Verification of a Formal Security Model for
Multiapplicative Smart Cards*

Gerhard Schellhorn', Wolfgang Reif!, Axel Schairer?,
Paul Karger3, Vernon Austel®, and David Toll3

! Universitat Augsburg, Lehrstuhl Softwaretechnik und Programmiersprachen,
D-86135 Augsburg
2 DFKI GmbH, Stuhlsatzenhausweg 3, D-66123 Saarbriicken
3 IBM T.J. Watson Research Center, 30 Saw Mill River Rd., Hawthorne, NY 10532

Abstract. We present a generic formal security model for operating sy-
stems of multiapplicative smart cards. The model formalizes the main
security aspects of secrecy, integrity, secure communication between ap-
plications and secure downloading of new applications. The model sa-
tisfies a security policy consisting of authentication and intransitive no-
ninterference. The model extends the classical security models of Bell/
LaPadula and Biba, but avoids the need for trusted processes, which are
not subject to the security policy by incorporating such processes direc-
tly in the model itself. The correctness of the security policy has been
formally proven with the VSE II system.

1 Introduction

Smart cards are becoming more and more popular. Compared to magnetic stripe
cards they have considerable advantages. They may not only store data, that
can be read and changed from a terminal, but they can also store executable
programs. Therefore, anything that can be done with an ordinary computer can
be done with a smart card. Their usefulness is limited only by available memory
and computational power.

Currently, smart cards used in electronic commerce are single application
smart cards: they store applications (usually only one) developed by a single
provider. The scenario we envision for the future is that of multiapplicative
smart cards, where several independent providers, maybe even competitors, have
applications (i.e. collections of programs and data files to achieve a certain task)
on a single smart card.

As an example, consider three applications: An airline A, which manages
electronic flight tickets with the smart card, and two hotel chains H and I which
use the smart card as an electronic door opener. A customer would carry the
smart card around and show it whenever he visits one of H, I or flies with
A. Of course none of the application providers would like to trust the others,

* Augsburg and DFKI research sponsored by the German Information Security Agency
(BSI)

F. Cuppens et al. (Eds.): ESORICS 2000, LNCS 1895, pp. 17-386] 2000.
© Springer-Verlag Berlin Heidelberg 2000

18 G. Schellhorn et al.

especially H would not trust his competitor I. Therefore the applications should
be completely separate: none of the data H stores for opening doors should be
visible or modifiable by I or A.

If two application providers agree, communication should also be possible:
Airline A could have a loyalty scheme with H (see Fig.), or even with both H
and I. Staying in a hotel of H earns a customer loyalty points, which reduces the
price to fly with A, but that information must not be available to I. Establishing
new communication channels and adding new applications should be possible
dynamically: e.g. visiting his bank B, the card holder should be able to add an
electronic wallet.

New Card reader
application B

d
d
d
d

~

=

)
(V&)

)

=

Qo
(V&)

]

)

=

Q
(V&)

]
]
]

ata ata ata

Ellj
Ellj
Ellj
E=||Ij

Communication channel f
‘
‘

,,,

Operating system

Fig. 1. An example scenario for a multiapplicative smart card

Of course such a scenario raises considerable security issues: How can appli-
cations be isolated from each other (e.g. H and its competitor I)? If applications
want to communicate, how can communication be allowed without having un-
wanted information flow (e.g. I should not be able to see loyalty points moving
from H to A)? How can it be guaranteed that a dynamically loaded new appli-
cation does not corrupt existing ones?

In this paper, we present a formal security model that solves these questions
for smart cards, as well as cell phones, PDAs, or larger systems. We will model
an operating system which executes system calls (“commands”). These system
calls are made by applications programs running in user mode on the smart card
to an operating system running in supervisor mode on the smart card. They
are fundamentally different from the commands defined in ISO/IEC 7816-4 [6]
that are commands sent from the outside world to the smart card. The security
conditions attached to the commands obey a security policy, which is suitable to
solve the problems discussed above. The commands are chosen to be as abstract
as possible: There is a command to register authentication information (e.g. a
public key) for a new application (one application might have several keys to be

Verification of a Formal Security Model for Multiapplicative Smart Cards 19

able to structure its data into several levels of secrecy and integrity), commands
to load and to delete an application program, and file access commands to create,
read, write and delete data files. Finally a command to change the secrecy and
integrity of a file (according to the security policy) is provided.

The design of the formal security model was influenced by the informal secu-
rity model [9] developed as part of IBM Research Division’s on-going develop-
ment of a high assurance smart card operating system for the Philips SmartXA
chip [I5]. The SmartXA is the first smart card chip to have hardware support for
supervisor/user modes and a memory management unit. Some more information
on potential applications of multiapplicative smart cards with this security mo-
del are given in [10]. Our security model was designed to be a generic abstraction
from the IBM model that should be useful for other Smart Card providers too.
It is compliant with the requirements for an evaluation of operating systems
according to the ITSEC evaluation criteria [8] E4 or higher (and comparable
Common Criteria [7] EAL5 or higher). The IBM system is designed for even
higher assurance levels — ITSEC E5 or E6 or Common Criteria EAL6 or EAL7.

This paper is structured as follows: Sect. 2l describes the security objectives.
Sect. [@ introduces the concepts to be implemented on the smart card which
are used to achieve the security objectives. We informally define a mandatory
security policy based on intransitive noninterference and authentication. Sect. M
sketches the theory of intransitive noninterference as defined in [16] and explains
some extensions. The data structures and commands of the system model are
defined in Sect.[d. Sect. 6 discusses how to use the commands of the model for the
example above. Sect. [7]discusses the formal verification of the security policy for
the model. Sect. [§ compares some of the features of the informal IBM model [9]
and the formal model. Finally, Sect. [concludes the paper.

2 Security Objectives

The security of a smart card is threatened by a variety of attacks, ranging from
physical analysis of the card and manipulated card readers to programs cir-
cumventing the OS’s security functions, or the OS security functions themselves
revealing or changing information that is not intended (covert channels). In the
model described in this paper we will be concerned with the question whether
the operating system’s functionality on the level of (abstract) system calls can
guarantee the security requirements. We will therefore assume that operating
system calls are atomic actions (this should be supported by hardware, e.g. a
supervisor mode of the processor). We will not address physical threats to the
card itself or to the card readers. Also, threats on the level of, e.g. memory reuse
or register usage in the machine code will not be considered.
Our model addresses the following security objectives.

O1: Secrecy/integrity between programs of the same or different applications.
02: Secure communication between applications.
03: Secure downloading of code.

20 G. Schellhorn et al.

Application providers need to have guarantees that the data and programs they
store on the card and pass to and receive from card readers are handled such
that their secrecy and integrity is guaranteed: their code and data neither be
observable nor alterable by other programs. This guarantees that secret data
produced by one application’s program cannot be leaked to another application,
and that programs of one application can not be crashed by other application’s
corrupt data. Some application providers will additionally want to classify their
programs and data into different levels of security and integrity. The OS should
also guarantee that data are handled in a way that respects these different secu-
rity and integrity levels. This is useful, e.g., in case a small number of programs
operate on highly sensitive data and the rest only operate on insensitive data.
In this case only a small fraction of the code has to be checked to handle the
sensitive data correctly, because the bulk of the programs are guaranteed by the
OS not to be able to access the sensitive data at all.

Some application providers will want their programs to exchange data with
other applications in a controlled way, i.e. only in a way that has been mutually
agreed on by the providers. The objective of secure communication asserts that
data can only be communicated between applications if both application pro-
viders agree with the communication and with the form in which the data is
communicated. It also implies that the communication cannot be observed or
manipulated by other programs. We only consider communication through sto-
rage channels, timing channels are not in the scope of the model.

Our model does not impose restrictions on transitive communications: if ap-
plication A sends some information to B (which assumes that they both have
agreed), it no longer has any influence on what B does with the information. B
could send it to any application C, even one hostile to A, if it has agreed with
C to do so. Since it is not clear that this problem can be addressed technically
we assume that providers who have explicitly agreed to exchange data have set
up contracts to prevent such potential fraud by non-technical means.

Secure communication of application programs with card readers should be
supported by the OS. However, this involves security considerations for devices
outside the card and is not in the scope of the model described in this paper:
we assume that a reliable communication between programs and card readers is
implemented by the programs but will not consider the OS services needed to
achieve this. Using the terminology of [I9] we define all applications on the card
to be within the security perimeter (to be in the “controlled application set”),
while all devices outside the card are untrusted subjects.

All the objectives described above should not be threatened by programs
that are dynamically loaded onto the card.

3 Security Concepts

In this section we define the concepts for security, which should be implemented
on the smart card as an infrastructure. We define security claims over these

Verification of a Formal Security Model for Multiapplicative Smart Cards 21

concepts, which ensure that the 3 security objectives given in the previous section
are met. The security claims will be proven formally for our model.

Secrecy and integrity (objective O1) are common objectives of security mo-
dels. Usually variants of the well-known mandatory security models of Bell/
LaPadula [2] and Biba [3] are used for this purpose. We assume the reader is
familiar with them and their use of access classes (consisting of an access level
and a set of access categories) to define the secrecy and integrity classification of
files (objects) as well as the clearance of subjects. In our case applications will
act as subjects. They will get disjoint sets of access categories (in the simplest
case, application names and access categories coincide). This results in separated
applications, where communication is completely prohibited.

One problem with this classical approach is that adding communication chan-
nels (objective O2) in such a Bell/LaPadula model will violate the security policy
(simple security and *-property). Of course it is possible to add “trusted pro-
cesses” (like it was done in the Multics-instance of the Bell/LaPadula [2] or in
[12]), which are considered to be outside the model (i.e. properties of the security
policy are proved ignoring them). But one of our main security objectives is to
include such secure communication in the verified model.

Our solution to this problem consists of two steps. The first part is to use
the following idea from the IBM operating system [J] (similar ideas are also
given in [17] and [12]): Instead of giving a subject two access classes (icl,scl) as
clearance (one for integrity and one for secrecy), we define the clearance of a
subject to be four access classes (ircl,srcl,iwcl swcl): The first two are used in
reading operations, the other two in writing operations.

Usual application programs will have the same access classes for reading and
writing (ircl = iwel and srel = swel). A communication channel from application
A to application B is realized by a special program, called a channel program
with two different pairs of access classes: the pair used for reading will have the
clearance of A, while the one used for writing will have the clearance of B. This
will allow the channel to read the content of a file from A and to write it into a
file, which can then be read by B.

The second part consists in defining a new security policy, which generalizes
the one of the Bell/LaPadula and Biba model. We will show, that the model
satisfies the following security policy:

A subject A with clearance (ircla,iwcla,srcla,swels) can transfer infor-
mation to a subject B with clearance (irclg,iwclg,srclg,swelg) if and
only if iwcl4 > irclg and swely < srclg

Formally, we will prove that our security model is an instance of an intran-
sitive noninterference model. Corollaries from this fact are that without com-
munication channels, the model is an instance of the Bell/LaPadula as well as
of the Biba model (objective O1) and that if a channel is set up as described
above, it exactly allows communication from A to B (objective O2). The proof
also implies that our model is free of covert storage channels. This is in contrast
to pure Bell/LaPadula-like models, which require an extra analysis for covert
storage channels (see [13]).

22 G. Schellhorn et al.

To accommodate secure downloading of applications (and of channel pro-
grams; objective O3), we have to add a second concept to our model: authen-
tication. We will base authentication on a predefined function check for digital
signatures. Loaded data d will have to be signed with a signature s, such that
calling check(k,s,d) with a key k stored on the card yields true. Since issues of
cryptography are outside the scope of a formal model, we do not specify the types
of s and k (one possible interpretation of k is a public key of RSA cryptography,
and that s is a signature for d which can only be given using the corresponding
private key). Instead we only make the following basic assumption: From a suc-
cessful check it can be deduced that the person who stored k previously on the
card has signed d, and therefore agreed to loading d.

Under the basic assumption, our authentication scheme will guarantee the
following two properties for downloading applications:

— The card issuer can control which applications are loaded onto the card.

— The owner of an application has agreed to loading each of his programs. All
other programs, which he has not agreed to being loaded, can not interfere
with the application.

In particular, it is guaranteed that if the application owner does not want
any communication with other applications, the application will be completely
isolated. Also, the second property implies that any channel program between
two applications A and B must have been authenticated by both A and B.

4 Noninterference

This section first repeats the main definitions of the generic noninterference
model as defined by Rushby [16]. Following Rushby, we will sketch that a simple
Bell/LaPadula model, where the system state consists of a set of subjects with an
access class as clearance and a set of objects with an access class as classification,
is an instance of the model. To define our smart card security model as an
instance of noninterference, we had to make small modifications to the generic
model. They resulted in a generalization of Rushby’s main theorem, which is
given at the end of the section.

The system model of noninterference is based on the concept of a state ma-
chine, which starts in a fixed initial state init and sequentially executes com-
mands (here: OS commands, i.e. system calls). Execution of a command may
alter the system state and produces some output. The model does not make any
assumptions on the structure of the system or on the set of available commands.
The model is specified algebraically using functions exec, out and ezecl; for a
system state sys and a command co, exec(sys, co) is the new system state and
out(sys, co) is the generated output. execl(sys, cl) (recursively defined using exec)
returns the final state of executing a list ¢l of commands.

Verification of a Formal Security Model for Multiapplicative Smart Cards 23

To define security it is assumed that each command co is executed by a
subject with a certain clearancdl] D which is computable as D = dom(co). The
general model of noninterference makes no assumptions about the structure of
clearances. They are just an abstract notion for the rights of a subject executing
a command. Also note, that subjects are not defined explicitly in the generic
model, since only their clearance matters for security.

A security policy is defined to be an arbitrary relation ~» on clearances.
A ~» B intuitively means that a subject with clearance A is allowed to pass
information to a subject with clearance B (“A interferes with B”), whereas A
~++» B means that commands executed by A will have no effect on B.

For the Bell/LaPadula instance of the model, the clearance of a subject
is defined as usual as an access class, and the ~»-relation coincides with the
less-or-equal relation on access classes (a subject with lower clearance can pass
information to one with higher clearance, but not vice versa). The ~»-relation is
therefore transitive in this case. The big advantage of a noninterference model
over a Bell/LaPadula model is that it is possible to define interference relations,
which are not transitivdd. This is what we need for the smart card security
model, to model communication: we want an application A to be able to pass
information to another application B via a channel program C, i.e. we want A
~» C and C ~» B. But we do not want information to be passed from A directly
to B, i.e. we want A +4 B.

Informally, security of a noninterference model is defined as the requirement
that the outcome of executing a command co does not depend on commands that
were previously executed by subjects which may not interfere with the subject
of co, i.e. dom(co).

To formalize this, a function purge is defined. purge(cl,B) removes all com-
mands “irrelevant for B” from the commandlist cl. The output to a command
co then must be the same, whether ¢l or purge(cl,dom(co)) are executed before
it. Formally, a system is defined to be secure, if and only if for all commandlists
cl and all commands co

out(execl(init,cl),co) = out(execl(init,purge(cl,dom(co))),co) (1)

holds. For a transitive interference relation the definition of purge is simple: a
command co can be purged if and only if dom(co) 4 B. For the simple Bell/
LaPadula instance, Rushby[16] shows that this definition of security is equivalent
to simple security and the x-property. Therefore the simple Bell/LaPadula model
is an instance of transitive noninterference.

The definition of security for an intransitive noninterference model (i.e. a
noninterference model with an intransitive interference relation) also requires
to prove property (), but the definition of commands, which must be purged

! The clearance of a subject is called security domain in [16]. We avoid this term since
it is also used with a different meaning in the context of Java security.
an intransitive interference relation is also possible in domain and type enforcement
models [4], [1], but these models do not have a uniform, provable definition of security,
which rules out covert channels.

2

24 G. Schellhorn et al.

is more complicated: Consider the case mentioned above, where we have two
applications A, B and a channel program C with A ~» C' and C ~ B, but
A o B. Now according to the original definition of purge, first executing three
commands [coq, cog, coz] with dom(co;) = A, dom(coz) = C and dom(cos) =
A, and then looking at the output for a fourth command co executed by B
should give the same result as looking at the output to co after only executing
coy: purge will remove both co; and cos since their clearance (in both cases A)
does not interfere with B. But removing co; is wrong, since command co; could
make some information of A available for C (since A ~ C), and the subsequent
command cos could pass just this information to B (since C' ~ B). Finally co
could just read this information and present it as output.

Therefore co; may affect the output of co and should not be purged. In con-
trast, cog should be purged, since no subsequent commands can pass information
to B (the domain of co). The definition of purge must be modified, such that its
result is [co1, coz]. The question whether a command is allowed to have a visible
effect on some subject after some more commands have been executed now be-
comes dependent on these subsequently executed commands. Therefore a set of
clearances sources(cl,B), which may pass information to B during the execution
of a list of commands cl is defined. The first command, co, of a commandlist
[colcl] then does not interfere with clearance B directly or indirectly (and may
therefore be purged) if and only if it is not in sources(cl, B).

We will give extended versions of sources and purge for our variant of the
model below, which has Rushby’s definitions as special cases. Defining a variant
of the noninterference model was necessary to make our smart card security
model an instance. Two modifications were necessary.

The first is a technical one: the system states we will consider in the smart
card security model will have invariant properties, that will hold for all system
states reachable from the initial state. Therefore, instead of showing proof obli-
gations for all system states, it is sufficient to show them for system states with
the invariant property only.

The second modification is more substantial: We do not assume that the
clearance of a subject executing a command can be computed from the command
alone, since usually the clearance of a subject is stored in the system state.
Therefore we must assume that function dom(sys,co) may also depend on the
system state. Making the dom-function dependent on the system state requires
that sources and purge must also depend on the system state. Our definitions
are:

sources(sys,|],B) = {B}
{dom(sys, co)} U sources(exec(sys, co), cl, B)
if dom(sys, co) ~ A
for any A € sources(exec(sys, co),cl, B)
sources(exec(sys, co),cl, B) otherwise

sources(sys, [colcl], B) =

and

purge(sys,], B) = []

Verification of a Formal Security Model for Multiapplicative Smart Cards 25

purge(sys, cl, B)
purge(sys, [co|cl], B) = if dom(sys, co) & sources(sys, [co|cl], B)
[colpurge(exec(sys, co),cl, B)] otherwise

Security is now defined as:

out(execl(init,cl),co) =)
out(execl(init,purge(cl,dom(execl(init,cl),co))),co)

Rushby’s definitions are the special case, where none of the functions dom,
sources and purge depends on the system state. It is easy to see that for transitive
interference relations the simple definition of purge coincides with the definition
given above.

For our definition, we proved the following generalization of Rushby’s “Un-
winding theorem” (Theorem 7 on p. 28 in [16]).

Theorem 1. If a relation & and a predicate inv can be defined, such that the
conditions

A . . .
1. ~ is an equivalence relation

dom(sys,co)
~J

2. inv(sys) A inv(sys’) A sys
(system is output consistent)

sys’ — out(sys,co) = out(sys’,co)

3. inv(sys) A dom(sys,co) + A — sys 2 exec(sys,co)
(system locally respects ~)

dom(sys,co)
~J

4. inv(sys) N inv(sys’) A\ sys 2 sys’ A\ sys
— exec(sys,co) A exec(sys’,co)
(system is weakly step consistent)

5. sys < sys’ — (dom(sys,co) ~ A < dom(sys,co) ~ A)
(commands respect ~»)

dom(/s\?fs,co) sys’ — dom(sys,co) — dom(5y57700)

(commands respect equivalence ~)
7. inv(init) (initially invariant)
8. inv(sys) — inv(exec(sys,co)) (invariance step)

are all provable, then the system is secure, i.e. property () holds.

The theorem allows to reduce the proof of property (), which talks globally
about all possible commandlists, to eight local properties for every command. It
uses an equivalence relation sys 2 sys’ on system states, which intuitively says,
that two system states sys and sys’ “look the same” for a subject with clearance
A. In the simple Bell/LaPadula instance of the model this is true if the files
readable by A are identical.

26 G. Schellhorn et al.

5 The Formal Model

This section describes the formal security model in detail. First, we informally
describe the data structures that form the system model. Then, we will describe
the set of commands (OS calls) and their security conditions. Finally, we will
give the formal properties we proved for the system model.

The main data structure used in the model is the system state. It consists of
three components: a card key, the authentication store and the file system.

The card key is not modifiable. It represents authentication information that
is necessary for any application to be downloaded onto the card. The card key
could be the public key of the card issuer, but it could also contain additional
information, e.g. the public keys of some certifying bodies, that are allowed to
certify the integrity level of subjects (this is another idea used in the IBM system
[9]), or it could contain the key of the card user. We assume that the card key
is fixed, before the operation system is started (either already when the card is
manufactured, or when the card is personalized).

The second component is the authentication store. It stores authentication in-
formation for every access category, for which there are files on the card. Usually
we will have one authentication information per application, but it is also possi-
ble to allocate several access categories for one application (presumed the card
issuer agrees).

The third, main component is the file system. An important decision we have
taken in modeling the file system is to abstract from the structure of directories.
Instead we have modeled only the classification of directories. This has the dis-
advantage that we must assume directories to exist when needed. On the other
hand this makes the model more generic, since we do not need to fix a con-
crete directory structure like a tree or an (acyclic) graph. Note that adding a
directory structure would only require to verify that creating and removing di-
rectories does not cause covert channels. All other commands and their security
conditions (e.g. the compatibility property, see the next section) would remain
unchanged.

The file system uniquely addresses files with file identifiers (which could be
either file names together with an access path, or physical addresses in memory).
Files contain the following five parts of information:

— The classification (secrecy and integrity access class) of the directory, where
the file is located.

— The classification (secrecy and integrity access class) of the file itself.

— The file content, which is not specified in detail (usually a sequence of bytes
or words).

— An optional security marking (i.e. a classification, consisting of four access
classes). Files with a security marking act as subjects and objects (in the
sense of Bell/LaPadula). Data files do not carry a security marking. They
only have the role of objects.

Access classes consist of an access level (a natural number) and a set of access
categories (i.e. unique application names), as usual in Bell/LaPadula-like models.

Verification of a Formal Security Model for Multiapplicative Smart Cards 27

Access classes are partially ordered, using the conjunction of the less-or-equal
ordering on levels, and the subset-ordering on sets of categories. The lowest
access class system-low consists of level 0 and an empty category set. To have a
lattice of access classes we add a special access class system-high, which is only
used as the integrity level of the top-level directory.

The system starts in an initial state with an empty authentication store
and an empty file system. Note that there is no “security officer” (or a “root”
using UNIX terminology) who sets up the initial state or maintains the security
policy. Such a supervisor is assumed in many security models, but in contrast
to a stationary computer there is no one who could fill this role after the smart
card has been given to a user.

The system now executes OS commands. The commands are grouped in two
classes: createappl, loadappl and delappl are invoked by the OS itself as an answer
to external requests, while read, write, create, remove and setintsec are called by
a currently running (application or channel) program.

Our model can be viewed as a simple instance of a domain and type enfor-
cement (DTE) model (see H], [1]) with two domains “OS” and “application”,
where the domain interaction table (DIT) is set such that only the OS domain
may create or delete subjects and the domain definition table (DDT) for the
domain “application” is set according to the interference relation (the domain
“OS” can not access files).

The command createappl creates a new access category, which acts as the
name of a new application. loadappl loads the main file of an application (or
a channel). The file gets a classification as security marking, and therefore can
act as a subject in the model. delappl removes such a file. To access files, we
use the commands create to create a new one, read to read its content, write
to overwrite it, and remove to delete the file. Usual operating systems will have
more low-level commands (like opening and closing files, or commands to read
only the next byte of a file) to support an efficient memory management, but
since the security conditions for opening a file would be exactly the same as
for our read command, we have chosen the more abstract version. Finally, the
command setintsec modifies the integrity and secrecy classification of a file.

The commands read, write, create, remove and setintsec are called by a cur-
rently running application or channel program (the current subject). To model
this current subject, their first argument is a file identifier which points to the
currently running program (a file with a security marking). We call a file identi-
fier, which points to a program, a program identifier, and denote it as pid. The
security marking of the file determines the clearance of the current subject.

It is not necessary to model the currently running program as an extra com-
ponent of the system state, since files with a security marking are stored in
directories with secrecy system-low and integrity system-high (we do not consi-
der “secret subjects”). Therefore, switching between applications has no security
conditions, and the additional argument pid which is given to each command
can be freely chosen.

28 G. Schellhorn et al.

We will now give a detailed listing of the operating system commands
available. For each command we first define its functionality (new system
state and output), if all security conditions are fulfilled. Otherwise, all com-
mands return no as output and leave the system state unchanged. Se-
cond, for each command a precise definition of the security conditions is gi-
ven. To make the security conditions easily readable, we will use predicates
read-access(pid, fid, sys), write-access(pid, fid, sys), dir-read-access(pid, fid, sys)
and dir-write-access(pid, fid, sys). These describe in which circumstances a sub-
ject pid is allowed to see, read or write a file fid given a system state sys. For the
predicates to hold, it is required that

— pid points to a file in the file system of sys, which has a security marking
consisting of the four access classes (ircl,iwcl,srcl,swel) for integrity /secrecy
read/write. Remember that these markings characterize the clearance of the
subject executing the command.

— fid points to a file in the file system of sys which has access classes icl and
scl for integrity /secrecy, and whose directory has classification idcl and sdcl.

— For read-access fid must be readable by pid, i.e. ircl < icl and scl < srel.

— For write-access fid must be writable by pid, i.e. icl < iwcl and swel < scl.

— For dir-read-access the directory of fid must be readable by pid, i.e. ircl < idcl
and sdcl < srel.

— For dir-write-access the directory of fid must be writable by pid, i.e. idcl <
jwel and swel < sdel.

Note that dir-read-access determines whether a file fid is visible to the cur-
rently running application pid (i.e. whether its existence is known), while read-
access gives access to the contents of a file.

create(pid,iac,sac). Subject pid creates a new file with empty content and no
security marking in a directory with classification zac and sac for integrity and
secrecy. The classifications of the new file are set to the read classifications of
pid. The new file name is returned as output.

Security conditions: pid must point to a file with marking (ircl, iwel, srcl, swel)
and a directory that has classification (iac,sac) must be readable and writable
by pid, i.e. ircl < iac, sac < srel, iac < dwel and swel < sac must hold.

remove(pid,fid). Program pid deletes the file named by fid from the file sy-
stem. The resulting output is yes on success, no on failure.

Security conditions: dir-read-access(pid, fid, sys) and dir-write-access(pid, fid, sys)
must hold. Note that dir-write-access implies, that fid has no secrecy marking,
since such files are stored in a directory with integrity = system-high.

setintsec(pid,fid,iac,sac). Program pid sets the classification of file fid to be
tac for integrity and sac for secrecy. The command returns yes as output.

Security conditions:

1. dir-read-access(pid, fid, sys).

Verification of a Formal Security Model for Multiapplicative Smart Cards 29

2. dir-write-access(pid, fid, sys).
3. write-access(pid, fid, sys).
4. Either one of the following two conditions holds:

— The new integrity access class iac is not higher than the old integrity
access class of the file, and the new secrecy class sac is not lower than
the old secrecy class of fid (downgrading integrity and upgrading secrecy
is allowed).

— fid is readable by pid, i.e. read-access(pid, fid, sys) holds, the new integrity
class is not higher than the integrity class of its directory and the new
secrecy class is not lower than the secrecy class of its directory (upgrading
integrity and downgrading secrecy is allowed for for readable files, as
long as compatibility is not violated. Note that dir-write-access together
with compatibility assures, that pid’s new integrity/secrecy will not be
higher/lower than the write integrity/secrecy).

write(pid,fid,c). Program pid overwrites the file content of file fid to be ¢. The
command returns yes as output.

Security conditions: fid must point to a file with no security marking. The con-
ditions dir-read-access(pid, fid, sys) and write-access(pid, fid, sys) must hold.
read(pid,fid). Program pid reads the contents of file fid, which are returned as
output. The system state is unchanged.

Security conditions: dir-read-access(pid, fid, sys) and read-access(pid, fid, sys) is
required.

createappl(au, au’). A new application name (an access category) ap (relative
to the ones that exist in the authentication store) with associated authentication
information au is created, stored in the authentication store. ap is returned as
output.

Security conditions: It is checked, whether the card issuer allows a new appli-
cation with authentication information au. This is done with check(ck,au’,au)
using the additionally given key au’ (a digital signature for au given by the card
issuer) and the key ck of the card issuer that is stored on the card.

loadappl(au,st,d,c,iac,sac). A new program with clearance d and content ¢
is loaded (added to the file system). Its security classes become iac and sac. The
integrity/secrecy classification of the files directory is set to system-high and
system-low. The new file identifier is returned.

Security conditions:

First the authorization of the card issuer for downloading the application
is checked using the digital signature au by calling check(ck, au, (d, ¢, iac, sac))
(note that the full information (d,c,iac,sac) to be stored on the card must be
signed). Then a check is done for every access category an (= application name)
that is contained in any of the four access classes of the clearance d. For each
such name st must contain an appropriate digital signature au’ and calling
check(au”, au’, (d, ¢, iac, sac)) must yield true, where au” is the key for an sto-
red in the authentication store of the card. These checks make sure that any
application which may be interfered, agrees to the downloading of the applica-
tion.

30 G. Schellhorn et al.

delappl(au,st,fid). The file, to which fid points, is deleted. The command
returns yes as output.

Security conditions: fid must have a security marking d. Otherwise, the security
conditions are the same as for the loadappl command, except that the argument
(d,c,iac,sac) for the check function is computed from the file fid.

6 How to Use the Model

In this section, we revisit the example from the introduction. We discuss how
the commands of the previous section are used to establish the scenario of an
airline A, which exchanges loyalty points with hotel chains H and I, and how the
security policy is used.

We start with an empty smart card, that only stores a card key, which we
assume to encode authentication information for the card issuer and the card
holder. As a first action, we use createappl to store authentication information
(a public key) for each of the three applications. Since we do not want the
application to be structured internally, one call to createappl for each application
is sufficient. Each returns one (new) access class for the application. The call to
createappl is checked against the card key, so it is made sure that card issuer
and card holder agree to creating the access classes, which we call A, H and I in
the following.

To load an application program for each application, loadappl is called (there
may be several programs for each application). The loaded application programs
are checked to be signed by A, H and I respectively. Loading a new version of
an application program can be done by calling delappl and then loadappl at any
time.

After the application programs have been loaded, they can now be called
freely (calling an application program is not security relevant, so the security
model does not contain a special command). Each can freely create and modify
files, using the create, read, write and delete commands.

The security policy ensures that the three applications will be completely
separate, i.e. reading or writing files of another application, even by accident, is
impossibleE No communication between the applications is possible, even if new
applications are loaded, since we assume that no one else can guess the signature
of A, H and I.

If H wants to transfer loyalty points to A, both A and H have to agree to
load a channel progra. The channel program will have a read access class
(both for integrity and secrecy) of H, and a write access class of A. Therefore
to load it, both A and H must sign it. Of course this channel program should
be checked carefully by both parties to do the following: When called, it should

3 Tt is impossible, because the three secrecy access classes for A, H, and I are all dis-
joint. Bell/LaPadula also permits an access class to dominate another. For example,
if access class X > Y, then information could flow from Y to X.

* Channel programs are called guard programs in [9]. They have also be called down-
grading programs or sanitizers in various military applications.

Verification of a Formal Security Model for Multiapplicative Smart Cards 31

read a file given by H to ensure that it has a suitable format, containing only
information about loyalty points. This is possible, since the channel program
has read access. Then it should call setintsec to change both the integrity and
the secrecy access class of the file from H to A. Thereby the file is moved from
the set of files accessible for H to those accessible by A, and application A can
subsequently read the loyalty points.

The security policy ensures that the channel program can only transfer infor-
mation from H to A. No other communication will be possible as long as no other
pair of applications agrees to loading another channel program. The actions of
the channel program will be completely invisible to the other hotel I.

Finally, to establish the scenario of the introduction, I and A will load another
channel program, and bank B will create another application with createappl and
loadappl. Maybe the bank as application provider will need two access classes,
to run two applications (maybe one for the electronic wallet and one for online
banking). Then it will call createappl twice. The bank might also use various
secrecy and integrity levels for its files. Then the security policy will guarantee
that the applications of the bank will respect Bell/LaPadula secrecy and Biba
integrity internally.

Additional examples of using the model can be found in [I0], where the
model is shown in an electronic purse example and in several possible messaging
scenarios.

7 Verification

The smart card security model described in Sect. Bl and the modified generic
model of noninterference were formally specified using the VSE II system [3].
The noninterference model as described in Sect. El consists of about 200 lines
of algebraic specification, and Theorem [Il was proved similarly to [16].
The smart card security model of Sect. Bl was also specified algebraically with
800 lines. A full specification of both models can be found in [11]. The following
three main security claims were verified:

— The card issuer controls which applications are loaded onto the card, i.e. any
application loaded on the card was signed by the card issuer.

— The owner of each application has signed each of his programs, when it was
loaded. No program, which he has not agreed to loading, can interfere with
the application.

— The smart card model is an instance of the noninterference model.

For the first proof we basically have to show, that each authentication informa-
tion stored in the authentication store has been checked for agreement of the card
issuer. This is done by induction on the number of executed commands, since
the authentication store is modified only by adding new entries in createappl.
For the proof of the second property, note that an application, which first
allocates an access category A as its application name with createappl, and then
loads an application file with the set of access categories in all four access classes

32 G. Schellhorn et al.

set to {A} can be interfered only by other applications, which have A in their
category set of integrity write clearance (provided the third property holds!).
Therefore it is sufficient to check, that any file with a security marking that
contains an access category A, has been checked to be signed by A when it
was loaded. This can again be proved by induction on the number of executed
commands, similar to the first property.

The proof that shows that the smart card model is an instance of noninter-
ference is much more complicated. The main problem here is to find definitions

of the noninterference relation ~», the equivalence relation 2 and the system
invariant énv such that Theorem [holds. Sect. B requires that we define A ~»
B as iwcly > irclg and swcly < srclpg, but the other two definitions have to be
found incrementally by proof attempts. We tried several versions, which lead to
unprovable goals. Analyzing such an unprovable goal always resulted in a con-
crete system state, which our definitions classified as secure and a sequence of
commands that lead to an insecure state. We then had to decide, whether the
security conditions of one of the involved commands was wrong, or whether our

definitions of & and inv were still insufficient.
For the final system invariant we use the conjunction of the two properties:

1. Compatibility property: Each file has an integrity (secrecy) classification that
is at most (at least) the integrity (secrecy) classification of its directory

2. Visibility property: All files with a security marking are stored in a directory
with integrity /secrecy classification system-high/system-low

The first property is common in mandatory security models (e.g. the Multics
instance of Bell/LaPadula uses it too). The second property is necessary since
we want to be able to switch freely between applications (see previous section).

The final definition of the equivalence relation sys 2 sys’, which says, which
system states “look the same for a subject with clearance A” consists of the
following four properties:

1. The authentication store and the card key must be the same in both system
states.

2. The loaded files, which have a security marking, must be the same.

3. The set of files visible for A must be the same, i.e. the set of filenames for
which a file exists in a directory which A can read, must be the same. Their
classifications and directory classifications must be the same.

4. The files which A can read in both system states must be identical. Not only
must they have the same security marking (this follows already from the
second property), the same classification and the same directory classification
(because of compatibility this is implied by the third property), but also their
content must be identical.

With these three definitions of ~», inv and 2 we were able to verify the eight
preconditions of Theorem [[1 Each of the proofs split into subproofs for each of
the eight commands.

Verification of a Formal Security Model for Multiapplicative Smart Cards 33

About a month of work was needed to reach a fully verified security policy,
most of the time was spent to verify that the model is an instance of noninter-
ference. During this time several specification errors were found. Many of them
were typing errors, but a few of them were errors in the security conditions,
which had not shown up during a careful informal analysis by several people.
There were some minor errors, that were easy to correct, e.g. that the integrity
classification of a newly created file has to be set to the read integrity of the
caller, not its write integrity.

The most problematic security conditions we found are those of the setintsec
command, which modifies the classification of a file. Originally there were se-
parate commands to set integrity and secrecy, but this results in the following
problem: If we want both to upgrade secrecy and to downgrade integrity, after
executing the first command the files’ secrecy will be too high to downgrade
integrity. Weakening the conditions of setintegrity to allow integrity downgra-
ding for files, whose secrecy has been upgraded resulted in covert channels. It
was interesting to see, that these covert channels are not possible in a pure
Bell/LaPadula and Biba setting, but that they are specific to using subjects
(channels), which have different access classes for reading and writing.

8 The IBM Model

The IBM model [9] addresses two issues that are not in the current version of
the formal model. The first on assignment of integrity levels is a purely practical
issue that cannot really be formalized. The second on execution control is simply
not formalized at this time.

The first issue is that the Biba integrity model does not model any real
practical system. Unlike the Bell/LaPadula model that developed from existing
military security systems, the Biba integrity model developed purely from a
mathematical analysis of the security models. However, Biba did not suggest
how to actually decide which programs were deserving of a high integrity access
class and which were not. This has made practical application of the Biba model
very difficult.

In section Bl we required that developers and card issuers digitally sign the
applications, using the function check. This is much as is done in Java and Ac-
tiveX security approaches. However, the IBM informal model goes beyond this.
If an application has been independently evaluated and digitally signed by a
certifying body, then we can grant it a higher level of integrity, without having
to depend on the reputation of the developer or the skills of the card issuer.
For example, we could define integrity levels for ITSEC-evaluated [§] applicati-
ons. The Commercially Licensed Evaluation Facility (CLEF) would evaluate the
application and the certifying body would digitally sign the application and its
ITSEC E-level. A card issuer (such as a bank) might lay a requirement on ven-
dors who want to download applications onto their cards. The application must
have received an ITSEC evaluation at a policy-determined level to be acceptable.
Common criteria evaluations [7] would be equally acceptable.

34 G. Schellhorn et al.

There could be provisions for less formal evaluations than full ITSEC. For
example, a commercial security laboratory could check an application for obvious
security holes (buffer overflows and the like) and for Trojan horses or trapdoors.
While not as formal as an ITSEC evaluation, it might be sufficient for loyalty
applications.

There is one problem with using more than one kind of evaluation criteria. If
an application has been evaluated under one criteria, and another application has
been evaluated under a very different criteria, then if a user wishes to download
both of those application onto the same card, it is not clear how to compare
the integrity classes. If the two criteria have defined mappings (such as the E
levels of the ITSEC and the EAL levels of the Common Criteria), then there is
not a problem. However, if the card issuer chose to use some very different and
incompatible criteria, then downloading of other applications that were ITSEC
evaluated might be difficult.

The second issue is control of execution permissions. The original Biba model
prevents high integrity applications from reading low-integrity data, in fear that
the application might be compromised in some form. This makes it difficult to
describe applications that have been designed with high integrity to specifically
process low integrity data input and to rule on its appropriateness. This pro-
cessing of low integrity data is called sanitization. However, in the process of
allowing a high integrity application to sanitize low integrity data, we do NOT
want to allow a high integrity application to execute low integrity code, either
deliberately or accidentallyt.

As discussed in section B] we support sanitization for both secrecy and inte-
grity by assigning four access classes to each subject (ircl,srcl iwcl,swcl), the first
two for reading and the last two for writing. In the traditional Bell/LaPadula
and Biba models, execution is always associated with reading, but that associa-
tion would allow a high integrity subject that was sanitizing low integrity data
to also execute low integrity program code. Therefore, for integrity only, the
IBM model associates execute permission with write permission, rather than
read permission. Separating the execute permission from the read permission
originated in the program integrity model of Shirley and Schell [18] which was
in turn based on the protection ring mechanism of Multics [T4]. The policy was
further developed in the GEMSOS security model [T7] that specified a range of
levels within which integrity downgrading could occur.

The combined access rules are shown in Fig. [J Recall that subjects have
four access classes, while objects have only twall. The execute permission rule
specified in the figure is for a normal program to program transfeil.

5 Most buffer overflow attacks come from violating this rule.

5 Subjects can sometimes be treated as objects. Details on this can be found in [9].

" The IBM operating system also supports another operation, called CHAIN, which
is a way to start a separate process executing at some other integrity and secrecy
access class. The intended use of CHAIN is to start a guard or sanitization process
or for a guard process to start a recipient of sanitized information. Details of CHAIN
are omitted here, for reasons of space, but can be found in [9].

Verification of a Formal Security Model for Multiapplicative Smart Cards 35

Read permission
srcl (subject) > scl (object) and 4rel (subject) < icl (object)

Write permission
swel (subject) < scl (object) and wcl (subject) > icl (object)

Execute permission
srcl (subject) > scl (object) and swel (subject) < icl (object)

The target program of a transfer runs at the integrity level of the caller. A
high integrity program cannot call or transfer to lower integrity code.

Fig. 2. Access Control Rules
9 Conclusion

We have defined a generic security model for the operating system of a multiap-
plicative smart card. The model formalizes the main security aspects of secrecy,
integrity, secure communication between applications and secure downloading of
new applications. The two main theoretical results are that intransitive nonin-
terference is a suitable framework for such models and that authentication can
be integrated in the model.

We found that formal verification was extremely helpful in analyzing the
security model. We were able to remove all covert channels from the model, even
ones that we had not found during a thorough informal analysis. The six weeks
required for formal specification and verification of the model are a reasonable
effort to achieve this result.

There is still work to do. One important question we have left open is to
formalize the communication of applications on the card with the outside world.
This issue would require to extend the security model to include security aspects
of the outside world, e.g. the authentication of card readers. We also would have
liked to compare our security policy for downloading with the upcoming VISA
standards (which were not available to us yet). Finally, extending the model to
be applicable to Java Cards will also require further research.

References

1. L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghig-
hat. Practical domain and type enforcement for UNIX. In 1995 IEEE Sym-
posium on Security and Privacy, pages 66—77, Oakland, CA, May 1995. URL:
http://www.tis.com/docs/research /secure/secure_dte_proj2.html.

2. D. E. Bell and L. J. LaPadula. Secure Computer Sytems: Unified Exposition and
Multics Interpretation. Technical Report ESD-TR-75-306, The MITRE Corpo-
ration, HQ Electronic Systems Division, Hanscom AFB, MA, March 1976. URL:
http://csrc.nist.gov/publications/history/bell76.pdf.

3. K. J. Biba. Integrity Considerations for Secure Computer Sytems. Technical Re-
port ESD-TR~-76-372, The MITRE Corporation, HQ Electronic Systems Division,
Hanscom AFB, MA, April 1977.

4. W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity
policies. In 8th National Computer Security Conf., pages 1827, Gaithersburg,
MD, 1985. National Computer Security Center and National Bureau of Standards.

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Schellhorn et al.

D. Hutter, H. Mantel, G. Rock, W. Stephan, A. Wolpers, M. Balser, W. Reif,
G. Schellhorn, and K. Stenzel. Vse : Controlling the complexity in formal software
developments. In Applied Formal Methods — FM-Trends 98. LNCS 1641, 1998.
Identification cards - identification cards - interrelated circuit(s) cards with
contacts - part 4: Inter-industry commands for interchange. ISO/IEC 7816-4,
International Standards Organization, 1995.

Information technology - security techniques — evaluation criteria for IT se-
curity. ISO/IEC 15408, International Standards Organization, 1999. URL:
http://csre.nist.gov/cc.

ITSEC. Information Technology Security Evaluation Criteria, Version 1.2. Office
for Official Publications of the European Communities, Brussels, Belgium, 1991.
P. A. Karger, V. Austel, and D. Toll. A new mandatory security po-
licy combining secrecy and integrity. RC 21717, IBM Research Division, T.
J. Watson Research Center, Yorktown Heights, NY, 15 March 2000. URL:
http://domino.watson.ibm.com/library /CyberDig.nsf/home.

P. A. Karger, V. Austel, and D. Toll. Using a mandatory secrecy and integrity
policy on smart cards and mobile devices. In (EUROSMART) Security Confe-
rence, pages 134-148, Marseille, France, 13-15 June 2000. RC 21736 available at
http://domino.watson.ibm.com/library/CyberDig.nsf/home.

F. Koob, M. Ullmann, S. Wittmann, G. Schellhorn, W. Reif, A. Schairer, and
W. Stephan. A generic security model for multiapplicative smart cards — final
report of the SMaCOS project. to appear as BSI report.

T. F. Lunt, P. G. Neumann, D. Denning, R. R. Schell, M. Heckman, and W. R.
Shockley. Secure distributed data views — vol.1: Security policy and policy inter-
pretation for a class A1l multilevel secure. Technical Report SRI-CSL-88-8, SRI
International, Menlo Park, CA, August 1988.

J. McLean. Security models. In J. Marciniak, editor, Encyclo-
pedia of Software Engineering. Wiley & Sons, 1994. URL:
http://chacs.nrl.navy.mil /publications/ CHACS.

Elliott I. Organick. The Multics System: An Ezamination of Its Structure. The
MIT Press, Cambridge, MA, 1972.

Philips semiconductors and IBM research to co-develop secure smart cards: Highly
secure operating system and processor, suitable for multiple applications. URL:
http://www.semiconductors.philips.com/news/content /file_384.html, Feb. 1999.
J. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies.
Technical Report CSL-92-02, SRI International, Menlo Park, CA, 1992. URL:
http://www.csl.sri.com/~rushby/reports/csl-92-2.dvi.Z.

R. Schell, T. F. Tao, and M. Heckman. Desingning the GEMSOS security kernel
for security and performance. In 8th National Computer Security Conference,
pages 108-119, Gaithersburg, MD, 30 September - 3 October 1985. DoD Computer
Security Center and National Bureau of Standards.

L. J. Shirley and R. R. Schell. Mechanism sufficiency validation by assignment. In
1981 Symposium on Security and Privacy, pages 26—-32, Oakland, CA, 27-29 April
1981. IEEE Computer Society.

D. F. Sterne and G. S. Benson. The controlled application set pa-
radigm for trusted systems. In 1995 National Information Systems Se-
curity Conference, Baltimore, Maryland, 1995. National Computer Secu-
rity Center and National Institute of Standards and Technology. URL:
http://www.tis.com/docs/research/secure/secure_dte_proj2.html.

	Introduction
	Security Objectives
	Security Concepts
	Noninterference
	The Formal Model
	How to Use the Model
	Verification
	The IBM Model
	Conclusion

