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Abstract. Information Retrieval (IR) is fundamental nowadays, and
more since the appearance of the Internet and huge amount of infor-
mation in electronic format. All this information is not useful unless its
search is efficient and effective. With large collections parallelization is
important because the data volume is enormous. Hence, usually, only one
computer is not sufficient to manage all data, and more in a reasonable
time. The parallelization also is important because in many situations
the document collection is already distributed and its centralization is
not a good idea.

This is the reason why we present parallel algorithms in informa-
tion retrieval systems. We propose two parallel clustering algorithms:
a-Bisecting K-Means and «a-Bisecting Spherical K-Means. Moreover, we
have prepared a set of experiments to compare the computation per-
formance of the algorithms. These studies have been accomplished in a
cluster of PCs with 20 bi-processor nodes and two different collections.

1 Introduction

Briefly, the development of a total IR system is constituted by three phases:

1. Preprocessing: This part considers all processes once the collection is given
and the weighted matrix of terms by documents is created. For example:
lexical analysis, stemming, etc.

2. System Modeling: This part considers all necessary processes to prepare the
collection for the queries. Modeling with LSI techniques, clustering methods,
statistical techniques, etc.

3. System use: This part considers the set of queries given by the user.

This paper is centered in the second part. We study the parallelization of sev-
eral models of IR systems, more specifically clustering, included in the algebraic
paradigm. We assume a weighted matrix of terms by documents already dis-
tributed. Finally we stop when the system model is parallelized.

In this paper we present the parallelization of the a-Bisecting K-Means and
the a-Bisecting Spherical K-Means algorithms. We also compare the performance
between the sequential and parallel versions. This paper is organized as follows:
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In section 2 we present the parallelized IR, models including all parallel algo-
rithms developed. Next, in section 3, we explain the experiments executed and
the collections used. Furthermore, we describe the cluster of PC’s where the
experiments have been executed. And finally we present the results of the ex-
periments. In the last section, section 4, we present all the conclusions reached.

2 Parallelized IR Models

Our algorithm is based upon IR clustering models, concretely the K-Means al-
gorithm family [1L[2LB,[4.5]. The main reasons are their good performance in IR,
and their natural tendency to parallelization.

In all algorithms, we have used the following syntax: M represents the weighted
matrix of terms by documents; M; represents the i-th sub-matrix of M; m; rep-
resents the j-th column of a matrix (j-th document); m represents the number
of terms; and n represents the number of documents.

2.1 Bisecting K-Means Algorithm

The «o-Bisecting K-Means [3l[6] is a variant of the well known algorithm K-
Means [7,3], which has been parallelized many times [8,[0,10]. The a-Bisecting
K-Means uses the a-Bisection algorithm to perform all bisections required. In the
a-Bisection, the o parameter depends of the document collection and number
of clusters searched. This parameter is used to guarantee that all documents in
a cluster have affinity, and all clusters have the same level of affinity.

Algorithm 1 Sequential a-Bisection

Input: M € ®™*", «, tol, mazxiter.

Output: m; € R™*™ and m, € R™*™ where 7 is the left cluster, 7, is the
right cluster and nl+nr=n.

Step-1: Select a normalized concept vector, ¢ € R™, of a set of documents.

Step-2: Divide M into two sub-clusters 7; and 7, according to:

memifmTec>a
memnm. ifmTec<a

Step-3: Calculate the new normalized concept vector of 7, nc, defined as:
1 t
t=— Z m; nc= —-
nl 2 el

Step-4: If the stopping criterion (||nc —¢|| < tol) has been fulfilled or maz-
iter=0 then finalize, else decrement maxiter, c=nc and go to step-2.

A collection could be seen as a sphere . The sphere’s volume is determined by
its radius raised to the document’s dimension (number of terms). But we attempt
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to create k clusters, therefore we need to divide the collection in k sub-spheres
with the same approximate volume. The a’s value represents the radio of each k
sub-sphere. Although we have considered the theoretical aspects indicated, also
we have refined the formula that represents the « parameter experimentally.
Finally we define « as follows:

(1)

where T is the mean cosine distance, o the standard deviation among each doc-
ument of the collection and the centroid of the collection, and m is the number
of terms.

In our implementation, step-1 of algorithm [Ilis omitted because it is received
as a parameter. With algorithm [I, we obtain two clusters, however we want to
build k clusters {ﬂ'j}?:l. Here is where appears algorithm 2] the a-Bisecting
K-Means.

Algorithm 2 Sequential a-Bisecting K-Means

Input: M € ™*"™ ke N i

Output: k disjoint clusters{m;};_,.

Step-1: Select M as the cluster to split, set t=1 and set « using expression ().

Step-2: Find two clusters m; and ;41 with the a-Bisection, algorithm [l

Step-3: If t=k-1 then finalize else select m 1 as the cluster to split, increment
t and go to step-2.

In the implementation, when algorithm [2] calls the a-Bisection algorithm
(step-2) it also sends the required concept vector. Actually, the concept vector
selected is a document of the collection chosen randomly.

In our parallel version of the a-Bisecting K-Means (algorithm PI), developed
in this paper, we have assumed a distribution by documents as show in figure [I1

In others words, each processor has a little number of documents from the
collection, achieving the necessary communications to all processors so they have
the same normalized concept vector. Hence, we have developed a parallel algo-
rithm to create a normalized concept vector (algorithm []), a parallel version of

P, . P .. P,
M, M, M,
ng mn n,

Fig. 1. Distribution of the collection
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the a-Bisection (algorithm M) and finally the parallel version of the a-Bisecting
K-Means algorithm (algorithm [).

Algorithm 3 Parallel Normalized Concept Vector

Note: This code is run by the i-th processor.

Input: M; € R™¥™  jdx; € R4

Output: ncv € R™.

Step-1: ncv; = Z;Lidlm Mide,(j) * Mide, () € Mi-

Step-2: Execute the global reduction adding all nidx; in N. Now N, in all pro-
cessors, is equal to the sum of all nidx;.

Step-3: Execute the global reduction adding all ncv; in ncv. Now ncwv, in all
processors, is equal to the sum of all processed documents.

Step-4: ncv= ¢

Step-5: ncv=

ncv
Tncol

We should remark three things. First, that algorithm Bl calculates the normal-
ized concept vector of several columns of the input matrix, actually the columns
included in the index vector, idz. Second, step-2 and step-3 are optimized in the
implementation. And third, in the implementation of the ncv 2-norm, it is also
achieved in parallel, distributing the ncv vector and using a global reduction.

When we look for a cluster, we do not build explicitly the clusters. Instead,
we build a vector idz. Which includes the cluster index of each document. The
vector idx is used in the parallel Normalized Concept Vector algorithm and the
parallel version of the a-Bisection.

Algorithm 4 Parallel a-Bisection

Note: This code is run by the i-th processor.

Input: M; € R™X" idx; € R4 o, tol, maxiter.

Input/Output: MyClusters; € R™.

Step-1: Select a set of local documents and calculate in parallel the normalized
concept vector ¢ € ™ (algorithm [3).

Step-2: Divide M; into two sub-clusters according to:

MyClusters;[j] = MyClusters;[j] + 1if mj ec>a ) j=idw;()
MyClusters;[j] = MyClusters;[j] if m;-r oc<a l=1... nidz;

Step-3: Calculate (algorithm B]) the new normalized concept vector, nc.

Step-4: Evaluate the stopping criterion (||nc — ¢|| < tol). If it has been fulfilled
or mazxiter=0 then return MyClusters;, else decrement maziter, c=nc and
go to step-2.

We should remark that, in our implementation, the 2-norm of||nc — ¢|| (step-
4, algorithm M) is achieved in parallel, distributing the vector and using a global
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Fig. 2. Parallel a-Bisection scheme

reduction, analogous to the calculus of the ncv 2-norm in algorithm Bl Addition-
ally, as done in the sequential version, the implementation of step-1 of algorithm
[ is omitted because it is received as a parameter.
We show in figure[2 a diagram depicting the parallel version of the a-Bisection.
And finally we present the parallel Bisecting K-Means algorithm and its di-
agram (algorithm [B] and figure B)):

Algorithm 5 Parallel a-Bisecting K-Means

Note: This code is run by the i-th processor.

Input: M; € R™*" ke N

Output: k disjoint clusters{r; }§:1'

Step-1: Select M; as the cluster to split, set t=1 and set «a using expression (J).

Step-2: Find clusters 7 and 741 with the parallel a-Bisection, algorithm [l

Step-3: If ¢ is equal to k-1 then return all clusters else select 741 as the cluster
to split, increment ¢ and go to step-2.

The calculation of « is performed in parallel (step 1 algorithm [E]). Concretely
the parallelization is achieved to obtain the mean and the standard deviation.
Each processor works with its own part of the collection, then all processors per-
form a global reduction adding the partial local sums. Just to remark, that each
processor selects randomly a document of its sub-collection, then all processors
calculate the normalized concept vector of all the documents chosen.

An schematic diagram depicting the parallel a-Bisecting K-Means algorithm
is showed in figure [Bl
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Fig. 3. Parallel Bisecting K-Means scheme

2.2  Bisecting Spherical K-Means Algorithm

An important variant of the K-Means algorithm is the Spherical K-Means [T114],
which uses the cosine similarity. Hence, the clusters obtained constitute spheres,
accordingly to its name. This algorithm seeks k disjoint clusters {; }?:1 max-
imizing the quality of the obtained partitioning. This quality is given by the
following objective function:

k

f ({7‘(']'}?:1) = Z Z z' ec; (2)

j=lzem;

Consequently, the stopping criterion normally used is:

() = () [ < s (5Y)2) ®)

Algorithm 6 Sequential a-Bisecting Spherical K-Means

Input: M € R™*" tol, maxiter, k € N.
Output: k disjoint clusters{wj}?zl.

k
Step-1: Calculate £ initial clusters {71'](-0)} applying the a-Bisecting K-
j=1

k
Means, algorithm [2] and its normalized concept vectors {C;-O)} . Initialize

=0 o~
e k k
Step-2: Build a new partition {Tr](-t+1)} induced by {c§-t)} according to:
j=1 j=1

W§t+1):{VxeM: xTocg-t)>xTocl(t), 1§l§k,j7él}, 1<j<k

k

Step-3: Calculate the new concept vector {c§t+1)} of the new partition.
j=1

Step-4: Finalize if the stopping criterion, expression Bl is fulfilled (e = tol) or ¢
is equal to maxiter, else increment ¢ and go to step-2.
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The modification of the Spherical K-Means includes the a-Bisecting K-Means
as the first step. The o-Bisecting Spherical K-Means, was developed in [5]. Fur-
thermore, in this paper, we improve it because we have optimized the a-Bisecting
K-Means changing the initial selection of the concept vectors and defining the
« parameter in terms of the collection and number of clusters. The idea of the
a-Bisecting Spherical K-Means is to use the a-Bisecting K-Means algorithm to
obtain a first approximated solution and later refine it with the Spherical K-
Means, taking advantage of both.

In this paper, we develop a parallel version of the a-Bisecting Spherical K-
Means. We use a distribution by documents (see figure[l]), the same distribution
used in the parallel a-Bisecting K-Means (algorithm [).

Algorithm 7 Parallel a-Bisecting Spherical K-Means
Note: This code is run by the i-th processor.
Input: M; € R™*™ tol, maziter, k € N.
S k
Output: & disjoint clusters{m;};_,.

k
Step-1: Calculate k clusters {ﬂ'j(-o)} applying the parallel a-Bisecting K-
j=1

k

Means, algorithm [l and in parallel its concept vectors {cgo)} , algorithm
j=1

Bl Initialize t=0.

k
Step-2: Build a new partition {7T§»t+1)} induced by {cg»t)}
=1

k
according to:

j=1

7r‘§t+1):{V:17€Mi: xTocg»t)>xTocl(t), 1§l§k,j7él}, 1<j<k

k
Step-3: Calculate in parallel the new normalized concept vector {c§t+1)}
j=1
associated to the new partition, with algorithm [3Bl
Step-4: Finalize if the stopping criterion, expression [3 is fulfilled (e = tol) or ¢

is equal to maxiter, else increment ¢ and go to step-2.

The evaluation of the stopping criterion also occurs in parallel. In fact, the
objective function evaluation is done in parallel. Basically, each processor calcu-
lates the partial sum with the documents that it contains; then all processors
perform a global reduction adding the partial sums, obtaining the final result.

3 Experiments

3.1 Document Collections

In the study we use two test collections with different characteristics, what fol-
lows next is a concise description of both collections.
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Fig. 4. Topology of the Cluster

Times Magazine of 1963: This collection contains articles from a 1963 Times
Magazine and it has been obtained from ftp://ftp.cs.cornell.edu/pub/smart /time/
site. The collection language is English. A total number of 425 documents are
included in the collection. Each document have an average of 546 words and 53
lines. The contents referred to world news, especially politics frequently men-
tioning words which in fact, reminded us of the typical news contents available
in the cold war era.

DOE-TREC: This collection has been obtained from TREC (Text REtrieval
Conference) site [I2]. It contains a lot of abstracts of the U.S. Department of
Energy (DOE). In this case, the collection language is English, too. The DOE-
TREC collection is larger than the Times Magazine collection, presenting over
225000 documents.

3.2 Cluster of PCs

All performance studies of the parallel algorithms developed have been per-
formed in a cluster of PCs with the following characteristics: the cluster has
20 bi-processor nodes (Pentium Xeon at 2 Ghz). These nodes have a toroidal
2D topology with SCI interconnection, as shown in figure @l The main node is
constituted by 4 Ultra SCSI hard disk of 36 Gbytes at 10000 rpm. The others
nodes have an IDE hard disk of 40 Gbytes at 7200 rpm. All nodes have the same
amount of RAM, concretely 1 GB.

Actually, we only include the experiments performed into 10 processors. We
have always selected processors located into different nodes to optimize the per-
formance. Two processors of the same node have to share an unique net card. Be-
sides, the results obtained with 10 processors show clearly the performance evo-
lution, and therefore we avoid presenting complex performance evolution graphs.

3.3 Description of Experiments

We compare the final parallel versions with their respective sequential versions.
We study mainly the total time, efficiency and scalability. In all experiments, we
use the two document collections described above, and tests were performed in
the cluster of PCs commented above, too.
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Fig. 5. The a-Bisecting K-Means with the Times collection

In summary, the experiments to be carried out are indicated below:

— Parallel a-Bisecting K-Means vs. Sequential a-Bisecting K-Means: total time,
efficiency and scalability.

— Parallel a-Bisecting Spherical K-Means vs. Sequential a-Bisecting Spherical
K-Means: total time, efficiency and scalability.

All studies have been achieved with mean times, because the random selection of
first centroids cause different number of required iterations and, hence, different
times. So, we measure 11 times each sample (each method with a number of
clusters and a number of processors).

3.4 Results of Experiments

Next, we present a series of graphs the summarizing results of our experiments.
In figure B, we show the study of the a-Bisecting K-Means method with the
Times collection, we present the total time consumed by the algorithm and
its efficiency. Analogously, in figure [, we present the study of the a-Bisecting
Spherical K-Means, also with the Times collection. In the same way, in figures[7]
and B we depict the study of both methods, the a-Bisecting K-Means and the
a-Bisecting Spherical K-Means algorithms, using as data the DOE collection.
In figure Bla we observe that, in general, when we increase the number of
processors, independently of the number of clusters, the total time increases, too.
The reason of this behavior is the collection size. Due to the fact that the Times
collection has so few documents, the communication times obtained are much
bigger than the time reduction obtained when using more processors. But, we can
highlight that when we work with four or eight processors performance improves.
This occurs in all cases, independently of the number of clusters that we have
used as a parameter. We suppose this behavior is caused by cache memory or a
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Fig. 6. The a-Bisecting Spherical K-Means with the Times collection

favorable selection of the Cluster’s nodes that improve the communications, as
figure [4] shows depending on the nodes selected, communication costs can vary.

On the other hand, working with four and eight clusters and two processors
we improve a little the total time. But the difference is insignificant. We can
see this in figure Blb, the efficiency study. All curves have a poor efficiency, and
when we increase the number of processors efficiency decreases. Only with four
and eight clusters and two processors we obtain a relatively acceptable efficiency
(approximately 60% and 50% respectively).

The behavior of the a-Bisecting Spherical K-Means method (figure[d]) is anal-
ogous to the a-Bisecting K-Means method (figure (), both with the Times col-
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Fig. 7. The a-Bisecting K-Means with the DOE-TREC collection
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Fig. 8. The a-Bisecting Spherical K-Means with the DOE-TREC collection

lection. When the number of processors increase the total time increases (figure
[Bla), except with four and eight processors that decreases a little. But in this
case, the curves obtained in small cluster groups (i.e. two, four and eight) are
softer. And, the efficiency found in two clusters has improved much (figure @lb),
although the others are maintained approximately equal.

When the study is performed with a bigger collection, the parallelism ben-
efits appear. In figure [lla we show the total time needed to cluster the DOE
collection with the a-Bisecting K-Means method. We observe, independently of
the number of document clusters built, the total time improves when we use
more processors. Logically, this improvement is more distinguishable when more
document clusters are formed. We highlight the times obtained with four and
eight processors. In both cases the performance relatively improves more than
in the rest of cases. This situation is the same that in the study with the Times
collection. Furthermore we assume that the reason is also the same, either the
cache memory or the document distribution of the collection into the nodes. See-
ing figure [Mla, we deduce that for the DOE collection size performance improves
acceptably using up-to four processors. If we use more than four processors per-
formance falls drastically.

This can be observed better in the efficiency study (figure [1b). We observe
upper efficiency, approximately, 60% when we work with up-to four processors.
And with five or more processors efficiency falls down to 50% or lower. Though,
it can be seen that the graph curve for four clusters delays its descent whereas
the graph curve for two clusters maintains a level above 60% almost all the time,
only dropping down to 55% with ten processor. Figure [[lb also presents small
improvements in efficiency corresponding with four and eight processors.

Finally, we have studied the a-Bisecting Spherical K-Means method with
the DOE collection. It can be seen in figure Bl In general, we observe a similar
behavior to the a-Bisecting K-Means method with respect to the total time
study (figure Bla), but the curves, in this case, are more irregular. The relative
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improvement with four and eight processors is softer in this case, although it can
also be observed.

Figure Blb shows the efficiency of this method. The curves are more chaotic,
these increase and decrease without apparent criterion. Though, the level of
efficiency in almost all cases are over 50% and when we use two processors we
achieve about 90% of efficiency.

The chaotic behavior could be caused by the aleatory initialization of the
a-Bisecting K-Means method, which is achieved as an initialization of the a-
Bisecting Spherical K-Means method. In this case, when the collection size is
large it appears to be insufficient three iterations only of the a-Bisecting K-
Means method to make stable the initialization of the a-Bisecting Spherical
K-Means method.

As a finally conclusion, we would like to say two things. First, we can see
in the experiments that when more clusters are built, better is the time im-
provement, but efficiency is deteriorated. This occurs because when a cluster
is built the methods work with a subcollection of the original collection, and
so on. Then as these subcollections are smaller than the original collection the
performance is deteriorated. And second, these methods are scalable because
as the collection size increases, it is possible to use more processors to improve
performance.

4 Conclusions

The principal conclusion is with the parallelization of these algorithms we reduce
the necessary time to build the required clusters. Of course, the collection size has
to be enough large to obtain an improvement of performance, but nowadays the
actual collections are usually very large and these will grow in the future. Besides,
the parallel algorithms showed have a good efficiency, and good scalability, too.
On the other hand we did not achieve great efficiency because the collection
matrix is very sparse (0.0270 in the Times collection and 0.00053 in the DOE
collection), and hence the number of operations to execute is small. We use
functions optimized for sparse data (for example, the SPARSKIT library [13]).

Another conclusion is that the distribution of the collection used in the par-
allel algorithms presented in this paper cause good performance, a conclusion
which we might indicate as simple and natural. As a matter of fact when a real
collection is classified as distributed, what we would normally assume is that its
documents are distributed as well.

We can also conclude that the most important operation in the algorithms is
the calculation of the normalized centroid. Therefore, its optimization is funda-
mental to obtain good performance.

Finally, we want to indicate three future works in this research. First, we
should improve the selection of the initial centroids in the a-Bisecting K-Means
method, because the solution of the algorithms is more dependent and varies
according to the chosen centroids. We should eliminate the randomness or modify
the algorithm to grant independence respect to the initial selection.
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Second, we should look for some mechanism to improve the calculation of
the normalized centroid. Alternatively, we should develop a new version of both
parallel algorithms to replace in some iterations the global parallel calculation
of the concept vector by a local calculation.

And third, we should study what is the optimum number of iterations to
use in the a-Bisecting K-Means method to make stable the initialization of the
a-Bisecting Spherical K-Means method in the most of cases.
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