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Abstract. In this paper, we generalise and fully automate the use of
data independence techniques in the analysis of security protocols, de-
veloped in [16,17]. In [17], we successfully applied these techniques to
a series of case studies; however, our scripts were carefully crafted by
hand to suit each case study, a rather time-consuming and error-prone
task. We have fully automated the data independence techniques by in-
corporating them into Casper, thus abstracting away from the user the
complexity of the techniques, making them much more accessible.
Keywords: security protocols; data independence; automatic verifica-
tion; model checking; Casper; CSP; FDR.

1 Introduction

Model checkers have been extremely effective in finding attacks on security pro-
tocols: see, for example, [9,12,13,14]. However, until a few years ago, their use
in proving protocols had generally been limited to showing that a given small
instance, usually restricted by the finiteness of some set of resources such as keys
and nonces, is free of attacks.

In [16], Roscoe developed techniques borrowed from data independence and
related fields to simulate, using the process algebra CSP [15], a system where
agents can call upon an infinite supply of different nonces, keys, etc., even though
the actual types remain finite. It was thus possible to create models of proto-
cols in which agents could perform an unbounded number of sequential runs—
although with a fixed, finite number of concurrent runs—and therefore claim
that a finite-state check on a model checker, such as FDR [2], proved that a
given protocol was free from attacks—subject to the same limit on the number
of concurrent runs. These methods made it possible to prove far more complete
results on model checkers than hitherto.

Our data independence techniques were further developed and successfully
applied to a series of case studies in [17]; however, our scripts were carefully craf-
ted by hand to suit each case study. This process proved to be time-consuming,
error-prone and required a substantial knowledge of the CSP language and a
good understanding of the theory underlying the data independence techniques.
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In this paper we present the automation of our data independence techniques,
by integrating them into Casper. Casper [10] is a compiler which takes a more
abstract description of a security protocol (similar to that in the literature) and
a specification of the properties to be verified; it automatically generates the
CSP description, which can then be loaded directly into FDR.

Further, we present some generalisations of our methods, which allow a bro-
ader class of protocols to be modelled.

This work has already proved to be very useful for generating our CSP pro-
tocol models, since it only takes Casper a couple of seconds to perform the task,
which in the past took us several weeks per protocol model.

2 Background

2.1 Modelling Security Protocols Using CSP and FDR

Security protocols are traditionally described in the literature as a series of
messages between the various legitimate participants. The main example we will
be using throughout this paper is a version of the Yahalom protocol closely based
on the one suggested in [1]. Its five messages are:

Message 1. A → B : Na

Message 2. B → S : Nb, {A, Na}SKey(B)

Message 3. S → A : Nb, {B, Kab, Na}SKey(A)

Message 4. S → B : Nb, {A, Kab, Nb}SKey(B)

Message 5. A → B : {Nb}Kab

The only difference from the version in [1] is the way in which the server com-
municates message 4 directly to B rather than using A as a messenger. This
type of re-direction has been shown in [3] to have no effect on security.

Such a description implicitly describes the role of each participant in the
protocol and carries the implication that whenever an agent has, from its point
of view, executed all the communications implied by the protocol, then it can
take whatever action is enabled by the protocol. The above protocol is intended
to authenticate A and B to each other. This particular version has a well known
attack found by Syverson [19]. However, we will use it as our example throughout
the paper to illustrate and clarify the techniques introduced.

We analyse security protocols using the process algebra CSP [15] and its
model checker FDR [2]. We outline the traditional approach—without the ap-
plication of data independence techniques—below. Further details can be found
in [9,12].

Each honest participant of the protocol is modelled as a CSP process. These
processes are relatively straightforward to derive from standard description of
protocols presented in the literature.

The intruder is also modelled as a CSP process. This intruder can: overhear
all messages that pass between the honest agents; prevent a message sent by one
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agent from reaching the intended recipient; generate new messages from those
messages held initially or subsequently overheard, subject only to derivation rules
that reflect the properties of the crypto-system in use; and send such messages
to any agent, purporting to be from any other. We only allow the intruder to
generate messages of size bounded by the message structure of the protocol,
so we do not consider messages that do not correspond to part of a genuine
protocol message. This is a standard assumption and one which can be justified
in many cases, but it should be borne in mind that as with various points of our
modelling, all our results are relative to it.

A system is created from a parallel combination of honest agents, together
with an intruder. The system normally—but not necessarily—contains as many
agents as are necessary for a complete run of the protocol (in the case of our
example above, this would be two agents and one server).

One then seeks to show that any session that may occur between the honest
nodes is secure, no matter what the actions of the intruder from the range above.
This includes showing that if either of the nodes thinks it has completed a run
of the protocol with the other, then it really has (see [11] for further details
concerning specifications).

2.2 Casper

Model checkers (in our case, FDR) have proved to be extremely effective in
checking for, and finding, attacks on security protocols. However, the process of
creating the CSP protocol models is time-consuming, error-prone and requires a
substantial knowledge of the CSP language. Casper [10] is a program which takes
a more abstract description of a protocol and generates the corresponding CSP
description. The CSP output file is such that it can be loaded directly into FDR,
and the requested checks upon the protocol automatically tested. The style of
the protocol descriptions in a Casper input file is based on that in the literature
and is therefore familiar to users who are interested in modelling them. Casper
has proved to be an extremely useful tool for generating these scripts and is
accessible to a wide audience of users.

Figure 1 presents an example of a simple Casper script, namely the Yahalom
protocol example we are using throughout this paper. There are two main parts
to a Casper input script: a definition of the way in which the protocol operates
(the first four sections); and a definition of the actual system to be verified (the
last four sections).

2.3 Data Independence Techniques

A program P is said to be data independent in the type T if it places no con-
straints on what T is: the latter can be regarded as a parameter of P . Broadly
speaking, P can input and output members of T , hold them as parameters,
compare them for equality, and apply polymorphic operations to them such as
tupling and list forming. It may not apply other operations such as functions
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"symbolic" means that Casper will produce its own values
to represent the results of the function applications.

#Actual Variables declares all variables and
their corresponding types, used in defining
the actual system to be verified.

Intruder’s initial knowledge.

#Specification defines the requirements of the protocol to be verified.

#Free Variables

A, B : Agent
S : Server
na, nb : Nonce
kab : SessionKey
SKey : Agent -> ServerKey
InverseKeys = (SKey, SKey), (kab, kab)

#Processes

INITIATOR(A, na) knows SKey(A)
RESPONDER(B, S, nb) knows SKey(B)
SERVER(S, kab) knows SKey

#Protocol description

0.    -> A : B

1.  A -> B : na
2.  B -> S : nb, {A, na}{SKey(B)}
3.  S -> A : nb, {B, kab, na}{SKey(A)}
4.  S -> B : nb, {A, kab, nb}{SKey(B)}
5.  A -> B : {nb}{kab}

# Specification

Agreement(B, A, [])

#Actual Variables

Alice, Mallory : Agent

Sam : Server
Na, Nb, Nm : Nonce
Kab : SessionKey
InverseKeys = (Kab, Kab)

#Functions

symbolic SKey

#System

INITIATOR(Alice, Na)
RESPONDER(Alice, Sam, Nb)
SERVER(Sam, Kab)

#Intruder Information

Intruder = Mallory
IntruderKnowledge = {Alice, Sam, Mallory, Nm, SKey(Mallory)}

#System defines the actual system to be verified.
In this case, our system is composed of one instance of
each agent process running in parallel with each other
(where each process can only perform one run).

taking part.  The first parameter of each
#Processes declares all the agent processes

process represents their identity.

Intruder’s identity within the system.

#Free Variables declares all variables and
their corresponding types, used in defining
the first part of the Casper script (in this case,
agent processes, protocol description and
specifications) together with inverse keys.

Fig. 1. Example of a Casper script for the Yahalom Protocol
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that return members of T , or comparison operators such as <, or do things like
compute the size of T . For further details and precise definitions, see [4,5,15].

The main objective of data independence analysis is usually to discover a
finite threshold for a verification problem parameterised by the type T : a size of
T beyond which the answer (positive or negative) to the problem will not vary.
If we can verify a system for the threshold size of T , then we will have verified
it for all larger values of T . This can be done successfully for a wide range of
problems, as is shown, for example, in [15,6].

Several of the types used by crypto-protocol models have many of the cha-
racteristics of data independence. This is typically true of the type of nonces,
types of keys that are not bound to a specific user, and may also be true of the
type of agent identities. The main reason for this is that the abstract data type
constructions used in the programs are polymorphic: there is no real difference
between building a construction such as

Sq.<Nb, Encrypt.(SKey(A), <B, Kab, Na>)>

(the representation in our data type of a typical message 3) and building a list
or tuple over the objects Nb, A, B, Kab and Na.

There are, however, several features of the protocol descriptions that mean
the general purpose results for computing thresholds do not give useful results.
Firstly, the assumption that each nonce or key generated is distinct means that
there can be no hope of finite thresholds from standard results, because our
program must at least implicitly carry an unbounded number of values in its state
so it knows what to avoid next. The starting point for threshold calculations, in
the context of equality tests, is the maximum number of values a process ever
has to remember; so such calculations would give an infinite threshold in this
case. Secondly, the nature of the intruder process causes difficulties because it
also clearly has the ability to remember an unbounded number of values if they
are available.

Since the general-purpose data independence results of the earlier papers
had proved to be inapplicable, our approach (presented in [16,17]) was to apply
some of the methods underlying the proofs of these results directly to the sort
of CSP model that a protocol analysis generates. The aim was to take a “full-
sized” model of a protocol (one with an unbounded number of other agents, and
infinite sets of nonces, etc.) and to use these methods to reduce the problem of
proving the correctness of a corresponding system for all parameter values to a
finite check.

In [16], Roscoe showed how techniques borrowed from data independence
and related fields can be used to achieve the illusion that nodes can call upon an
infinite supply of different nonces, keys, etc., even though the actual types used
for these things remain finite. It is thus possible to create models of protocols in
which nodes do not have to stop after a small number of sequential runs, and to
claim that a finite-state run on a model checker has proved that a given protocol
is free from attacks that could be constructed in the model used. One proviso is
that these techniques will only detect attacks that can be formed from the given
degree of parallelism, and there remains the possibility that attacks could exist
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with a higher degree of parallelism. These methods were developed further and
successfully applied to a number of case studies in [17].

These techniques were based around manager processes. In brief, for each
data independent type T (for example, nonces or keys), we create a manager
process MANT that gives the illusion of generating an infinite supply of fresh
values, known as foreground values, when requested by participants. The ma-
nager process monitors the network so that, at all times, it knows which fresh
values are stored by which participants. When such a value is no longer stored
by any honest participant—when each honest agent that knew the value has
terminated or withdrawn from the protocol run—the value can be recycled. The
manager process is responsible for triggering the recycling mechanism, whereby
forgotten foreground values get replaced by background values within the intru-
der’s memory; the mapped values can then be reused. It is usually sufficient to
include two background values of each type in the system: one that the intru-
der knows, and one that he doesn’t. Roscoe showed in [16] that this recycling
mechanism does not lose any attacks.

Our results rely on the fact that the intruder cannot perform any deductions
based on the inequality of two objects with the same structures. Therefore,
they only apply to intruders over a theory satisfying the Positive Deductions
condition. What this essentially requires is that the generation of the deductions
is symmetric in each data independent type T (i.e., treats all members of T
equivalently) and never has an inequality requirement over members of T that
appear on the left-hand side of a deduction (see [16] for further details).

3 Generalising Data Independence Techniques

In [17], these techniques were successfully applied to a number of case studies,
the implementation being carefully crafted by hand to suit the protocol being
modelled, in each case. All the case studies were for protocols obeying the follo-
wing simple property:

Each message M in the protocol introduces at most one variable V that
is of a data independent type, and that is either freshly introduced by
the sender or newly acquired by the receiver of M .

Message M might contain other variables X1, . . . , Xn of data independent types
in addition to V , as long as X1, . . . , Xn are already known to the sender and
receiver of M . This property simplifies the modelling strategy, but limits the
class of protocols that can be modelled, because many protocols have multiple
fresh variables introduced in one message, either of the same or different data
independent types.

In this section, we present an overview of our new methodology for the ap-
plication of these techniques. This makes them applicable to a broader spectrum
of protocols, in particular, dropping the assumption above. It is also the key to
how we fully automated their application within Casper (presented in Section 5).
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3.1 Generalising Manager Processes

Previously, in [17], our manager processes were constructed with the assumption
that the protocol models conformed to the property presented above; we refer to
such managers as one-dimensional. This assumption makes the synchronisations
between managers and monitored processes more straightforward, because a
manager process does not have to handle multiple values in one synchronisation,
and the managers collectively do not have to synchronise with each other.

We generalise the implementation of our techniques and abolish this limiting
property above, by introducing multi-dimensional managers, as illustrated in the
following example.

Example 1. Suppose the agent Alice is running some protocol and receives a
message M in which she newly acquires two nonces and one key, where nonces
and keys are data independent types:

... → Alice : {N1, N2, K1}K2 ,

where key K2 is assumed to be known to Alice already. Our one-dimensional
managers could not handle this case. We require multi-dimensional managers
where each manager process deals with tuples of values rather than a single
value.

In this example, we would have two manager processes, MANN for nonces,
and MANK for keys. MANN would have an event toldN .X for every pair X of
nonces. This message is subsequently renamed, so as to synchronise with the
corresponding network message M , thereby allowing the manager to monitor
multiple foreground values in a single synchronisation. Further, the key mana-
ger MANK will have its own event toldK .Y for each 1-tuple Y of keys. The
key manager must synchronise on the network message M , and hence will also
synchronise with the nonce manager.

3.2 Stale Knowledge Generation

When applying these techniques, one runs into problems with the size of the state
space of the protocol model. One reason for this is the gradual build up within
the intruder of knowledge gathered from past protocol runs. All these messages
have only background values in the places occupied by the data independent
types, because all foreground values have been mapped to background values by
the recycling mechanism.

If there are N such stale messages that the intruder might gain, then the effect
is to multiply the total state space by as much as 2N . To eliminate this problem,
we observe that eventually the intruder can be expected to gain a complete set
of this stale knowledge (with all values of data independent types mapped to
background values), and can therefore exploit any such stale knowledge when
attempting to perform attacks upon the protocol. So we simply calculate, at the
start of a run, what the eventual set of stale knowledge ought to be and give this
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to the intruder as part of his initial knowledge. If done properly, this completely
eliminates the state space explosion problem presented above.

In the case studies presented in [17], these sets of stale knowledge were cal-
culated by hand. However, this proved to be error prone.

We have, therefore, automated the calculation of the stale knowledge by per-
forming a series of pre-run simulations between combinations of agents, including
cases where the intruder took some of the roles, taking care to distinguish those
cases where the intruder does or does not know the values of data independent
types included within the messages. These simulations do not affect the state
space, since we do not perform any actual runs of the protocol. Instead, we make
use of the existing computational methods that are used to calculate the intru-
der’s initial knowledge from initially known values specified by the user, closed
under the deduction rules. The simulations are performed by taking the set of
messages that the intruder would see by observing a typical run, using the me-
chanism outlined above to calculate the closure under the deduction rules, and
then mapping fresh values of data independent types to appropriate background
values. Calculating these sets based on the model of the intruder allows us to
automatically capture any subtleties within the intruder’s specified behaviour.

4 Incorporating Honest Agents within the Intruder

Together with stale knowledge, a second strategy for reducing the state space of
data independent protocol checks was introduced in [17]. This was to incorporate
the functionality of some participant of the protocol into the intruder, thereby
removing the need for an additional process in the system. An agent modelled
this way is referred to as an internal agent.

It is only possible to do this easily for processes whose messages (or state of
mind measured in some other way) are not directly examined by the specifica-
tion we are using. Since such specifications tend to concentrate on the honest
agents we have, to date, only incorporated server processes into the intruder.
Henceforth, we will assume that it is a server that is being treated as internal.

In brief, the functionality of a server is captured within the intruder by
means of an additional set of deductions and generations that the intruder can
perform. As presented in more detail in [17], we classify internal agents into two
categories. The first contains those that do not introduce any fresh variables of a
data independent type at any point during the protocol. Internal agents in this
first category are straightforward to incorporate into the intruder process and
are captured with appropriate deductions (as demonstrated in the case studies
presented in [17]). The second category are those internal agents that introduce
fresh variables of data independent types at some stage in the protocol runs.
Obvious examples of these are servers introducing fresh session keys like the one
in the Yahalom example.

Deductions performed by the intruder are usually modelled by pairs of the
form (X, f), where X is a finite set of facts and f is a fact that it can construct if
it knows the whole of X, for example ({{M}K , K}, M). The functionality of the
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first sort of internal agent can be captured with this type of deduction within
the intruder: we get a deduction (X, f) if, after the agent is told the messages
in X, it can be expected to emit f (where f will be functionally dependent on
X). The example given in [17] was the server in the TMN protocol ([12]) whose
function was to receive two messages M1 and M3 and construct a corresponding
third message M4, where M4 only contains variables in M1 and M3 (thereby
not introducing any fresh variables into the system). The relevant deductions
were therefore all valid instantiations of ({M1, M3}, M4).

A special sort of “deduction” is required to model situations like that in our
example protocol where an internalised server creates fresh values and may then
put such values into several related packets (in our example, the second parts
of messages 3 and 4). These generations have the form (t, X, Y ), where t is a
non-empty sequence of the fresh objects being created, X is the set of inputs the
agent we are modelling requires to trigger it to produce the fresh values, and Y
is the set of facts generated, which contain the fresh values that are produced.
In our example, X would consist of a message 2, t would be a single fresh key,
and Y would contain the second parts of messages 3 and 4:

t = 〈Kab〉,
X = {Nb, {A, Na}SKey(B)},

Y = {{B, Kab, Na}SKey(A), {A, Kab, Nb}SKey(B)},

where Kab is a fresh foreground value. (The first parts of messages 3 and 4 are
not linked to the fresh value, and would be the subject of ordinary deductions.)

The sequence t (though it is rare for it to be more than length 1) synchronises
with the appropriate manager(s), and the set Y is functionally dependent on X
and t (i.e., if we know what messages went into our server, and what fresh values
it generated in response, then we know what messages it will output).

Servers that generate fresh values create the most significant theoretical pro-
blem in our work. Namely, how can we reasonably limit the intruder’s appetite
for fresh values obtained from the server (whether internal or external) since it
has the capability of requesting any number it wishes? The intruder can do this,
for example, by using the same set X of inputs to the server to generate many
different Y ’s, each characterised by a different key. Furthermore, it can often
build up a store of these values and later use them one at a time with the ho-
nest agents. For essentially this reason, the recycling mechanism used elsewhere
cannot be applied to these multiple Y ’s held within the intruder.

The only way to keep the number of fresh values manageable (or even finite)
is to prevent the intruder storing many fresh values for later use. In automatically
generated CSP scripts we are severe on the intruder: we stop it acquiring a new
set of fresh values until one of the honest agents is ready to receive such a value
“from the server”. This bounds the state space satisfactorily, but how do we
know we have not thrown away some attacks?

We are not aware of any real protocol where this simple approach does lose
an attack, but that is not good enough since our objective is to provide a proof.
On the assumption that the set Y that comes back from the server does indeed
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depend only on X and t, it is clearly true that any Y that the intruder could
have acquired early for much later use could also be acquired just in time. The-
refore, if the only thing the intruder does with the members of Y is to hand
them on to honest agents, it is of no advantage to him to possess them early.
The complications arise because the intruder might be in a position to make
deductions from having many server-generated messages that affect his ability
to produce other messages in advance of telling an honest agent about the fresh
values.

We sketch below a solution which is guaranteed not to lose any attacks under
the following additional assumptions:

– the server creates only one value of one type (so the t of each generation is
a sequence of length 1);

– no agent learns any more than one value of this type at a time.

To simplify the presentation, we assume also that there is only one type being
generated by the server (for example, there are not some generations of keys and
some of nonces).

The solution to this is not unlike the background values used to enable the
recycling of foreground values. We add extra, dummy values into the type being
generated. These have the special characteristic that they are not accepted as
genuine by any honest process (so the latter will never accept any message invol-
ving one). The intruder can use these values itself like any others, in particular
doing deductions involving them. The trick is that we allow the intruder to per-
form, at any time, a “generation” based on a valid input set X, but unless there
is a space in a honest agent for a value of the given type, the result will always
be based on a dummy value. If there is a space, the result may be either a real
or dummy value.

We can then argue that any trace of communications that take place between
the intruder and agents in a model where there is an unbounded supply of values
of the given type (and there is no restriction on how many times generations can
occur) can be reproduced (with appropriate recycling mappings that occur in
our existing model) in this intruder. For any message M that the intruder can
generate when there is an unbounded supply of our type, it is possible to arrange
that all the messages from the server that he uses to produce M are obtained
after the last protocol message before M (“just in time”). This behaviour can be
mapped onto a behaviour of the reduced system by mapping to dummy values
all the values generated in these deductions other than the one value v freshly
told to a trustworthy agent (if there is one), and making v the fresh value that
the manager is still allowed to deliver to the intruder.

This use of dummy values therefore loses no attacks. However, there is the
possibility that this technique introduces false attacks. An example would be
where the value being introduced is a key K, and one of the messages contains
something encrypted under K that the intruder would not otherwise learn; repre-
senting K by the dummy value, which the intruder could learn from elsewhere,
would allow the intruder to deduce the contents of the message, as a false attack.
The solution is to use two dummy values: one that is created in circumstances
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where we would expect the intruder to learn it legitimately, and one that is crea-
ted in other cases. However, a single value appears to suffice more frequently
than in the analogous case of background values.

There is no need to manage these dummy values via the manager process.
Their “generation” can, in fact, be performed using ordinary deductions.

5 Full Automation of Data Independence Techniques

In this section, we begin by presenting an improvement to the CSP protocol
models generated by Casper, which reduce the size of the state space; using data
independence techniques increases the size of the state space, so these techniques
would prove impractical without this balancing reduction. We then discuss the
full integration of the data independence techniques within Casper.

5.1 Optimisation of Casper-Generated Scripts

The CSP protocol models generated by Casper make use of signal events that
reflect the states of mind and beliefs of the honest processes running the protocol;
these signal events are then used to specify security properties.

For example, suppose we want to test whether a protocol authenticates
an agent Alice to another agent Bob, and whether they agree upon the va-
lue of some key k; we do this by testing whether if Bob thinks that he has
completed a protocol run with Alice using a particular key k, represented
by a signal event signal.Commit.Bob.Alice.k, then Alice thinks she was
running the protocol with Bob using the same key, represented by an event
signal.Running.Alice.Bob.k1. See [11] for fuller details, for example concer-
ning details of the specifications and the placement of signals.

Previously, the definitions of the honest agents generated by Casper would in-
terleave these signal events with the events representing the messages of the pro-
tocol. Unfortunately, these additional signal events greatly increases the number
of traces of each process, and so greatly increases the state space. To overcome
this problem, we redesigned our models so that instead of interleaving the signals
with message events, the signals were introduced at the top most level, via an
appropriate renaming of message events of the overall system process.

A problem arises, however, if the message event does not contain all the in-
formation needed to construct the corresponding signal event. To overcome this
problem, we extended the CSP data structure representing the protocol messages
by adding an additional field containing all the information required. (This field
has no influence on the flow of messages in the protocol runs.) So, in our pre-
vious example, the message 5 corresponding to the desired signal event becomes
(Msg5, Encrypt.(kab, <nb>), <na>), where the extra field <na> completes
the set of required variables for our signal event.

This optimisation on Casper has led to a dramatic reduction in the state
space sizes of the protocols we model and check using FDR. For example, the
1 We are simplifying the structure of the signal events slightly for ease of presentation.
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number of states explored for the adapted Needham Schroeder Public Key Pro-
tocol [9] model (with two instances of the initiator and two of the responder
agents running in parallel) using the new version of Casper is 15,050 states as
opposed to the old version requiring 425,734 states; the value for the new version
incorporates an optimisation inspired by and similar to one of those described
in [18], namely that the intruder never acts when a trustworthy can output.

5.2 Incorporating Data Independence Techniques into Casper

Figure 2 presents an example of a Casper script modelling the same Yahalom
protocol used in Figure 1, but this time incorporating our data independence
techniques. The differences are minimal: we have abstracted away the design
and complexity of our data independence techniques from the users of Casper,
making our techniques much more accessible.

In brief, the main extensions to our Casper script are as follows. Firstly, the
user must indicate which data types are to be treated as data independent.
Within the #Processes section, variables of such types are indicated using the
generates keyword: values for such variables will be freshly supplied by the cor-
responding manager processes. For example, in Figure 2 nonces and session keys
are regarded as data independent, so the corresponding variables na, nb and kab
are indicated as being generated in this way; by contrast, in Figure 1 these varia-
bles were introduced as parameters of the processes, with the parameters being
instantiated in the #System section.

In the #Actual Variables section we declare the actual variables which
will be used in our actual system; further, we now need to classify all va-
riables of data independent types as either Foreground, KnownBackground or
UnknownBackground values.

In the case of the foreground values, the user needs to estimate how many
values the manager will need; if too few values are given, FDR will give a trace
error, indicating that the manager process ran out of fresh values, and so was
unable to allocate another value; in this case, the user can simply edit the Casper
script to include an extra value. It is advisable to declare the minimum necessary
number of foreground values for each type, since increasing this number will
cause the state space of the system to grow dramatically. Finding methods for
calculating the number needed is the subject of current work.

For each data independent type, the user must declare exactly one value as
a KnownBackground value, and one as a UnknownBackground value.

The user can specify which roles should be modelled internally to the in-
truder process, using a line such as IntruderProcesses = SERVER, within the
#Intruder Information section.

A further extension concerns the ability for the agent processes to withdraw
during a session or not, captured by WithdrawOption = True / False. For full
generality, one should allow agents to withdraw, but this increase the state space,
so we make it an option.



Automating Data Independence 187

Optional:  User can choose whether agents can
withdraw at any point during a run or not.

#Free Variables

A, B : Agent
S : Server
na, nb : Nonce
kab : SessionKey
SKey : Agent -> ServerKey
InverseKeys = (SKey, SKey), (kab, kab)

#Processes

#Protocol description

0.    -> A : B

1.  A -> B : na
2.  B -> S : nb, {A, na}{SKey(B)}
3.  S -> A : nb, {B, kab, na}{SKey(A)}
4.  S -> B : nb, {A, kab, nb}{SKey(B)}
5.  A -> B : {nb}{kab}

# Specification

Agreement(B, A, [])

#Actual Variables

Alice, Mallory : Agent

Sam : Server

NBp : Nonce
NBs : Nonce

KBp : SessionKey
KBs : SessionKey

INITIATOR(A) knows SKey(A)

SERVER(S) knows SKey
RESPONDER(B, S) knows SKey(B)generates nb

generates kab

N1, N2, N3 : Nonce

K1, K2, K3 : SessionKey

InverseKeys = (K1, K1), (K2, K2), (K3, K3), (KBp, KBp), (KBs, KBs)

generates na

(Foreground)
(KnownBackground)
(UnknownBackground)

(Foreground)
(KnownBackground)
(UnknownBackground)

#Functions

symbolic SKey

#System

INITIATOR(Alice)
RESPONDER(Alice, Sam)

Declared foreground values used by

generate the continous source of fresh values.

WithdrawOption = True / False

captured within the intruder process.
Functionality of SERVER process is to be

#Intruder Information

Intruder = Mallory
IntruderKnowledge = {Alice, Sam, Mallory, NBp, KBp, SKey(Mallory)}

IntruderProcesses = SERVER

manager processes.
freshly supplied by the
Values for na, nb, kab will be

Background values

mechanism.
used for the recycling

the corresponding manager processes to

Fig. 2. Casper script for the Yahalom protocol, using data independence techniques
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5.3 Example

We now illustrate some of the advantages of our techniques by considering the
results obtained when they are applied to the running example. The script in
Figure 2 treats nonces and session keys as data independent. The script defines
a system where a particular agent Alice can act both as initiator and responder,
and can perform an unbounded number of sequential runs. The server is defined
to be internal within the intruder process. The property we are interested in
verifying is represented by the authentication specification Agreement(B, A,
[]) which, in brief, means that if A thinks she has successfully completed a
run of the protocol with B, then B has previously been running the protocol,
apparently with A, and furthermore, there is a one-to-one relationship between
the runs of A and the runs of B. In our example, we test this authentication
property between Alice (as responder) and herself (as initiator).

It is well known that this particular version of the Yahalom protocol is flawed.
The attack we use for the purpose of illustrating our techniques is essentially
the same as the well-known attack by Syverson (in [19]), except it is a self-
authentication attack, between Alice and herself. We write AliceI and AliceR

to differentiate Alice in her roles as initiator and responder, respectively.

– Message 1. AliceI → IntruderAliceR
: N1.

– The intruder performs the functionality of the server using message 1 from
the current run, and an old message 2, namely {Alice, NBp}SKey(Alice),
where NBp is the unknown background nonce, representing some
old nonce used in a previous run. This allows the intruder to ge-
nerate the two corresponding messages {Alice, K1, N1}SKey(Alice) and
{Alice, K1, NBp}SKey(Alice). If the server were implemented as a separate
process, then this would be reflected in the following sequence of steps:

Message 2. IntruderAliceR
→ Sam : N1, {Alice, NBp}SKey(Alice)

Message 3. Sam → IntruderAliceI
: N1, {Alice, K1, NBp}SKey(Alice)

Message 4. Sam → IntruderAliceR
: N1, {Alice, K1, N1}SKey(Alice).

– Message 3. IntruderSam → AliceI : {Alice, K1, N1}SKey(Alice).
– Message 5. AliceI → IntruderAliceR

: {N1}K1 .

Alice, as initiator, believes she has completed a run of the protocol with
herself, as responder, when in actual fact, Alice did not participate in this latest
run as responder.

This attack requires Alice to have run a session with herself previously, so in
our previous models, without data independence techniques, we would not have
caught this particular attack if we had defined a system where each agent could
only perform one run each. When using data independent techniques, we do not
need to worry about how many runs each agent has to perform in order to be
sure we have captured potential attacks, since our techniques are such that the
number of runs each instance can perform is unbounded.
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Furthermore, this example nicely illustrates how effective the use of stale
knowledge is in terms of state space. In the attack above, where we provided the
intruder with stale knowledge, the attack was found in 223 states. However, if we
remove the stale knowledge from the intruder’s initial knowledge and perform
the same check again, then we get the equivalent attack, but FDR now requires
258,967 states to find it. In systems where no attack is found, the difference
becomes even larger.

6 Conclusion

In this paper, we presented some generalisations and the full automation of the
data independence techniques developed in [17]. The first main generalisation
involved dropping the assumption presented in Section 3.1, thereby making our
techniques applicable to a broader spectrum of protocols. The second concerned
the method used for calculating the stale knowledge sets: to ensure that the
maximum set is correctly generated taking all sorts of subtleties within the
model (for example, algebraic equivalences) into account, we based our new
method of calculating them upon the existing computational methods that are
used to calculate the intruder’s initial knowledge.

The work on the application of data independence techniques presented thus
far has successfully drawn us much closer towards complete correctness proofs
automatically generated by Casper and FDR. We are now interested in expan-
ding this work to be able to construct proofs for an arbitrary number of agents
running the protocol in parallel with each other. We believe that our methods
of incorporating honest agents into the intruder will prove useful for this.

Further planned extensions include the automation of the calculation of the
number of foreground values required for each data independent type (as descri-
bed in Section 5.2), a generalisation of the argument in Section 4 so as to do
away with the additional assumptions, the incorporation of time stamps into our
techniques, and the continued development of optimisation strategies within our
models to reduce the state space size.

Data independence applies to a wide range of notations other than CSP,
and we imagine that the same sort of ideas discussed here could profitably be
used in other protocol model checkers. However, details will inevitably vary from
notation to notation and require care. An encouraging development here is the
work of Lazić and Nowak ([7]) which shows how Lazić’s CSP data independence
results can be transferred to a general setting.
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5. Lazić, R.S., Roscoe, A.W.: Using logical relations for automated verification of
data-independent CSP. Proceedings of the Workshop on Automated Formal Me-
thods (Oxford, U.K.). Electronic Notes in Theoretical Computer Science 5 (1997)
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