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Abstract. A metering scheme is a method by which an audit agency
is able to measure the interaction between servers and clients during a
certain number of time frames. Naor and Pinkas [9] considered schemes
in which any server is able to construct a proof if and only if it has been
visited by at least a number, say h, of clients in a given time frame.
In this paper we construct metering schemes for more general access
structures, which include multilevel and compartmented access structures.
Metering schemes realizing these access structures have useful practical
applications: for example, they can be used to measure the interaction
of a web site with a specific audience which is of special interest. We
also prove lower bounds on the communication complexity of metering
schemes realizing general access structures.
Keywords: Distributed Audit, Metering, Security, Cryptography, En-
tropy.

1 Introduction

The growing popularity of the Internet is driving various applications, several of
which are commercially oriented. One such commercial application is advertising.
Most of the revenues of web sites come from advertisement payments. Access
data are usually collected at web sites, which have control over the collecting
process and stored data. Since the owners of the web sites can charge higher
rates for advertisements by showing a higher number of visits, they have a strong
economic incentive to inflate the number of visits. Consequently, web advertisers
should prevent web sites displaying their ads from inflating the count of their
visits. In a typical scenario there are many servers and clients, and an audit
agency whose task is to measure the interaction between the servers and the
clients.

Franklin and Malkhi [6] were the first to consider the metering problem in a
rigourous theoretical approach. Their solutions offer only a “lightweight security”
and cannot be applied if servers and clients have a strong commercial interest to
falsify the metering results. Subsequently, Naor and Pinkas [9] proposed metering
schemes in which a server is able to compute a proof for a certain time frame
if and only if it has been visited by a number of clients larger than or equal
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to some threshold h in that time frame. Recently, different kinds of metering
schemes have been proposed. Metering schemes for ramp structures [1,5] have
been introduced in order to reduce the overhead to the overall communication
due to the metering process. Metering schemes with pricing [1,8], which allow
to count the exact number of visits received by each server, and dynamic multi–
threshold metering schemes [2], which are metering schemes in which there is a
different threshold for any server and any time frame, have been introduced in
order to have a more flexible payment system.

The measures considered in previous metering schemes are simple thresholds.
In other words, these measures can distinguish between two cases: either the
server has received at least a required number of visits or it has not. A more
general situation is when we have a set Γ of subsets of clients, called an access
structure, and the audit agency wants to verify if a server has received visits by
at least a subset in Γ (the subsets in Γ are called qualified subsets).

In this paper we prove that it is possible to construct a metering scheme rea-
lizing any monotone access structure. Moreover, we provide lower bounds on the
communication complexity of any metering scheme realizing a monotone access
structure. Afterwards, we concentrate our attention on two particular kinds of
access structures, multilevel and compartmented access structures. These access
structures have useful practical applications. For example, metering schemes rea-
lizing these access structures can be used to measure the interaction of a web
site with a specific audience which is of special interest. These schemes can be
used, for example, by an editor of text books who pays a web site to host her
advertisements and is interested in knowing how many professors visited the site.

2 Metering Schemes for General Access Structures

A metering scheme consists of n clients, say C1, . . . , Cn, m servers, say S1, . . . ,Sm,
and an audit agency A whose task is to measure the interaction between the
clients and the servers in order to count the number of client visits that any
server has received. Metering schemes considered by Naor and Pinkas [9] are
specified by a threshold h: the audit agency wants to count if in any time frame
the number of visits received by servers is greater than or equal to h. A more
general situation is when we have a set Γ of subsets of clients and the audit
agency wants to verify if a server has received visits by at least a subset in Γ .

Let {C1, . . . , Cn} be the set of clients. An access structure on {C1, . . . , Cn} is a
set Γ = {A1, . . . ,A`} of subsets of clients, i.e., Ar ⊆ {C1, . . . , Cn} for r = 1, . . . , `.
The subsets in Γ are called qualified subsets. In a metering scheme realizing the
access structure Γ any server which has been visited by at least a qualified
subset of clients in Γ in a time frame is able to provide the audit agency with
a proof for the visits it has received. The access structure that we consider in
this paper are monotone, i.e., they satisfy the following property: if Ar ∈ Γ and
Ar ⊆ Az ⊆ {C1, . . . , Cn}, then Az ∈ Γ . Indeed, if a server receives visits by a
subset Az of clients which contains a qualified subset Ar, then it can reconstruct
its proof by ignoring the information provided by clients in Az \ Ar.
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The general form of a metering scheme is the following: There is an initia-
lization phase in which the audit agency provides each client with some piece
of information. For any i = 1, . . . , n, we denote by ci the information that the
audit agency A gives to the client Ci. Moreover, we denote by Ci the set of all
possible values of ci. Given a set of clients Ar = {C

i1
, . . . , C

ik
} ⊆ {C1, . . . , Cn},

where i1 < i2 < . . . < ik, we denote by Ar the cartesian product C
i1

× · · · × C
ik

.
A regular operation consists in a client visit to a server during a time frame.
During such a visit the client gives to the visited server a piece of information
which depends on its private information, on the identity of the server, and on
the time frame. For any i = 1, . . . , n, j = 1, . . . , m, and t = 1, . . . , τ , we denote
by ct

i,j the information that the client Ci sends to the server Sj when visiting
it in time frame t. Moreover, we denote by Ct

i,j the set of all possible values of
ct
i,j . Let B = {1, . . . , β} ⊆ {1, . . . , s} be a set of server indices. Given a set of

clients Ar = {C
i1

, . . . , C
ik

} ⊆ {C1, . . . , Cn}, where i1 < i2 < . . . < ik, we denote
by At

r,B the cartesian product Ct
i1,1

× · · ·×Ct
ik,1

× · · ·×Ct
i1,β

× · · ·×Ct
ik,β

. At the
end of any time frame t there is a proof computation stage. For any j = 1, . . . , m
and t = 1, . . . , τ , we denote by pt

j the proof computed by the server Sj when it
has been visited by at least a qualified set of clients in time frame t. Moreover,
we denote by P t

j the sets of all values that pt
j can assume. Given a set of ser-

ver indices B = {1, . . . , β} ⊆ {1, . . . , s}, we denote by P t
B the cartesian product

P t
1 ×· · ·×P t

β . Finally, there is a proof verification stage in which the audit agency
A verifies the proofs received by servers. If the proof received from a server at
the end of a time frame is correct, then A pays the server for its services.

We consider a scenario in which a certain number c ≤ n of clients and s ≤ m
of servers can be corrupt. A corrupt server can be assisted by corrupt clients
and other corrupt servers in computing its proof. Let Ci1

, . . . , C
ic

be the corrupt
clients. We assume that any qualified subset of clients Ar ∈ Γ contains cr ≤ c
corrupt clients, that is, |Ar ∩ {Ci1

, . . . , Cic
}| = cr < |Ar|, for any r = 1, . . . , `. A

corrupt client Ci can donate to a corrupt server the whole information received
from the audit agency during the initialization phase. At time frame t, a corrupt
server can donate to another corrupt server the information that it has received
during time frames 1, . . . , t. For any j = 1, . . . , m and t = 1, . . . , τ , we denote
by V

[t]
j all the information known by a corrupt server Sj in time frames 1, . . . , t.

We also define V
[0]
j = ∅.

In this paper with a boldface capital letter, say X, we denote a random
variable taking value on a set denoted by the corresponding capital letter X
according to some probability distribution {PrX(x)}x∈X . The values such a ran-
dom variable can take are denoted by the corresponding lower letter. Given a
random variable X we denote with H(X) the Shannon entropy of {PrX(x)}x∈X

(for some basic properties of entropy, consult the Appendix).
We formally define metering schemes for general access structures by using

the entropy approach, as done in [1,5,8,2].

Definition 1. A metering scheme realizing the access structure Γ ={A1, . . . ,A }̀
is a method to measure the interaction between n clients C1, . . . , Cn and m server
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S1, . . . ,Sm during τ time frames in such a way that the following properties are
satisfied:

1. For any time frame t, any client is able to compute the information needed
to visit any server in time frame t:
Formally, it holds that H(Ct

i,j |Ci) = 0 for i = 1, . . . , n, j = 1, . . . , m, and
t = 1, . . . , τ .

2. For any time frame t, any server Sj which has been visited by a qualified
subset of clients Ar ∈ Γ in time frame t can compute its proof for time
frame t:
Formally, it holds that H(Pt

j |At
r,j) = 0, for j = 1, . . . , m, r = 1, . . . , `, and

t = 1, . . . , τ .
3. Let S1, . . . ,Sβ be a coalition of 1 ≤ β ≤ s corrupt servers and let B =

{1, . . . , β}. Let C1, . . . , Cα be a coalition of α ≤ c corrupt clients, where
|{C1, . . . , Cα} ∩ Ar| = αr ≤ cr, for any r = 1, . . . , `. Assume that in some
time frame t each server in the coalition has been visited by a set of clients
D ⊂ Ar, where |D| < |Ar| − αr for any r = 1, . . . , `. Then, the servers in
the coalition have no information on their proofs for time frame t:
Formally, it holds that H(Pt

B
|C1 . . .CαDt

B
V[t−1]

B
) = H(Pt

B
).

Notice that Naor and Pinkas [9] considered metering schemes realizing the
access structure Γ = {A ⊆ {C1, . . . , Cn} : |A| ≥ h}. Such an access structure is
called a threshold access structure.

2.1 Lower Bounds on the Communication Complexity

In this subsection we provide lower bounds on the communication complexity of
metering schemes. In order to prove our results we will resort to the two following
technical lemmas.

Lemma 2. Let X and Y be two random variables such that H(X|Y) = 0. Then,
for any two random variables Z and W, it holds that H(W|XYZ) = H(W|YZ).

Lemma 3. Let Y, Z, and W be three random variables such that H(W|YZ)=0
and H(W|Y)=H(W). Then, it holds that H(Z|Y) = H(W) + H(Z|YW).

The next lemma immediately follows from Definition 1.

Lemma 4. Let Γ be an access structure on {C1, . . . , Cn}, let X = {C
i1

, . . . , C
ik

}
be a set of k ≤ n clients, let S1, . . .Sβ be β ≤ m servers and let B = {1, . . . , β}.
Then, in any metering scheme realizing Γ it holds that

H(Xt
B
|X) = 0,

for any t = 1, . . . , τ .
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Proof. We have that

H(Xt
B
|X) = H(Ct

i1,B
. . .Ct

ik,B
|C

i1
. . .C

ik
)

≤
k∑

r=1

β∑

j=1

H(Ct
ir,j

|Cir
) (from (7) and (8) of Appendix)

= 0 (from Property 1 of Definition 1).

ut
The next lemma will be a useful tool to prove a lower bound on the size of the
information distributed to servers from clients during a visit.

Lemma 5. Let Γ be an access structure on {C1, . . . , Cn}, let Ar ∈ Γ be a quali-
fied set, let Ci ∈ Ar, and let Er = Ar \ {Ci}. Let S1, . . .Sβ be β ≤ m servers and
let B = {1, . . . , β}. Then, in any metering scheme realizing Γ it holds that

H(Ct
i,B

|Et
r,B

V[t−1]
B

) ≥ H(Pt
B
),

for any t = 1, . . . , τ .

Proof. Let C1, . . . , Cα be a coalition of α ≤ c corrupt clients other than Ci, and
let Dr ⊂ Er be a set of |Ar| − αr − 1 clients such that Dr ∩ {C1, . . . , Cα} = ∅.
Assume that {C1, . . . , Cα} ∩ Ar = {C1, . . . , Cαr

}. We have that

H(Ct
1,B

. . .Ct
α,B

|C1 . . .CαCt
i,B

Dt
r,B

V[t−1]
B

) ≤ H(Ct
1,B

. . .Ct
α,B

|C1 . . .Cα)
(from (8) of Appendix)

= 0 (from Lemma 4).

Applying Lemma 2 with X = Ct
1,B

. . .Ct
α,B

, Y = C1 . . .CαCt
i,B

Dt
r,B

V[t−1]
B

, and
W = Pt

B
we get

H(Pt
B
|C1 . . .CαCt

i,B
Dt

r,B
V[t−1]

B
) = H(Pt

B
|Ct

1,B
. . .Ct

α,B
C1 . . .CαCt

i,B
Dt

r,B
V[t−1]

B
)

≤ H(Pt
B
|Ct

1,B
. . .Ct

αr,B
Ct

i,B
Dt

r,B
)

(from (8) of Appendix, since αr ≤ α)
= 0.

The last equality follows from Property 2 of Definition 1, since {C1 , . . . , Cαr
} ∪

{Ci} ∪ Dr = Ar. From Property 3 of Definition 1 we have that

H(Pt
B
|C1 . . .CαDt

r,B
V[t−1]

B
) = H(Pt

B
).

Therefore, applying Lemma 3 with Y = C1 . . .CαDt
r,B

V[t−1]
B

, Z = Ct
i,B

, and
W = Pt

B
, we get

H(Ct
i,B

|C1 . . .CαDt
r,B

V[t−1]
B

) = H(Pt
B
) + H(Ct

i,B
|C1 . . .CαDt

r,B
V[t−1]

B
Pt

B
)

≥ H(Pt
B
) (from (5) of Appendix). (1)
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We have that

H(Ct
1,B

. . .Ct
α,B

|C1 . . .CαDt
r,B

V[t−1]
B

) ≤ H(Ct
1,B

. . .Ct
α,B

|C1 . . .Cα)
(from (8) of Appendix)

= 0 (from Lemma 4).

Therefore, applying Lemma 2 with X = Ct
1,B

. . .Ct
α,B

, Y = C1 . . .CαDt
r,B

V[t−1]
B

and W = Ct
i,B

, we get

H(Ct
i,B

|C1 . . .CαDt
r,B

V[t−1]
B

) = H(Ct
i,B

|Ct
1,B

. . .Ct
α,B

C1 . . .CαDt
r,B

V[t−1]
B

)

≤ H(Ct
i,B

|Ct
1,B

. . .Ct
αr,B

Dt
r,B

V[t−1]
B

)
(from (8) of Appendix, since αr ≤ α)

= H(Ct
i,B

|Et
r,B

V[t−1]
B

). (2)

The last equality holds since Er = Dr ∪ {C1 , . . . , Cαr
}. Therefore, the lemma

follows from inequalities (2) and (1). ut

The next corollary provides a lower bound on the size of the information
distributed to servers from clients during a visit.

Corollary 6. Let Γ be an access structure on {C1, . . . , Cn}. Then, in any mete-
ring scheme realizing Γ it holds that

H(Ct
i,j) ≥ H(Pt

j)

for any i = 1, . . . , n, j = 1, . . . , m, and t = 1, . . . , τ .

If the proofs for the servers are uniformly chosen in a finite field F , i.e., H(Pt
j) =

log |F | for any j = 1, . . . , m and t = 1, . . . , τ , then from Corollary 6 and from (4)
of Appendix it holds that log |Ct

i,j | ≥ log |F | for any i = 1, . . . , n, j = 1, . . . , m,
and t = 1, . . . , τ . In order to prove a lower bound on the size of the information
distributed to clients we need the next lemma.

Lemma 7. Let Γ be an access structure on {C1, . . . , Cn}, let X ⊆ {C1, . . . , Cn},
let S1 . . . ,Sβ be a coalition of β ≤ s corrupt servers and let B = {1, . . . , β}.
Then, in any metering scheme realizing Γ it holds that

H(X) ≥
τ∑

t=1

H(Xt
B
|V[t−1]

B
).

Proof. We have that

H(X1
B

. . .Xτ
B
|X) ≤

τ∑

t=1

H(Xt
B
|X) (from (7) of Appendix)

= 0 (from Lemma 4).
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Therefore, applying Lemma 3 with Z = X and W = X1
B

. . .Xτ
B

we get

H(X) = H(X1
B

. . .Xτ
B
) + H(X|X1

B
. . .Xτ

B
)

≥ H(X1
B

. . .Xτ
B
) (from (5) of Appendix)

= H(X1
B
) +

τ∑

t=2

H(Xt
B
|X1

B
. . .Xt−1

B
) (from (6) of Appendix)

≥
τ∑

t=1

H(Xt
B
|V[t−1]

B
).

ut
The next lemma provides a lower bound on the size of the information dis-

tributed to clients during the initialization phase in metering schemes.

Lemma 8. Let Γ be an access structure on {C1, . . . , Cn}. Let S1 . . . ,Sβ be a
coalition of β ≤ s corrupt servers and let B = {1, . . . , β}. Then, in any metering
scheme realizing Γ it holds that

H(Ci) ≥
τ∑

t=1

H(Pt
B
)

for any i = 1, . . . , n

Proof. Let Ar ∈ Γ , let Ci ∈ Ar and let Er = Ar \ {Ci}. We have that

H(Ci) ≥
τ∑

t=1

H(Ct
i,B

|V[t−1]
B

) (from Lemma 7)

≥
τ∑

t=1

H(Ct
i,B

|Et
r,B

V[t−1]
B

) (from (8) of Appendix)

≥
τ∑

t=1

H(Pt
B
) (from Lemma 5).

ut
If the proof sequences of the corrupt servers are statistically independent, then
the next corollary holds. For the sake of simplicity we state this result for the
simple case where H(Pt1

j1
) = H(Pt2

j2
) for all j1, j2 ∈ {1, . . . , m} and t1, t2 ∈

{1, . . . , τ}. We denote this common entropies by H(P). However, our result
apply to the general case of arbitrary entropies on the proofs.

Corollary 9. Let Γ be an access structure on {C1, . . . , Cn}. Let S1 . . . ,Ss be a
coalition of s corrupt servers. Then, in any metering scheme realizing Γ in which
the sequences of the proofs of the servers S1, . . . ,Ss are statistically independent,
it holds that

H(Ci) ≥ sτH(P)

for any i = 1, . . . , n.
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If the random variable P is uniformly distributed in a finite field F , i.e., H(P) =
log |F |, then from Corollary 9 and from (4) of Appendix it holds that log |Ci| ≥
sτ log |F | for any i = 1, . . . , n.

2.2 A Protocol for Metering Schemes Realizing General Access
Structures

In this subsection we will show that for any monotone access structure it is
possible to construct a metering scheme realizing it. The construction uses as
building blocks threshold metering schemes proposed by Naor and Pinkas [9].
The proofs are points of a finite field GF (q) where q is a sufficiently large prime
number. Let Γ = {A1, . . . ,A`} be a monotone access structure on {C1, . . . , Cn}.
We denote with “◦” an operator mapping each pair (j, t), with j = 1, . . . , m and
t = 1, . . . , τ, to an element of GF (q) and having the property that no distinct
two pairs (j, t) and (j′, t′) are mapped to the same element. The protocol is the
following:

– Initialization:
The audit agency A chooses a polynomial P1(x, y) over GF (q), which is of
degree h1 − 1 in x and sτ − 1 in y. For r = 2, . . . , `, A chooses a polynomial
Pr(x, y) over GF (q), which is of degree hr − 1 in x and sτ − 1 in y and
such that Pr(0, y) = P1(0, y). Afterwards, for any r = 1, . . . , `, A gives the
polynomial Pr(i, y) to each client Ci ∈ Ar .

– Regular Operation for Time Frame t:
When a client Ci visits a server Sj during a time frame t it gives the values
Pr(i, j ◦ t), for any r ∈ {1, . . . , `} such that Ci ∈ Ar, to Sj .

– Proof Generation and Verification:
If during a time frame t a server Sj has received visits from a qualified set
Ar, for some r ∈ {1, . . . , `}, then it can interpolate the polynomial Pr(x, j◦t)
and compute the proof Pr(0, j ◦ t). When the audit agency receives the value
Pr(0, j ◦ t) it can easily verify if this is the correct proof for server Sj .

Analysis of the Scheme. Now we prove that the proposed scheme is a metering
scheme realizing the access structure Γ .

First, we prove that Property 1 of Definition 1 is satisfied. For any i =
1, . . . , n, the information given by the audit agency to the client Ci consists of
the univariate polynomials Pr(i, y), for any r ∈ {1, . . . , `} such that Ci ∈ Ar.
For any j = 1, . . . , m and t = 1, . . . , τ , the information given to the server Sj by
client Ci during a visit in time frame t is obtained by evaluating the univariate
polynomials Pr(i, y) at j ◦ t, for any r ∈ {1, . . . , `} such that Ci ∈ Ar. Hence, for
any time frame t, each client can compute the piece to be given to any visited
server.

Now, we prove that Property 2 of Definition 1 is satisfied. Let Ar ∈ Γ be a
qualified subset of clients. Assume that during a time frame t a server Sj receives
visits from all clients in Ar. Since |Ar| = hr, then the server can interpolate the
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polynomial Pr(x, j ◦ t). Afterwards, the server can compute its proof Pr(0, j ◦ t)
for time frame t.

Finally, we prove that Property 3 of Definition 1 is satisfied. We consider the
worst possible case, in which s corrupt servers and c corrupt clients decide to
cooperate at time frame τ . Let Ar ∈ Γ be a qualified subset of clients and let cr

be the number of corrupt clients in Ar. Assume that during time frame τ each
corrupt server Sj in the coalition has received gj,r ≤ hr − cr − 1 regular visits
from clients in the subset Ar ∈ Γ . In order to compute its proof for time frame
τ any server Sj should be able to interpolate either the univariate polynomial
Pr(x, j◦τ) or the bivariate polynomial Pr(x, y) for some r ∈ {1, . . . , `}. Therefore,
we consider the two following cases:

Case 1. The server Sj tries to interpolate a polynomial Pr(x, j ◦ τ), for some
r ∈ {1, . . . , `}.
Let r ∈ {1, . . . , `}. Each corrupt client Ci in Ar donates the polynomial
Pr(i, y) to Sj from which Sj can compute the value Pr(i, j ◦ τ). Since
there are cr corrupt clients in Ar, Sj can compute cr values of Pr(x, j◦τ)
in addition to those provided by the gj,r visits performed by non corrupt
clients in Ar. Consequently, the overall number of points of Pr(x, j ◦ τ)
known to Sj is less than or equal to hr −1. Therefore, Sj obtains a linear
system of hr − 1 equations in hr unknowns. For any choice of a value
in GF (q), there is a univariate polynomial Qr(x, j ◦ τ) of degree hr − 1,
which is consistent with this value and with the information held by Sj .
Since there are q such polynomials, the probability of Sj in guessing its
proof for time frame τ is at most 1/q.

Case 2. The coalition of servers try to interpolate a polynomial Pr(x, y) for some
r ∈ {1, . . . , `}.
We consider the worst possible case in which any corrupt server Sj in
the coalition has collected the maximum possible information during
the previous time frames 1, . . . , τ − 1. In other words, for any time
frame t = 1, . . . , τ − 1, the server Sj has been visited by at least a
qualified set of clients, that is, there exists some index r, such that Sj has
interpolated the polynomial Pr(x, j ◦ t). We consider the worst possible
case in which the index r is the same for any time frame t = 1, . . . , τ −1.
This means that the information collected by each corrupt server Sj

during the previous time frames is equivalent to the hr coefficients of
each polynomial Pr(x, j ◦ t), for any t = 1, . . . , τ − 1. The information
that a corrupt client Ci donates to a corrupt server is equivalent to the
sτ coefficients of the polynomial Pr(i, y), for any r ∈ {1, . . . , `} such that
Ci ∈ Ar. Then, the overall information on Pr(x, y) held by the servers
S1, . . . ,Ss consists of

crsτ + s(τ − 1)hr +
s∑

j=1

gj,r − crs(τ − 1) (3)

points. The first term of (3) is the information donated by the cr cor-
rupt clients in Ar, the second term is the information collected by the
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s corrupt servers during time frames 1, . . . , τ − 1, the third term is the
information provided by client visits at time frame τ , and the last term
is the information which has been counted twice. Since gj,r ≤ hr −cr −1
for j = 1, . . . , s, then expression (3) is less than or equal to hrsτ − s.
Therefore, the servers obtain a system of hrsτ − s equations in hrsτ
unknowns. For any choice of s values in GF (q), there is a bivariate po-
lynomial Qr(x, y) of degree hr−1 in x and sτ−1 in y, which is consistent
with these values and with the information held by the servers. Since
there are qs such polynomials, then the corrupt servers S1, . . . ,Ss have
probability at most 1/qs of guessing their proofs for time frame τ .

Efficiency of the Scheme. We now want to consider the efficiency of the
scheme constructed in Subsection 2.2. For any client Ci, let di be the number of
sets A ∈ Γ such that Ci ∈ A. In the proposed scheme the information distributed
to client Ci by the audit agency consists of disτ points of GF (q). The information
given from client Ci to a server Sj during a visit in a time frame consists of di

points of GF (q).
If we construct a metering scheme realizing a threshold access structure Γ

with threshold h by using the previous scheme, then the information distributed
to each client by the audit agency consists in

(
n−1
h−1

)
sτ points of GF (q), while

the information distributed by any client to any server during a visit consists
in

(
n−1
h−1

)
points of GF (q). This construction is very inefficient, compared to

the construction proposed by Naor and Pinkas [9]. Indeed, in Naor and Pinkas’
scheme the information distributed to each client by the audit agency consists
only in sτ points of GF (q), while the information distributed by any client to any
server during a visit consists in a single point of GF (q). Therefore, in general,
the construction of Subsection 2.2 gives schemes which are not optimal with
respect to the communication complexity.

3 Metering Schemes for Targeted Audience

In this section we concentrate our attention on two particular kinds of access
structures, multilevel access structures and compartmented access structures.
These access structures, introduced by Simmons in [11] and further investigated
in [3] and [7], have useful practical applications. Metering schemes realizing these
access structures can be used to measure the interaction of a web site with a
specific audience which is of special interest. These schemes can be used, for ex-
ample, by an editor of text books who pays a web site to host her advertisements
and is interested in knowing how many professors visited the site.

3.1 Multilevel Access Structures

Consider the following situation: there are two disjoint classes, L1 and L2, where
the clients in L1 are professors and the ones in L2 are PhD students. We require
that a server containing information related to a research topic can reconstruct
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its proof for a time frame t if it receives at least two visits from professors or
three visits from PhD students in that time frame. Now, assume that the server
is visited by one professor and two PhD students during a time frame t: then, it
would be probably unacceptable that the server would be not able to reconstruct
its proof for time frame t. In this situation what is needed is a metering scheme
in which the information provided by clients in different classes is related. This
means that the information provided by clients in a certain class should be useful
not only when combined with information provided by clients in the same class,
but also when combined with information provided by clients in all lower level
classes.

In a multilevel access structure there are u disjoint classes of clients (also
called levels), L1, . . . , Lu, where each class Lr ⊆ {C1, . . . , Cn} is associated to
a positive integer hr ≤ nr = |Lr|, for r = 1, . . . , u, and such that h1 < h2 <
· · · < hu. A multilevel access structure consists of those subsets which contain
at least hr clients all of level at most Lr for some r ∈ {1, . . . , u}. Therefore, in
any metering scheme realizing a multilevel access structure, any server is able to
compute its proof for a given time frame if and only if it has received at least hr

visits from clients of level at most Lr for some r ∈ {1, . . . , u} during that time
frame. Of course, the audit agency must know the identities of all participants
in order to set up a metering scheme for a multilevel access structure.

In a multilevel access structure the information provided by clients in a level
Lz to servers during their visits should be more valuable than the information
provided by clients in levels Lr, with r > z, in order to compute a proof. A
trivial way to realize schemes with this property could be the following: the audit
agency distributes more information to clients in high level classes. In this case
the pieces distributed to clients in high level classes are more valuable because
they contain more information about the servers’ proofs. The disadvantage of
this solution is that it penalizes clients in high level classes by requiring them to
handle more information than clients in low level classes. Since we are interested
in the efficiency of metering schemes, we would like to have schemes in which
the size of the information distributed to clients is the same, even though the
pieces provided to servers by some clients may be more effective in computing a
proof than others.

A Protocol for Metering Schemes Realizing Multilevel Access Struc-
tures. In this subsection we will prove that for any multilevel access structure
it is possible to construct a metering scheme realizing it. Let Γ be a multilevel
access structure with u levels L1, . . . , Lu and let hr ≤ nr = |Lr| be the threshold
associated to level Lr, for any r = 1, . . . , u. Let h1 < h2 < · · · < hu. The protocol
is the following:

– Initialization: The audit agency A chooses a polynomial Pu(x, y) over
GF (q), which has degree hu − 1 in x and sτ − 1 in y. Afterwards, for any
r = 1, . . . , u − 1, A constructs the polynomial Pr(x, y) of degree hr − 1 in
x and sτ − 1 in y, by truncating the polynomial Pu(x, y) at degree hr − 1.
For any r = 1, . . . , u and for any client Ci ∈ Lr, A picks a value xi ∈ GF (q)
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and constructs the hu-dimensional vector vi = (1, xi, x
2
i , . . . , x

hr−1
i , 0, . . . , 0),

which is made public (we will explain later how A chooses the value xi for
any client Ci). Afterwards, A gives the polynomial Pr(xi, y) to any client
Ci ∈ Lr.

– Regular Operation for Time Frame t:
When a client Ci ∈ Lr visits a server Sj during a time frame t, it gives the
value Pr(xi, j ◦ t) to Sj .

– Proof Generation and Verification:
Let r ∈ {1, . . . , u} and let Ci1 , . . . , Cihr

be hr clients of level at most Lr

visiting a server Sj in time frame t. Suppose that there is no subset of this
set of clients which contains hz clients of level at most Lz, for any 1 ≤ z < r.
Let M be the hr × hu matrix with rows vi1 , . . . vihr

, where vik
is the hu-

dimensional vector corresponding to client Cik
, for k = 1, . . . , hr; let b =

(b0, . . . , bhr−1) be the hr-dimensional vector whose elements are the coeffi-
cients of the polynomial Pr(x, j ◦ t), and let d be the hr-dimensional vector
containing the visits from clients Ci1 , . . . , Cihr

to server Sj in time frame
t. The server Sj obtains a system of hr equations in hr unknowns, whose
matrix form is Mb = d. This system has a unique solution over GF (q), con-
stituted by the hr coefficients b0, . . . , bhr−1 of the polynomial Pr(x, j ◦ t),
if and only if the matrix M is nonsingular, i.e., if and only if the vectors
vi1 , . . . vihr

are independent. In this case the server can compute all the coef-
ficients b0, . . . , bhr−1 of the polynomial Pr(x, j ◦ t), and reconstruct its proof
Pr(0, j ◦ t) = b0. When the audit agency receives the value Pr(0, j ◦ t), for
some r ∈ {1, . . . , u}, from server Sj then it can easily verify if this is the
correct proof for server Sj in time frame t.

In the next lemma, following the line of Theorem 1 in [3], we prove that for
any multilevel access structure there is a method for the audit agency to choose
the xi’s in such a way that, for any r ∈ {1, . . . , u}, any hr vectors corresponding
to clients of level at most Lr are independent.

Lemma 10. Let Γ be a multilevel access structure with u levels L1, . . . , Lu and
let hr ≤ nr = |Lr| be the threshold associated to level Lr, for any r = 1, . . . , u.
Let h1 < h2 < · · · < hu. Let n =

∑u
r=1 nr be the total number of clients. If

q > (hu − 1)
(

n
hu−1

)
then it is possible to choose the values x1, . . . , xn associated

to the clients C1, . . . , Cn in such a way that for any r ∈ {1, . . . , u}, any hr vectors
corresponding to clients of level at most Lr are independent.

Proof. Let v0 be the hu dimensional vector (1, 0, . . . , 0). Let C1 ∈ Lz, for some
z ∈ {1, . . . , u}. The audit agency chooses the value x1 ∈ GF (q) in such a way
that the hu dimensional vectors v1 = (1, x1, x

2
1, . . . , x

hz−1
1 , 0, . . . , 0) and v0 are

independent.
Suppose the audit agency has chosen the value xi for any client Ci with 1 ≤

i < k ≤ n, and let Ck ∈ Lr for some r ∈ {1, . . . , u}. Let Ωk be the set of subspaces
spanned by some subset of size hr − 1 of the k vectors v0, . . . , vk−1. It is easy to
see that |Ω| <

(
k

hr−1

)
. Then, the audit agency A picks the value xk in GF (q) in
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such a way that the hu dimensional vector vk = (1, xk, x2
k, . . . , xhr−1

k , 0, . . . , 0) is
not in any of the subspaces in Ωk. To see that this is possible, let R ∈ Ωk, and
let w = (w0, w1, . . . , whr−1, 0 . . . , 0) be a normal vector to R. Then the equation∑hr−1

i=0 wix
i = 0 has at most hr − 1 solutions over GF (q).

Since there exist at least hr clients of level Lr, for any r = 1, . . . , u, it follows
that we need q > (hu − 1)

(
n

hu−1

)
in order to be able to choose the xi’s as

explained above. Now, consider a set of hr vectors corresponding to hr clients of
level at most Lr and suppose that there is no subset of this set which contains
z participants of level at most Lz, for any z < r. Then, by construction, the hr

vectors are independent. ut
It is easy to see that the proposed scheme is a metering scheme realizing the
multilevel access structure Γ . Indeed, following the line of Subsection 2.2 we can
prove that Properties 1, 2, and 3 of Definition 1 are satisfied.

Efficiency of the Scheme. In the proposed scheme the information distribu-
ted to any client Ci by the audit agency consists of sτ points of GF (q). The
information given from client Ci to any server Sj during a visit consists of a
single point of GF (q). It is easy to see that the scheme of Subsection 3.1 meets
the bounds of Corollary 6 and Lemma 8, and hence it is optimal with respect to
the communication complexity.

One other issue to consider is the amount of computation needed for the
audit agency to set up a metering scheme realizing a multilevel access structure.
The problem of the scheme we have presented is that it requires the audit agency
to do many checks to be sure that the points xi’s are in the right positions (i.e.,
that the vectors associated to any set of hr clients all of level at most Lr are
independent). Brickell [3] has proposed different ways to choose the xi’s which
do not require such checking. It is easy to modify our metering scheme, since
we only need to modify the initialization phase according to the constructions
proposed by Brickell [3]. These constructions involve irreducible polynomials
over GF (qγ), where γ = uh2

u and q is a prime such that q > |Lr| + 1 for any
r = 1, . . . , u. In particular, Brickell proved that the xi’s can be constructed in
time polynomial in (|L1|, . . . , |Lu|, q).

3.2 Compartmented Access Structures

Consider the following situation: there are two disjoint compartments, L1 and
L2, where the clients in L1 are professors and the ones in L2 are PhD students.
We require that a server containing information related to a research topic can
reconstruct its proof for a time frame t if it receives at least two visits from
professors and three visits from PhD students in that time frame. Now, assume
that the server is visited by one professor during a time frame t. Then, no matter
how many PhD students concur, the reconstruction of the proof for a server
should be inhibited unless it receives at least a visit from another professor.

In a compartmented access structure there are u disjoint classes of clients
(also called compartments), G1, . . . , Gu, where each class Gr ⊆ {C1, . . . , Cn} is
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associated to a positive integer hr ≤ nr = |Gr|, for r = 1, . . . , u. The compart-
mented access structure consists of those subsets which contain at least hr clients
from compartment Gr, for any 1 ≤ r ≤ u. Therefore, in any metering scheme
realizing a compartmented access structure, any server Sj is able to compute its
proof for a given time frame if and only if it has received at least hr visits from
clients in compartment Gr, for any 1 ≤ r ≤ u, during that time frame.

A Protocol for Compartmented Access Structures. In this subsection we
will prove that for any compartmented access structure it is possible to construct
a metering scheme realizing it. Let Γ be a compartmented access structure with
u compartments G1, . . . , Gu and let hr ≤ nr = |Gr| be the threshold associated
to compartment Gr, for any r = 1, . . . , u. The protocol is the following:

– Initialization:
The audit agency A chooses u independent polynomials P1(x, y), . . . , Pu(x, y)
over GF (q), where for any r = 1, . . . , u, the polynomial Pr(x, y) has degree
hr − 1 in x and sτ − 1 in y. For any r = 1, . . . , u, A gives the polynomial
Pr(i, y) to each client Ci ∈ Gr.

– Regular Operation for Time Frame t:
When a client Ci ∈ Gr visits a server Sj during a time frame t, it gives the
value Pr(i, j ◦ t) to Sj .

– Proof Generation and Verification:
Assume that in time frame t a server Sj has received visits from at least
hr clients in the compartment Gr, for any r = 1, . . . , u. Then, the server Sj

can interpolate the polynomial Pr(x, j ◦ t) and compute the value Pr(0, j ◦ t)
for any r = 1, . . . , u. Finally, Sj can compute the value

∑u
r=1 Pr(0, j ◦ t),

which is its proof for time frame t. When the audit agency receives the value∑u
r=1 Pr(0, j ◦ t) from server Sj then it can easily verify if this is the correct

proof for server Sj in time frame t.

It is easy to see that the proposed scheme is a metering scheme realizing the
compartmented access structure Γ . Indeed, following the line of Subsection 2.2
we can prove that Properties 1, 2, and 3 of Definition 1 are satisfied.

Efficiency of the Scheme. In the proposed scheme the information distributed
to client Ci by the audit agency consists of sτ points of GF (q). The information
given from client Ci to any server Sj during a visit consists of a single point
of GF (q). It is easy to see that the scheme of Subsection 3.2 meets the bo-
unds of Corollary 6 and Lemma 8, and hence it is optimal with respect to the
communication complexity.

4 Conclusions

In this paper we have considered metering schemes in which it is necessary for
the servers to know the identities of visiting clients in order to reconstruct their
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proofs. A nice property for a metering scheme would be to enable client and
server anonymity. Client anonymity is possible in some particular situations:
in a threshold access structure, visits can be anonymous, provided that the
servers do not know the correspondence between the values i and the client Ci.
In multilevel and compartmented access structures, anonymity can be preserved
“within levels” and “within compartments”, respectively.

Moreover, in this paper we have assumed that clients provide correct shares
when they visit servers. In a practical implementation of a metering scheme, some
method of authentication should be used. However, the method of authentication
used would be, in general, independent of the specific metering scheme and it
could be incorporated as an additional feature in any metering scheme, if desired.
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Appendix - Information Theory Background

In this section we review the basic concepts of Information Theory used in our
definitions and proofs. For a complete treatment of the subject the reader is
advised to consult [4].

Given a probability distribution {PrX(x)}x∈X on a set X, we define the
entropy 1 of X, as H(X) = −∑

x∈X PrX(x) log PrX(x). The entropy satisfies
the following property:

0 ≤ H(X) ≤ log |X|, (4)

where H(X) = 0 if and only if there exists x0 ∈ X such that PrX(x0) = 1;
whereas H(X) = log |X| if and only if PrX(x) = 1/|X|, for all x ∈ X.

Given two sets X and Y and a joint probability distribution on their cartesian
product, the conditional entropy H(X|Y), is defined as

H(X|Y) = −
∑

y∈Y

∑

x∈X

PrY (y)Pr(x|y) log Pr(x|y).

From the definition of conditional entropy it is easy to see that

H(X|Y) ≥ 0. (5)

Given n sets X1, . . . , Xn and a joint probability distribution on their cartesian
product, the entropy of X1 . . .Xn satisfies

H(X1 . . .Xn) = H(X1) +
n∑

i=2

H(Xi|X1 . . .Xi−1). (6)

Given n + 1 sets X1, . . . , Xn, Y and a joint probability distribution on their
cartesian product, the entropy of X1 . . .Xn given Y satisfies

H(X1 . . .Xn|Y) ≤
n∑

i=1

H(Xi|Y). (7)

Given n + 2 sets X1, . . . , Xn, Y, Z and a joint probability distribution on
their cartesian product, the conditional mutual information I(Y;Z|X1 . . .Xn)
between Y and Z given X1, . . . ,Xn is defined as

I(Y;Z|X1 . . .Xn) = H(Y|X1 . . .Xn) − H(Y|X1 . . .XnZ)

and enjoys the following property: I(Y;Z|X1 . . .Xn) ≥ 0, from which one gets

H(Y|X1 . . .Xn) ≥ H(Y|X1 . . .XnZ). (8)

1 All logarithms in this paper are to the base 2.
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