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Abstract. A multiscale nonlinear finite element model for analysis and
design of the deformation gradient and the magnetic field distribution
in Terfenol-D/epoxy thin film device under Transverse Magnetic (TM)
mode of operation is developed in this work. A phenomenological con-
stitutive model based on the density of domain switching (DDS) of an
ellipsoidal inclusion in unit cell of matrix is implemented. A sub-grid
scale homogenization technique is employed to upwind the microstruc-
tural information. A general procedure to ensure the solution convergence
toward an approximate inertial manifold is reported.

1 Introduction

In recent time, multiscale modeling and computation have become powerful tool
in solving many problems related to strongly coupled dynamics and multiphysics
phenomena in material science and engineering [1, 2]. Such an attempt, with judi-
cious choice of the mathematical models which represent the mutually insepara-
ble physical processes at the molecular scale, the lattice scale, the microstructural
scale, and at the continuum scale, can be highly reliable in interpreting the ex-
perimental results and also in designing new materials and devices with desired
multifunctionality. Many similar problems related to fluidics, transport process,
biology and planetary sciences are of immense interest in the research commu-
nity, which requires the advancement of multiscale computational methodology.

The magnetostrictive materials (a family of rare earth compounds), due to
large twinning of their magnetic domains, are ideal candidates for high pow-
ered microactuators, tunable microwave devices, shape memory devices and bio-
inspired systems. Among the majority of magnetostrictive materials, Th-Dy-Fe
type compounds (industrially known as Terfenol-D) are common and show much
reduced macroscopic anisotropy [3]. Promising engineering applications are pos-
sible using deposited nanostructured film [4, 5], multi-layers [3] and particulate
composite [6]. In magnetostrictive polymer thin film, the magnetic domains are
essentially constrained and hence behave differently than their bulk samples. Im-
proving the magnetostrictive performance (e.g. larger magnetostriction, smaller
hysteresis, wider range of linearity etc.) by sensitizing the dynamic twinning of
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these magnetic domains under external field is a complex design task which is far
from being straightforward using experiments alone and requires detail physical
model and intensive computation. Because of the coupled and nonlinear nature
of the dynamics, several computational difficulties exist which require special
attention.

Ever since the rationale behind the variationally consistent multiscale finite
element method was brought out by Hughes et al. [7], a tremendous amount
of research has been channelized in that path. Among several approaches to
tackle the evolvingly complex multiphysics computational mechanics problems,
very few approaches, namely the homogenization method [8, 9], the multi-level
hierarchical finite element method [10], the level-set method [11] and few oth-
ers appear promising. In context of time-dependent problems, the concept of
consistent temporal integration [12] is worth noting, which extend itself beyond
the classical notion of upwinding. Subsequently, while attempting a strongly
nonlinear and coupled problem, the advantage in adopting a low-dimensional
manifold based on appropriate error estimate during iteration [2,13] may be
noted. In the present paper we report a new variationally consistent multiscale
finite model with the following two features: (1) a sub-grid scale for upwinding
the miscrostructural information and (2) an approximate manifold of the origi-
nal system that retains the desired accuracy in the finite element solution, which
is unlike the usual ordering scheme as followed in the conventional asymptotic
method of truncation.

Our present problem can be described as the magnetostriction induced trans-
formation process in solid state called magnetic domain switching, which occurs
in the microscopic scale. In the macroscopic scale, the dynamics is governed
through the coupling between elasticity and electromagnetics. The complexity
in mathematical modeling is four-fold: (1) describing an accurate constitutive
model using phenomenological framework. Here we use a model based on the
density of domain switching (DDS) [14], where the series expansion of the Gibbs
free energy functional for cubic non-polar crystalline Laves phase is used along
with peak piezomagnetic coefficient on the compressive part of the stress acting
along the resultant magnetic field vector (2) including the effect of the volume
fraction of the magnetostrictive phase in the dilute composite and microstruc-
tural pattern (3) retaining only the essential properties of the small scales and
nonlinearity and (4) constructing a variationally consistent finite element model
and solving it iteratively.

2 Constitutive Model Based on Density of Domain
Switching (DDS)

We consider an unit cell of the two phase composite as shown in Fig. 1, in which
the ellipsoidal inclusion (B) in matrix phase (A) is the aggregate of magnetostric-
tive domains. The effective orientation of the magnetic field in these domains is
assumed to be at an angle € which is also the major axis of the ellipsoid. We
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Fig. 1. (a) Unit cell with oriented magnetostrictive phase B in epoxy matrix phase A
(b) strain vs. applied magnetic field in the unit cell with € = 0.5, § = 10° under varying
stress

consider an effectively one-dimensional constitutive model of A along the major
axis of the ellipsoid. Also, this major axis is assumed to be aligned with the
resultant magnetic field H under equilibrium. Using the DDS model [14] it is
possible to capture the effect of large magnetostriction more effectively than the
other models. According to the DDS model, the piezomagnetic coefficient for the
phase B can be written as

where the peak piezomagnetic coefficient d = d,,. + aAo + b(Ac)?, overstress
Ao = 0 — 04, 2 = |H|/I§, H = H, + (Ao, A = oer/0, 0 is the stress,
€ is the strain and o, is the critical inherent stress of domain switching. a,
b, JCT, H,, and ¢ are material constants obtained by relating the Gibbs free
energy and fitting experimental data as discussed in [14]. Let € € (0, 1] be the
volume fraction of phase B. Applying the mixture rule of rank-one laminate
structure under the applied stress components {011, 022, 012} and magnetic field
components {Hy, H} in the unit cell, the constitutive model is obtained, which
is expressed in the quasi-linearized form

0=Qapc—épH, B=jiapH +éjxe, (2)

where € is the longitudinal strain along the axis of the ellipsoid, B is the magnetic
flux density in the film plane, Q 45 is the effective tangent stiffness, €5 and €y are
the tangen coefficients of magnetostriction and fi4p is the effective permeability.

We adopt a quasi-linearization process during time stepping to track the evo-
lution of the morphology in the composite film. Here we first write the coefficients
in the constitutive model in Eq. (2) at time ¢ = ¢; in terms of the state obtained
from the previous time step at ¢t = t;_1 = t; — At as ey = eg(e,0' 1, H'™1),
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g = pap(e, o1 H=1). In the subsequent formulation we use the notations:
A.B = A;jBji, A: B = A;;Bj; as the contraction of tensors over one and two
indices, respectively. |A| := (A : A)'/2. We then rewrite the constitutive model
in the coordinate system of the cell (e, e2) as function of the effective angle of
orientation 8 = 6 of the ellipsoid as

O'ZFE:QAB:FE:E—FE:EE:FH.H::Qizs—éi.H, (3)

BZFHtﬂABZFH—‘rFH:Q];lertdztéiT:E-I—ﬂi.H, (4)

where I'; is the transformation tensor for strain and stress, I'y is the transforma-
tion tensor for magnetic field vector. Because of the domain switching, the Euler
angle 0" varies over time, which we intend to compute as # = tan—! (Héfl /H ;71)
where (z,y) || (e1,e2) and (x,y, z) is the global coordinate system of the com-
posite film.

The electrical source behind the magnetostrictive effect is assumed to be due
to the transverse magnetic (TM,) mode of excitation through array of elec-
trodes parallel to the film plane. We exclude the effect of TE and TEM modes
of electromagnetic excitation resulting from any anisotropy in the composite
film. Hence H = {H,(z,y,t) Hy(x,y,t) 0}7 with pointwise prescribed electri-
cal loading (E.(z,y,t)). These should satisfy one of the Maxwell equation for

magnetoelectric surface V x E = —B, i.e.,
oF, . oF, .
= — 5 == BI . 5
ox Y dy (5)

The deformation can be described by the in-plane displacement and strain

1
u = {u(z,y,t) ,v(x,y,t) ,O}T , €= §(u” +uj;) . (6)

3  Multiscale Model and Approximate Inertial Manifold

It is important to note that the magnetostriction due to domain switching and
the resulting nonlinearity vanishes as € — 0. In such case, the quasi-linearization
of the constitutive law in Eq. (3) results in a linear system whose eigen values
are close to that of the slow manifold and a global attractor can be established.
Therefore, for ¢ — 0, it is straightforward to obtain a fairly accurate solution
based on center manifold reduction by asymptotic expansion and truncation
according to the order of the terms in the PDEs. But in the present case, our
objective is to study the film dynamics due to large variation in e spatially or
for individual designs with different constituents and manufacturing processes.
Therefore, by following the known facts from the reported literature (see [15] and
the references therein), we focus our attention on constructing an approximate
inertial manifold with global convergence properties in a two-scale finite element
framework.
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We introduce a slow scale (Lg) and a fast scale (L;) with the dependent
variables defined in them respectively as (.)g and (.)1, such that

a:lza:/e, tlit/E, u:u0+eu1, H:H0+€H1 (7)

The dynamics of the thin film can now be described using the momentum con-

servation law o o
1 _0%uyp 1_0%u,
\% V1) .0= - 8
( 0 + c 1) g P 8t2 + Gp 81‘:% ) ( )

and the source free Maxwell’s equation

(vo + 1v1> B=0. 9)

In order to introduce the effect of texture of the composite, we perform homoge-
nization. Simplifying Eq. (8) with the help of Egs. (3) and (5) and homogenizing

over a sub-grid S with nodes j =1,---,n, and a prescribed texture
x37ys Z’L/)Qj zsays ’ G—Zl/)eg xsuys ) (10)
we get
1 _ _i i 1 _ 1._
—_— Q :Vge—Voe''H—-e" :Vo.H+ -V1.Q : ¢ 7Q
g € €
1 : 1_. 1 82’(1,() 1 82U1
—-V,.e"H —-¢e":V1.H|d2g = — p—— + —p dg? 11
e 1€ e € ! } § QS/QS[thQ +ep3t% s ()
Similarly, homogenization of Eq. (9) gives
1 . : 1 : . 1 .
‘Qi |:V0.EZT 1&g+ élT : V().EIO + *vl.élT 1€0 + Vl.éZT 1 €1+ *élT : Vl.&'l
S € €

, . 1 , . 1_,
+VQ./TL1 ZHO —|—[:Ll IVQ.HO + Evl.ﬂz ZHQ +V1.[]l ZHl + Eﬂz :Vl.Hl]dQS

-0 (12)
The property of the texture in Eq. (9) is given in terms of the known distribution
function 1y and .. While evaluating Eqgs. (11)-(12) we need projection of the
nodal variables on the sub-grid nodes. This is done by a least-square fit over the
finite element nodal variables w¢(—Y, H ¢G=1) at time t = t;_1 for the elements
overlapping with S and by writing

n n
Up = Z¢uj(xkaykati—l)u§ B € = Zwaj(xkvyk)ej 5

j=1 j=1

n
Hy =) tuj(zrye tio)H (13)
j=1
where k is an integration point, superscript e indicates finite element nodal
quantities. ¥7 ., ¥¢; and ¢ ; are the functions obtained from the least square fit
based on the nodal quantities at previous converged time step ¢t = t;_1.
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3.1 Finite Element Formulation

So far we have just assumed that the values of the finite element nodal variables
q° = {uT HGT}T from the previous time step ¢ = t;_; are known. In order to
solve for the variables at ¢t = t; the finite element equilibrium is now required.
First we rewrite Eqgs. (11)-(12) as respectively

L1(0%, 01)g(wo, u1) — L2(Vo, V1i)p(go, €1, Ho, H1) =0, (14)
53(v07v1)g(€07€17H07H1) :07 (15)

The final step to obtain our two-scale finite element model is the variational
minimization of the weak form, which can be written in the form

6/ u. [Elg—ﬁzp]d!2+5/ H.L3gd2 =0, (16)
Q I7)

which leads to the global finite element equilibrium equation
Mg+ M1q7 + Kogy + K197 = f . (17)

Eq. (17) is further condensed out by eliminating the magnetic field vector H*®
by using the pointwise magnetic excitation condition in Eq. (5) rewritten as

{5 b= Jy o —@)eTie. (1)

t;
_ / 9F: 4
ti—1 O

In the present problem when ¢ — 0, the dynamics is that of semilinear elliptic
PDEs in (u, H), hence usual bi-linear element with mesh density comparable
with the wavenumber of the magnetic excitation is sufficient to produce accu-
rate result. However, such properties no longer hold for ¢ — 1. Also, €V is not
bounded. A suitable approach in related context of obtaining an approximate
manifold (h) is to fix the spatial discretization at a given time step and obtain
the approximate solution

U = ug + euy = ug + ch(ug) , (19)

through iteration. In order to derive the condition to iterate over h while solving
Eq. (17), we take help of apriori error estimates. Since such an error estimate
should ideally be independent of the choice of the scales, i.e. irrespective of the
fact that the system is slow (or fast) in that scale [16], we first set ug = 0, Ho =
0. Neglecting the inertia terms in the strong form corresponding to Egs. (11)-(12)
and rearranging, we get

Viei=R.:e+R,:-H,, Vi.H =R,:¢e+R,:H, (20)

where R}, RS, R} and R}, are functions of (e, 0%, 01, H'™') at time t = t;_;.
We consider a strong estimate
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Fig. 2. (a) Orientation of H field vectors and (b) shear strain contour under normally
applied short pulse F,(¢) and captured at t = 50ns

0 0
((,%1 + 6V1> (|€1|2 + |H1‘2) =2e7: 87611 + 2ee1 : Vi.€1
O0H
+2H; Ly 2¢H, :V,.H,; (21)
1

Using Eq. (20) in Eq. (21) and applying the elementary inequality uv < fu? +
v? /3, finally we get

0 , , . .
( n evl) (a2 + [HL?) < —2vileaf? — 290 L — 24 — 24 DL

oty
(22)
where () := 0/0t1, v}, 74, 7 ~i are functions of (e, 6%, 0"~1, H'1). Integrating
Eq. (22) along the characteristic line 9/0t; +€V1= constant, between the interval
(ti_1,t;), and by taking sup on (z,y) € S', we have

lea|? + ||Ha |2 < e 14 |elm Y2 4 24 | 7712

+eT A2 4 e A [E ) (23)

We use Eq. (23) and Newmark’s finite difference scheme in time to solve Eq. (17)
concurrently in (q§, g5). Fig. 2 shows the snap of the evolved field patterns sim-
ulated in case of Thg 27Dy .73Fe;1 g5-epoxy(30% by vol.) film under nanosecond
electrical pulse applied at the center.

4 Concluding Remarks

Based on a phenomenological microscopic model of magnetostrictive polymer
composite material, and macroscopic dynamics, a multiscale finite element model
with subgrid-scale homogenization is formulated. Error estimates are derived.
Numerical simulation of the time-resolved field pattern in Terfenol-D polymer is
reported.
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