: (129.132.178.192, 192.168.1.0, HTTPS, ACCEPT)

Using the first test tuple we get the concrete test case:
(rst: 129.132.178.192 → 192.168.0.255:443 / –)
(fin: 129.132.178.192 → 192.168.0.255:443 / –)
(syn & ack: 192.168.0.255:443 → 129.132.178.192 / –)
(syn: 129.132.178.192 → 192.168.0.255:443 / –)

Using the second test tuple we get:
(rst: 129.132.178.192 → 192.168.1.0:443 / rst 129.132.178.192 → 192.168.1.0:443)
(fin: 129.132.178.192 → 192.168.1.0:443 / –)
(syn & ack: 192.168.1.0:443 → 129.132.178.192 / –)
(syn: 129.132.178.192 → 192.168.1.0:443 / syn: 129.132.178.192 → 192.168.1.0:443)

Let us explain these two test cases. Recall that a test case (this holds for
the abstract and the concrete test cases) is composed of a series of input and
expected output packets. Each of the above test cases contains four such I/O
pairs. Thus for the first concrete test case we try to initiate a https-connection
from 129.132.178.192 to 192.168.0.255, where we expect the firewall to drop all

Firewall Conformance Testing 239

these packets. That is we test that a https-connection from 129.132.178.192 to
192.168.0.255 is not allowed.

The second concrete test case belongs to a series of test cases that test if
a https-connection can be initiated from 129.132.178.192 to 192.168.1.0 and if
this is done correctly, i.e. they test whether the firewall handles the TCP con-
nection correctly. This specific test case tests the start of such a connection (as
explained in the last Subsection). The first packet resets the connection and
should be accepted by the firewall. The second packet attempts to close the con-
nection, but as the connection no longer exists (it was reset before), this packet
should not be allowed, and therefore should be dropped by the firewall. The
third packet is not the start of a new connection and thus should be dropped as
well, and finally the fourth packet initiates a new connection and should be let
through.

With the second concrete test case we can find different kinds of errors: 1)
A bug in the firewall implementation if the fin or the syn & ack packet is let
through (i.e. the stateful connection handling is incorrect), and 2) a bug in the
firewall configuration if the syn packet is blocked.

6 Conclusion

We have presented a new approach to test the conformance of firewalls to a
given security policy. Our contributions are the following: a language for the
formal specification of network security policies, the novel combination of dif-
ferent methods for generating abstract test cases, and an algorithm for gen-
erating concrete test cases from the policy. Overall, our method is designed
to find errors both in the firewall implementation and the firewall
specification.

In this paper our focus has been on the theoretical basis of our approach. We
are currently implementing a prototype testing tool based on this work. We plan
to use this tool to conduct case studies, to see how effective our method is in
finding errors as well as to determine its robustness. An interesting scenario will
be to stress test the firewalls, i.e. to run many different test cases at the same
time.

To reduce the complexity of the problem, we have simplified matters by
assuming that our firewalls are stateful packet filters and by not testing for
problems with timing or sequence numbers. As a next step, we plan to eliminate
these simplifications. In particular, we shall adapt our approach to application-
level firewalls. As some application-level protocols are difficult to handle by a
firewall, e.g. SIP [RSC+02] needs dynamic port opening, this problem is quite
challenging. With respect to timing properties, at the moment we can only test
the correct ordering of test packets over time. It would be interesting to test,
for example, what happens when there is a long pause between test packets
belonging to the same test case.

240 D. Senn, D. Basin, and G. Caronni

References

[BCG+01] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosenbluth,
A.V. Surendran, and D.M. Martin. Automatic management of network
security policy. In Proceedings of DISCEX II, 2001.

[BMNW99] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato:
A novel firewall management toolkit. In IEEE Symposium on Security
and Privacy, pages 17–31, 1999.

[BMNW03] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato:
A novel firewall management toolkit. Technical report, Dept. Electri-
cal Engineering Systems, Tel Aviv University, Ramat Aviv 69978 Israel,
February 2003.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines.
In IEEE Transactions on Software Engineering, Vol. SE-4, No 3, pages
178–187, May 1978.

[FLYV93] V. Fuller, T. Li, J. Yu, and K. Varadhan. RFC 1519: Classless inter-
domain routing (CIDR): an address assignment and aggregation strategy.
http://www.ietf.org/rfc/rfc1519.txt, September 1993.

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. In IEEE Transactions on Software Engineering (TSE), Volume
1, Number 2, pages 156–173, June 1975.

[Gil61] A. Gill. State-identification experiments in finite automata. In Informa-
tion and Control, vol. 4, pages 132 – 154, 1961.

[Gil62] A. Gill. Introduction to the Theory of Finite-state Machines. McGraw-
Hill, 1962.

[Gut97] J. D. Guttman. Filtering postures: Local enforcement for global poli-
cies. In 1997 IEEE Symposium on Security and Privacy, pages 120–129,
Oakland, CA, 1997. IEEE Computer Society Press.

[Hae97] Reto E. Haeni. Firewall penetration testing. Technical report, The George
Washington University Cyberspace Policy Institute, 2033 K St, Suite
340N, Washington, DC, 20006, US, January 1997.

[JW01] Jan Jürjens and Guido Wimmel. Specification-based testing of firewalls.
In Andrei Ershov, editor, 4th International Conference Perspectives of
System Informatics (PSI’01), LNCS. Springer, 2001.

[MWZ00] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis
engine. In Proceedings of the 2000 IEEE Symposium on Security and
Privacy (S&P 2000), pages 177–187, May 2000.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. RFC 3261 SIP: Session initiation
protocol. http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[Sch96] E. Schultz. How to perform effective firewall testing. In Computer Secu-
rity Journal, vol. 12, no. 1, pages 47–54, 1996.

[SD88] Krishan Sabnani and Anton Dahbura. A protocol test generation pro-
cedure. In Computer Networks and ISDN Systems 15, pages 285–297,
1988.

[Woo01] A. Wool. Architecting the lumeta firewall analyzer. In Proceedings of the
10th USENIX Security Symposium, pages 85–97, August 2001.

Firewall Conformance Testing 241

A Grammars

A.1 General
IP = DDD’.’DDD’.’DDD’.’DDD .
D = [digit] .
PROTO = letter {letter | ’-’ | ’+’ | digit | ’.’ | ’ ’} | NUM .
NUM = {digit} .
NAME = letter {letter | digit} .
ACTION = ’accept’ | ’deny’ .
PRE = ’pre’ .
POST = ’post’ .
COMMENT = ’@’ TEXT ’\n’
TEXT = {letter | digit ...}

A.2 Formal Network Policy

POLICY = {RULE | COMMENT}
RULE = SOURCE ’→’ DEST : ACTION KEYWORDS
SOURCE = NETWORK
DEST = NETWORK
NETWORK = NAME
KEYWORDS = (’∗′ | NAME) {’,’ KEYWORDS}

A.3 Keyword Definitions

KEYWORD-DEFINITIONS = {DEFINITION | COMMENT}
DEFINITION = NAME ’=’ PROTO {’,’ PROTO}

A.4 Network Layout

NETLAYOUT = NETWORKS ’∗ ∗ ∗’ FIREWALLS ’∗ ∗ ∗’ SERVERS
NETWORKS = {NET | COMMENT}
NET = NAME’:’ RANGE {’,’ RANGE}
RANGE = IP’/’DD | ’ !’NAME
FIREWALLS = {FIREWALL | COMMENT}
FIREWALL = FW IF TEXT
FW = NAME
IF = [’eth0’ | ’eth1’ ...] ’(’IP’)’
SERVERS = {SERVER | COMMENT}
SERVER = NAME IP PROTO

	Introduction
	Related Work
	A Formal Network Security Policy
	Test Case Generation
	Abstract Test Cases
	Test Tuples
	Concrete Test Cases

	An Example
	Conclusion
	Grammars
	General
	Formal Network Policy
	Keyword Definitions
	Network Layout

