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Abstract. The Continuation of Invariant Subspaces (CIS) algorithm
produces a smoothly varying basis for an invariant subspace R(s) of a
parameter-dependent matrix A(s). In the case when A(s) is the Jacobian
matrix for a system that comes from a spatial discretization of a partial
differential equation, it will typically be large and sparse. CL_MATCONT is
a user-friendly MATLAB package for the study of dynamical systems and
their bifurcations. We incorporate the CIS algorithm into CL_MATCONT
to extend its functionality to large scale bifurcation computations via
subspace reduction.

Introduction

Parameter-dependent Jacobian matrices provide important information about
dynamical systems

d
ditL = f(u,a), where u e R", a« € R, f(u,a) € R™. (1)
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For example, to analyze stability at branches (u(s), a(s)) of steady states
f(u,a) =0, (2)

we look at the linearization f,(u(s),a(s)). For general background on dynam-
ical systems theory we refer to the existing literature, in particular [I5]. If the
system comes from a spatial discretization of a partial differential equation, then
fu will typically be large and sparse. In this case, an invariant subspace R(s)
corresponding to a few eigenvalues near the imaginary axis provides information
about stability and bifurcations. We are interested in continuation and bifurca-
tion analysis of large stationary problems (2]).

Numerical continuation for large nonlinear systems of this form is an active
area of research, and the idea of subspace projection is common in many meth-
ods being developed. The continuation algorithms are typically based on Krylov
subspaces, or on recursive projection methods which use a time integrator in-
stead of a Jacobian multiplication as a black box to identify the low-dimensional
invariant subspace where interesting dynamics take place; see e.g. [17}[5L 1T} 4[],
and references there.

CL_MATCONT [9] and its GUI version MATCONT [§] are MATLAB packages for
the study of dynamical systems and their bifurcations for small and moderate
size problems. The MATLAB platform is attractive because it makes them user-
friendly, portable to all operating systems, and allows a standard handling of
data files, graphical output, etc.

Recently, we developed the Continuation of Invariant Subspaces (CIS) al-
gorithm for computing a smooth orthonormal basis for an invariant subspace
R(s) of a parameter-dependent matrix A(s) [7,[10,12[3]. The CIS algorithm uses
projection methods to deal with large problems. See also [I2] for similar results.

In this paper we consider integrating the CIS algorithm into CL_MATCONT.
Standard bifurcation analysis algorithms, such as those used in CL_MATCONT,
involve computing functions of A(s). We adapt these methods to large problems
by computing the same functions of a much smaller restriction C(s) := A(s)|r(s)
of A(s) onto R(s). Note, that the CIS algorithm ensures that only eigenvalues
of C(s) can cross the imaginary axis, so that C(s) provides all the relevant
information about bifurcations. In addition, the continued subspace is adapted
to track behavior relevant to bifurcations.

2 Bifurcations for Large Systems

Let z(s) = (u(s),a(s)) € R™ x R be a smooth local parameterization of a
solution branch of the system (2)). We write the Jacobian matrix along this path
as A(s) := fu(z(s)). A solution point x(sg) is a bifurcation point if Re A;(sp) = 0
for at least one eigenvalue A;(sg) of A(sg).

A test function ¢(s) := ¥(x(s)) is a (typically) smooth scalar function that
has a regular zero at a bifurcation point. A bifurcation point between consecutive
continuation points z(s) and x(sk11) is detected when

¥ (x(sk)) ¥ (x(sk41)) <0 (3)
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Once a bifurcation point has been detected, it can be located by solving the

System
f(x) =0,
(=0 ”
for an appropriate function g.

We consider here the case of a (generic codimension-1 bifurcation) fold or
limit point (LP) and a branch point (BP), on a solution branch (2)). For both
detecting and locating these bifurcations, CL_MATCONT uses the following test
functions (see e.g. [15], [13], [9]):

ol (a(e)) = et | 1 7). ®)
bl (2(s)) = det (4()) = [T As9), ©)

where & := dx/ds. The bifurcations are defined by:

BP : ¥, =0, LP: M, =0, M, £ 0. (7)
For some m < n, let

A (s) :=={Ni(s)}t;, Re A, < ... <Redp 41 <0< ReAp, <...<Rel,
(8)
be a small set consisting of rightmost eigenvalues of A(s) and let Q1 (z(s)) €

R™*™ be an orthonormal basis for the invariant subspace R(s) corresponding
to A1(s). Then an application of the CIS algorithm to A(s) produces

Ca(s)) := Q7 (2(5) A(s)Qu (a(s)) € R™™, (9)

which is the restriction of A(s) onto R(s). Moreover, the CIS algorithm ensures
that the only eigenvalues of A(s) that can cross the imaginary axis come from
Ay (s), and these are exactly the eigenvalues of C'(z(s)). We use this result to
construct new methods for detecting and locating bifurcations. Note, that A;(s)
is computed automatically whenever C(z(s)) is computed.

2.1 Fold
Detecting Fold. We replace ¥, (z(s)) and ¥, (z(s)), respectively, by

van (a(s)) = sign (det | 377 ) (10
oup a(0) = [ )

Then LP is detected as:

LP: ¢pp (z(sk)) ¥BP ((sk41)) > 0 and rp (z(sk)) Yrp (z(sk+1)) < 0. (12)
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Locating Fold. Let xg = x(sp) be a fold point. Then A(sg) has rank n — 1. To
locate zq, we use a minimally augmented system (see [13], [9]), with A replaced
by C', whenever possible. The system consists of n + 1 scalar equations for n + 1
components ¢ = (u,a) € R" x R,

{fa= 19

where g = g () is computed as the last component of the solution vector (v, g) €
R™ x R to the (m + 1)-dimensional bordered system:

O(I) Whor vl Om><1
B -1 a0
where vpor € R™ is close to a nullvector of C(xp), and wpe € R™ is close to
a nullvector of C™(zy) (which ensures that the matrix in ([4) is nonsingular).
For g = 0, system ([4) implies Cv = 0, v;5, v = 1. Thus ([I3) and (4) hold at
x = xp, which is a regular zero of ([I3]).
The system ([3)) is solved by the Newton method, and its Jacobian matrix

J = |:fa::| _ |:A foc:| eR n+1)><(n+1) (15)
9z Ju Yo
where g, is computed as
gz = —wT Cyu, (16)

with w obtained by solving

e e

Here C,v is computed as

o fe(w+ 075, @) = falu = 6757, )
Cp(z)v ~ QT =] 55 diE lzll, z:=@QveR" (18)
Finally we note that at each Newton step for solving (I3]), linear systems
with the matrix (I3 should be solved by the mixed block elimination (see [I3]
and references there), since the matrix (I3]) has the form
Ab
ctd

M := { (19)
where A € R™*™ is large and sparse, b,c € R", d € R, and A can be ill condi-
tioned.

Once the fold point zg = (ug, ) is computed, the corresponding quadratic

normal form coefficient 1
a:= 3 TR [0,7]

is computed approximately as

1 r " ~ ~ Qv . Q1w
ar —W ug + 00, ap) + f (ug — 00, ag)|, v = , W= . (20
252 [f( 0 0) f( 0 0)] ||Q1v|| i)\TQﬂU ( )
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Fold Continuation. We use again the system (I3 of n + 1 scalar equations,
but for n +2 components z = (u, ) € R™ x R2, in this case. Again g is obtained

by solving ([I4]), where g, is computed using (I6), (IT), and (I8]).
There are four generic codimension-2 bifurcations on the fold curve: Bogdanov-

Takens (or double zero) point (BT), Zero - Hopf point (ZH), Cusp point (CP),
and a branch point (BP). These are detected and located by the correspond-
ing modifications of CL_LMATCONT test functions. For example, test function to
detect ZH is

Yzm (2(s)) == [ (ReXi(s)+Re);(s)). (21)

m>i>j

2.2  Branch Points
Detecting Branching. The branch point is detected as:

BP : ¢pp (2(sk)) ¥ep ((sk+1)) <0, (22)

where ¥ pp is defined by ([I0).

Locating Branching. Let 2o = z(so) be a branch point such that f0 = f.(x¢)
has rank n — 1 and

J\/(f;?) = Span {v?,vg}, N((fg)T> = Span {wo}.

We use a minimally augmented system ([I4], [2], [1]) of n + 2 scalar equations
for n + 2 components (z, ) = (u,a,pu) € R x R x R,

f(x) + pwper = 0,
g1 (LC) =0, (23)
g2 (CC) =0,

where p is an unfolding parameter, wp,, € R™ is fixed, and g1 = ¢1 (x), g2 =
g2 (z) € R are computed as the last row of the solution matrix Bl ;2 , U1,V €
192

R”*! to the (n + 2)-dimensional bordered system:

fﬂi(w) wbor:| |:’U1 U2:| |:On><2:|
- s Veor = | V1bor V2,bor 5 24
[ Vior O2x1 | |91 92 I b [ 01, bor V2,b0r | (24)

where vy por, V2 por € R are close to an orthonormal basis of N ( fg), and Wpor
is close to the nullvector of ( fg)T.

The system (E3) is solved by the Newton method [14] with the modifications
in [2]. The Newton method is globalized by combining it with the bisection on

the solution curve.
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3 Examples

All computations are performed on a 3.2 GHz Pentium IV laptop.

Ezxample 1. 1D Brusselator, a well known model system for autocatalytic chem-
ical reactions with diffusion:

D’ — (b+ Du+u*v+a=0, 7—31}"+bu7u2v =0, in 2=(0,1),

uw(0) = u(1l) = a, v(0) =v(1) = 2.

This problem exhibits many interesting bifurcations and has been used in
the literature as a standard model for bifurcation analysis (see e.g. [16]). We
discretize the problem with a standard second-order finite difference approxima-
tion for the second derivatives at N mesh points. We write the resulting system,
which has dimension n = 2N, in the form (2]). This discretization of the Brus-
selator is used in a CL_MATCONT example [9]. In Figure [l a bifurcation diagram
in two parameters (I, b) is shown in the case n = 2560. We first continue an
equilibrium branch with a continuation parameter { (15 steps, 13.5 secs) and
locate LP at [ = 0.060640. We next continue the LP branch in two parameters
1, b (200 steps, 400.8 secs) and locate ZH at (I,b) = (0.213055,4.114737).

(25)

Example 2. Deformation of a 2D arch. We consider the snap-through of an elas-
tic arch, shown in Figure[2l The arch is pinned at both ends, and the y displace-
ment of the center of the arch is controlled as a continuation parameter.

Let 20 C R? be the interior of the undeformed arch (Figure B top left),
and let the boundary I' = I'p U I'y, where I'p consists of the two points where
the arch is pinned, and I'y is the remainder of the boundary, which is free. At
equilibrium, material points X € {2y in the deformed arch move to positions
r = X + u. Except at the control point X enter in the center of the arch, this
deformation satisfies the equilibrium force-balance equation [18]

Zas” =0, Xe, I=12 (26)

" " " L L L L L .
.06 0.0o8 o.1 0.12 0.14 Oo.16 o.18 0.2 0.22 0.24

Fig. 1. Bifurcation diagram for a 1D Brusselator
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Fig. 2. Top left: the undeformed arch, top right: the arch at the bifurcation point,
bottom left: the arch at the end of continuation, bottom right: the bifurcation diagram

where the second Piola-Kirchhoff stress tensor S is a nonlinear function of the
Green strain tensor E, where E := (FTF—1), F := g—)’é. Equation (26]) is thus
a fully nonlinear second order elliptic system. The boundary and the control
point X enter are subject to the boundary conditions

u=0on Ip, SN =0 on I'y, where N is an outward unit normal, (27)

e U=, e1- (FSN) =0. (28)

The first condition at Xcenter says that the vertical displacement is determined;
the second condition says that there is zero force in the horizontal direction.

We discretize (28) with biquadratic isoparametric Lagrangian finite elements.
Let m be the number of elements through the arch thickness, and n be the
number of elements along the length of the arch; then there are (2m+1)(2n+1)
nodes, each with two associated degrees of freedom. The Dirichlet boundary
conditions are used to eliminate four unknowns, and one of the unknowns is used
as a control parameter, so that the total number of unknowns is N = 2(2m +
1)(2n + 1) — 5. Figure 2] displays the results in the case when the continuation
parameter is y displacement of node in middle of arch; m =4, n = 60, N = 2173
unknowns; 80 steps took 258.4 secs, one BP was found.
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