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Abstract 

We construct a protocol that enables a secret bit to be revealed gradually in a very 

controlled manner. In particular, if Alice possesses a bit S that was generated ran- 

domly according to the uniform distribution and 3 < p1 < - -a < pm = 1 then, using 

our protocol with Bob, Alice can achieve the following. The protocol consists of m 
stages and, after the i-th stage, Bob’s best prediction of S, based on all his interac- 

tions with Alice, is correct with probability exactly pi (and a reasonable condition 

is satisfied in the case where S is not initially uniform). Furthermore, under an in- 

tractability assumption, our protocol can be made “oblivious” to Alice and “secure” 

against an Alice or Bob that might try to cheat in various ways. Previously proposed 

gradual disclosure schemes for single bits release information in a less controlled man- 

ner: the probabilities that represent Bob’s confidence of his knowledge of S follow a 

random walk that eventually drifts towards 1, rather than a predetermined sequence 

of values. 

Using controlled gradual disclosure schemes, we show how to construct an im- 

proved version of the protocol proposed by Luby, Micali and Rackoff for two-party 

secret bit exchanging (“How to Simultaneously Exchange a Secret Bit by Flipping 

a Symmetrically-Biased Coin”, Proc. 22nd Ann. IEEE Symp. on Foundations of 

Computer Science, 1983, pp. 11-21) that is secure against additional kinds of attacks 

that the previous protocol is not secure against. Also, our protocol is more efficient in 

the number of rounds that it requires to attain a given level of security, and is proven 

to be asymptotically optimal in this respect. 
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G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 573-588, 1990. 

0 Springer-Verlag Berlin Heidelberg 1990 



574 

We also show how to use controlled gradual disclosure schemes to improve existing 
protocols for other cryptographic problems, such as multi-party function evaluation. 

1 Introduction 

Suppose that S E (0 , l )  and Alice knows the value of S, but Bob has no idea about 
what the value of S is in the sense that Bob’s best guess of S is correct with probability 
f (such a state of knowledge could be obtained by having Alice flip a fair coin and 
look at the outcome but not show it to Bob). We are concerned with multistage 
protocols, called discIosure schemes, that, informally, enable Alice to provide Bob 
with partial information about S at each stage. We say that, at a particular stage, 
Bob’s confidence about the value of S is the probability that Bob’s best guess of S is 
correct (initially, Bob’s confidence is f ) .  A gradual disclosure scheme is, informally, 
a disclosure scheme in which Bob’s confidence changes in small increments from to 
1. 

An example of a gradual disclosure scheme (considered by Luby, Micali and Rack- 
o f f  [lo], and Vazirani and Vazirani [12]), which we shall refer to as the biased coin 
scheme, operates as follows. Alice constructs a coin C that is biased towards S by E ,  

so that each time it is flipped its value is S with probability $+E. Then, at each stage 
of the protocol, Alice &ps C and sends the outcome to Bob. At each stage, Bob’s best 
estimate of S is the majority value of the outcomes of C that he has received so far, 
and Bob’s confidence depends on the “strength” of this majority (i.e. the difference 
between the number of 1s and 0s). Bob’s confidence does not necessarily increase as 
the stages progress, but the ezpected value of Bob’s confidence does increase. Also, 
at each stage, Bob’s confidence changes by at most E (and, thus, “gradually” if E is 
small). It can be shown that if t = $ then, after w(m210g2m) stages, the expected 
value of Bob’s confidence is very high: 1 - (J-)”‘’). 

A gradual disclosure scheme is oblivious if Alice learns nothing about Bob’s current 
best estimate of S or confidence that she could not determine independently of the 
particular execution of the protocol. The biased coin scheme described above is not 
oblivious since Alice can completely determine Bob’s state of knowledge about S 
from the values of the coin flips. If a third party, Ted, is allowed to participate, the 
biased coin scheme can be made oblivious by having Ted flip the coin C and reveal 
the outcomes to Bob but not to Alice. 

Under a reasonable intractability assumption, the biased coin scheme can be made 
modified to be oblivious without the presence of Ted. It can also be modified to  be 
secure against an Alice or Bob that may try to cheat in several possible ways. Alice 
could attempt to not send the coin flips according to the appropriate distribution (for 
instance Alice might try to convince Bob that S is 0 when S is really 1). In order 
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to be able to deal with this possibility, it is assumed that Alice initially sends Bob a 
cryptographic commitment of S. It is then possible for Bob to determine if Alice is 
behaving “consistently” with respect to the value of this committed bit. Bob could 
attempt to learn more about S than he is supposed to at a particular stage. The 
above possibilities can all be prevented. 

Informally, a controlled gradual disclosure scheme is a gradual disclosure scheme 
with the additional property that, at each stage of the protocol, Bob’s confidence level 
is a predetermined value, independent of the particular execution of the protocol. 
That is, there is a sequence of probabilities p I ,  ...,pm (which are parameters of the 
protocol) such that, after stage i, Bob’s confidence is p ; .  Note that the biased coin 
scheme described above is not controlled. 

One obvious advantage of a controlled gradual disclosure scheme over the biased 
coin scheme is in the number or stages required to attain a given bound on the 
incremental changes in Bob’s confidence level during the disclosure. By setting pi = 
5 + k, the change in Bob’s confidence between successive stages is bounded by $ 
and the secret is revealed within m rounds, whereas, to attain this bound and reveal 
the secret with high probability with the biased coin scheme, w(m2 log’ n) stages are 
required. (In all protocols considered here, a stage consists of a constant number 
of rounds. Therefore, these bounds also translate into similar bounds in terms of 
rounds.) 

Another important advantage of a controlled gradual disclosure scheme arises from 
the property that the sequence of probabilities representing Bob’s confidence level fol- 
lows predetermined values. In particular, we can use this property to construct an 
improved version of the protocol proposed by Luby, MiCali and Rackoff [lo] (also 

considered by Yao [15]) for tweparty secret bit exchanging. More specifically, the 
improved secret bit exchanging protocol has (in addition to the desirable properties 
of the previous protocol) the following property. Even if one party, say Alice, obtains 
information (possibly from some events in the outside world) about what Bob’s cur- 
rent knowledge of her secret is, then she still cannot infer more information about 
Bob’s secret from this than otherwise. (Circumstances similar to this and their af- 
fect on protocols are considered by Halpern and Rabin [9].) The previous two-party 
secret bit exchanging protocol is very vulnerable to these circumstances, whereas our 
protocol is very secure against such circumstances. 

In Section 2, we present more formal definitions about our assumptions and our 
model. In Section 3, we show how to construct a controlled gradual disclosure scheme 
that is oblivious as well secure against an Alice or Bob that might try to cheat. In 
Section 4, we informally explain how our controlled gradual disclosure scheme can be 
used to construct an improved version of the secret bit exchanging protocols proposed 
by Luby, Micali and Rackoff [lo]. Also, we sketch the proof of a lower bound on the 

1 ’  
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number of rounds required to attain a particular level of security that implies that 
our protocol is asymptotically optimal in the number of rounds that it requires. In 
Section 5 ,  we informally explain how our controlled gradual disclosure scheme can be 
used to improve previous protocols for multi-party function evaluation (considered by 
Yao [15], and Beaver and Goldwasser [l]). 

2 Definitions 

2.1 Protocols 

We represent a two-party protocol as an interacting pair of Turing machines ( A ,  B )  
with the following tapes and properties. A and B have individual (read-only) input 
tapes, (read/write) work tapes, (read-only) random tapes, and (write-only) output 
tapes. Also, there are two communication tapes, one which is write-only to A and 
read-only to B ,  and one which is write-only to B and read-only to A. The input tapes 
are initialized with the input to the protocol, and the random tapes are initialized 
with independent random sequences of bits; all other tapes are initialized with the 
null string. 

Both A and B have sleep states as well as final states. When the protocol is 
executed, beginning with A, the parties take turns running, each one running until 
it enters its sleep state or final state and then the other one starts running. This 
process continues until both parties are in their final states. 

We also require that the running time of the protocol be polynomial in the follow- 
ing sense. For any B' and z,y E {O, l}* ,  when (A,B' )  is executed with z and y on 
the respective input tapes, the total running time of A is bounded by a polynomial 
in 151 and IyI. Also, a similar condition holds if A is replaced by A'. 

Each turn of A running until entering a sleep state, followed by B running until 
entering a sleep state is called a round. For convenience, we may partition the rounds 
into stages, (which each consist of a number of consecutive rounds). 

In the special case of a trusted third party (considered in Section 3.1), the scheme 
is an interacting triple of Turing machines (A, B,  T ) ,  defined similarly as above, where 
( A ,  T )  and ( B ,  2') have private communication tapes. 

2.2 Controlled Gradual Disclosure Schemes 

A controlled gradual disclosure scheme is a protocol that has the following properties. 
The protocol is run with A's input tape initialized with a random bit S followed by 
a string of n Is, and B's input tape also initialized by a string of n 1s. The protocol 
first runs for a commitment stage which consists of a constant number of rounds (with 
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respect to n). Informally, in this stage, Alice is committing her value of S to Bob. 
Alice cannot be prevented from choosing a different secret bit S’ and revealing this 
to Bob. What a protocol can guarantee is that Alice behaves consistently relative 
to some fixed secret bit S’ which she must determine during the commitment stage 
(otherwise, Bob detects that Alice is inconsistent). Following the commitment stage, 
are a series of stages numbered 1, ..., rn. On completion of the i-th stage, B outputs bi. 

Loosely speaking, bi represents Bob’s knowledge about S (or S’) after stage i. Alice 
may deviate from the protocol at any time (represented by replacing A by another 
Turing machine A’) and, similarly, Bob may deviate from the protocol at any time. 

We adopt the following terminology in order to simplify our presentation. We 
write S(n) 5 ~ ( n ) ,  if 6(n) 5 ~ ( n )  + (i)w(l), and 6(n) cz ~ ( n )  if S(n) 5 r(n) and 
r (4  5 w- 

There are four conditions that we require a controlled gradual scheme to satisfy: 

Correctness: If A and B follow the protocol correctly then, for all i ,  bi E ( 0 , l )  
and Pr[bi = S] N p i .  

Informally, this means that if Alice and Bob both follow the protocol correctly 
then, on completion of the i-th stage, Bob learns the equivalent of the outcome of 
one coin that is biased towards S with probability p; .  

Consistency of Secret: If B correctly follows the protocol then, for all i, either 
6i E (0 , l )  and Pr[bi = S‘] 2 p ; ,  or b; = CHEAT. 

Informally, this means that, after the commitment stage, there is no strategy for 
Alice to modify the information that she discloses to Bob without this being detected 
by him. 

Security of Secret (from B):  If A correctly follows the protocol then, for all i ,  

Informally, this means that there is no strategy for Bob that increases the amount 
Prjbi = S] 5 pi. 

of information that he learns about S. 

Obliviousness of Disclosure ( to  A ) :  If B correctly follows the protocol and 
i, = max{i : bi # CHEAT} then Pr[bi,, = S‘] k pi,,. 

The significance of this condition is more subtle than the previous conditions. 
Suppose that, at some stage i of the protocol, pi = i. Then, with probability i, Bob’s 
best estimate of S at this stage is wrong. If Alice were to know that this has occurred 
then, by quitting the protocol at this stage, she would leave Bob having significant 
confidence in something that she knows is false. If the disclosure is oblivious then, 
whenever Alice quits at this stage, from her point of view, Bob’s find estimate of her 
secret is correct with probability 5 .  
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The above definition of a controlled gradual disclosure scheme assumes that, be- 
fore executing the protocol, from Bob’s point of view, the prior distribution of s 
is uniformly random. The situation is more complicated if this is not the case. In 
particular, if Alice does not know what Bob’s prior information about S is then no 
protocol can have the property that Bob’s confidence level follows a predetermined 
sequence of values. On the other hand, any controlled gradual disclosure scheme in 
the above sense (i.e. that satisfies the above properties when S is uniformly random) 
will satisfy a reasonable property when it is executed with with S chosen according 
to an arbitrary distribution. Intuitively, the property is that the information that 
Bob learns about S from the protocol after stage i is equivalent to Bob learning the 
outcome of a single coin that is biased towards S with probability p i .  Although this 
information may combine with Bob’s prior information about S in different possible 
ways, yielding different possible confidence levels for Bob’s knowledge about S ,  the 
amount of new information that Bob obtains is, in a reasonable sense, the same. This 
property is best expressed in terms of likelihoods, where the likelihood of an event is 
l ( p )  = log(fi)  where p is the probability of the event. Then, after stage i, Bob’s 
likelihood that b; = S satisfies l(Pr[bi = SIBob’s prior information]) N I(pi) + Z(q), 
where q is Bob’s prior probability that S = b,. 

2.3 Complexity Theoretic Assumptions 

For concreteness, let us base our scheme on the difficulty of determining certain 
quadratic residues. 

We assume the Quadratic Residuosity Conjecture, which is that there is no 
probabilistic polynomial-time (in n) algorithm that achieves the following. The input 
to the algorithm is n, p . q, where p and q are randomly chosen n-bit primes (and p 
and q are not explicitly given to the algorithm), and 2, a random element of Z’pq. 
The goal of the algorithm is to determine with probability f + ( : )O(’)  whether or not 
5 is a quadratic residue (i.e. whether z = y2, for some y E Z‘p.q). 

3 A Controlled Gradual Disclosure Scheme for a 
Random Bit 

In this section, we construct a controlled gradual disclosure scheme that is oblivious 
as well secure against an Alice or Bob that try to cheat. Intuitively, the main idea 
behind our protocol is to simulate the flips of a special coin that adjusts its bias each 
time it is flipped. The new bias of the coin depends on the outcome the previous time 
it was flipped. 
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Let f < pl < . . - < pm = 1. Our protocol operates in m stages and, after the i-th 
stage is completed, achieves the following conditions. Bob’s best guess of S (based 
on the information that Bob has seen so far) is correct with probability p i .  Moreover, 
Alice’s best guess of what Bob’s best guess of S is (based on the information that 
Alice has seen so far) is correct with probability pi .  

In Section 3.1, we describe how to adjust the biases of the coin so as to obtain the 
desired behavior, and, to simplify the presentation of this, we make the assumption 
that a trusted third party is present. In Section 3.2, we describe how to implement 
the protocol without a trusted third party. 

3.1 First Implementation (with Trusted Third Party) 

Assume that there is an honest third party, Ted, trusted by both Alice and Bob 
(in Section 3.2, the protocol will be modified to work without the presence of Ted). 
Initially, Alice sends Ted a copy of S, and Ted sends Bob a sequence of bits C1, ..., Cm, 
which can intuitively be viewed as outcomes of a coin whose bias ‘‘evoIves” each time 
it is flipped. We would like the biases of the coin to be such that, for all i E { 1, ..., m}, 
after seeing the outcomes of GI, ... Ci, no matter what they are, Bob’s best guess of 
S is the outcome of Ci, and for this guess to be correct with probability exactly pi. 

That is, for all zl...x; E {0,1}’ and 5 E (0, l}, 

pi if z = xi 
1 -pi if I # 5;. 

Pr[S = z1C1 ... Ci = 5 1  ... xi] = 

It can be shown that, unless n _< 2, this condition cannot be satisfied if the distribu- 
tions of C1, ..., C, are independent. 

Ted generates the outcomes of coins C1, ..., Cm inductively as follows (where the 
quantities 31, ..., s,, t l ,  ..., t ,  E [0, 11 will be defined later). C1 is a biased coin gen- 
erated such that Pr[Cl = s] = s1 and Pr[C1 # S] = tl. Once C1, ..., Ci have 
been generated, Ci+l is generated according to the following distribution. For all 
z1 ... 5; E { O ,  l};, 

Pr[Ci+1 = x;lS = xi A Cl...Ci = zl...zi] = s;+~ 

Pr[C;+1 = x;lS # zi A Cl...Ci = z1...xi] = 

It can be verified that, if C1,...,Cm are generated in this manner then, for all 
5 1  ... 5;+1 E { O , l } i + l ,  

Pr[S = xllC1 = zl] = s1 = 1 - t l ,  

and, by applying Bayes’ rule, for all i E (1, ..., rn - l}, 
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Therefore, in order to satisfy 

for all i E (1 ,  ..., m} and for all zl...z; E (0, l}', it is necessary and sufficient for 
SI, ..., s,, t l ,  ..., t ,  t o  satisfy s1 = p1, tl = 1 - p1, and, for all i E { 1, ..., m - l}, 

pis;+l - (1 - pi) (1 - ti+l) 
- Pi+l = 

pisi+l + (1 - pi)ti+l (1 -pi)(l -t i+l)+pi(l  -si+l)' 

These equations yield a unique solution of s1 = p1, t l  = 1 - p1, and for all i E 
{1, ..., m -  l}, 

si+1 = (y) ( Pi + Pi+1 - ') 
2Pi+l - 

t i+l = (1 - Pi+l) (p i  + pi+l;  1 )  

and, since f < p1 < . - .  < pm = 1, it can be verified that sl, ..., s,,tl, ..., t,,, are all 
valid probabilities (i.e. they are all in the range [O,l]). 

Intuitively, the values of C1, ..., C, can be viewed as the states of the execution 
of a Markov chain. If Alice's secret is 0 then Ted selects an initial state to be 0 with 
probability s1 and 1 with probability tl,  and shows Bob the states of an execution of 
the following Markov chain. 

1 -Pi 2Pi+l - 

. .  

If, on the other hand, Alice's secret is 1 then Ted selects an initial state to be 1 
with probability s1 and 0 with probability t l ,  and shows Bob the states of an execution 
of the following Markov chain. 



. .  

. .  

Bob does not know which Markov chain is being executed but Bob does know 
that i t  is one of two (depending on what S is). Bob observes the sequence of states 
of the Markov chain that is executed and, fiom this and Bob’s knowledge of proba- 
bility theory, at stage i, infers that S is the current state of the Markov chain with 
probability p; .  

3.2 Second Implementation (without Trusted Third Party) 
In this section, we give an overview of how Alice and Bob can cryptographically 
simulate the role that Ted plays in the protocol of Section 3.1. Essentially, what Alice 
and Bob are able to do is simulate the execution of the appropriate Markov chain for 
Alice’s secret S with the following conditions holding: (1) (To protect the consistency 
of the secret) the Markov chain is certified to Bob to be the one that corresponds to 
S (explained in Section 3.1); (2) (To protect the security of the secret) Bob learns 
nothing about the Markov chain except what he can infer from the execution that he 
sees; (3) (TO protect the obliviousness of the execution) Alice learns nothing about 
the particular execution of the Markov chain that Bob sees. 

First, we design our protocol to satisfy conditions (2) and (3) under the assumption 
that Alice and Bob both correctly follow the protocol (but are then allowed to  make 
inferences based on the messages that were exchanged during the protocol). (We later 
explain how to modify the protocol to satisfy (l), (2)’ and (3) when Alice and Bob 
are allowed to deviate from the protocol in an arbitrary manner.) 

Our protocol relies on an implementation of a “one-out-of-k” oblivious transfer 
protocol (explained by Brassard, Crkpeau and Robert [4]). This protocol enables 
Alice to set up k bits and Bob to read a bit of his choosing such that: Alice has no 
idea which bit Bob read; and Bob learns nothing about the other k - 1 bits. Under 
the Quadratic Residuosity Conjecture, a one-out-of-k oblivious transfer protocol can 

be constructed as follows. Suppose the k bits are &, ..., b k .  Alice first generates two 
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distinct random n-bit primes, p and q, and then generates d E such that d is a 
quadratic nonresidue. Then Alice independently generates random XI, ..., xk E ZfpP 
subject to z; being a quadratic residue iff b; = 1 (i E {I, ..., k}) and Alice sends 
p + q,  d,  z1, ..., 21, to  Bob. (Note that, at this point, under the Quadratic Residuosity 
Conjecture, Bob cannot deduce anything about the value of any of the bits b, ..., bk 

from the information that he has.) Now, for Bob to learn bit bi,, he generates a 
random y E and a random t E (0 , l )  and sends 8 - y2 - z;, to Alice, who 
determines whether this quantity is a quadratic residue or not, and informs Bob of 
the result. From Alice’s point of view, 8 . y2 . z;, is a random element of Z’pq,  so she 
cannot deduce anything about the value of io from this transaction. By the algebraic 
properties of Z‘p.p, Bob can infer whether z;, is a quadratic residue or not from the 
knowledge of whether 8 . y2 xi, is a quadratic residue or not, and, thus, he can 
infer bi,. Also, it is straightforward to show that, under the Quadratic Residuosity 
Conjecture, Bob does not learn any information from this transaction about the value 
of the other bis, (i + io). 

Using a one-out-of-k oblivious transfer protocol, Alice can simulate a coin with 
a bias of her choosing and Bob can obtain an outcome of this coin so that: Alice 
does not see the outcome; and Bob learns nothing about the bias of the coin (except 
what he can infer from the outcome). To achieve this, Alice randomly chooses k bits 
subject to the condition that the proportion of 1s to 0s corresponds to the bias of 
the coin. To obtain an outcome, Bob randomly chooses i E (1, ,.., k} and, using a 
one-out-of-k oblivious transfer protocol, determines the value of the i-th bit. 

Using several of the above simulations of biased coins, Alice and Bob can apprw 
priately simulate the execution of any Markov chain in which each state has at most 
two possible successors. To do this, Alice simulates a biased coin for each state in 
the Markov chain, where each of these simulations are in terms of elements of the 
same set (Le. the p and q are the same for each coin). At each step, Bob ob- 
tains an outcome of the appropriate coin for the current state of the Markov chain to 
determine the next state (that is, he selects a random z; from those that Alice sent 
him that correspond to the current state, and determines, through Alice, whether 
it is a quadratic residue or not). Since, at each stage, Alice only receives a random 
element of Z f P q  (and she determines its residue/nonresidue status and reveals this to 
Bob), Alice learns nothing about the states traversed in the specific execution of the 
Markov chain. Also, by the Quadratic Residuosity Conjecture, it can be shown that 
Bob learns nothing about the specific transition probabilities of the Markov chain 
(except what he can infer from the states traversed in its execution). Thus, under 
the assumption that Alice and Bob both correctly follow the protocol, conditions (2) 
and (3) are satisfied. 



We now consider the general case where Alice and Bob may deviate from the 
protocol. For condition (l), Alice can initially send p - q, d and several elements of 

that represent the Markov chain to Bob and certify that they are valid for some 
S’ by a zereknowledge proof (explained by Goldreich, Micali, and Wigderson [S]). 
Also, during the further execution of the protocol, both Alice and Bob can certify 
that they are faithfully executing the protocol by zero-knowledge proofs. Since both 
Alice and Bob are constrained to  probabilistic polynomial-time computations, all 
these zereknowledge proofs can be implemented in a constant number of rounds. 

4 Two-Party Secret Bit Exchanging Protocols 

Suppose that parties Alice and Bob possess secret bits S, and Sb (respectively) and 
that they would like to know each other’s secrets and are willing to make an exchange 
of one secret for another. Suppose further that Alice and Bob do not trust each other 
in the following two senses. First, neither party is willing to believe that the other 
party is telling the truth about its secret-unless the other party proves the validity 
of the information that it sends. Also, each party is reluctant to reveal its secret 
first, for fear that the other party will not reveal its secret in return. This problem 
was investigated by Yao [13,14,15], Halpern and Rabin [9], Luby, M i d i  and Rackoff 
[lo], and Tedrick [ll]. Similar secret exchanging problems (except that they involve 
secrets that are multi-bit “keys”) were investigated by Blum 121, Brickell, Chaum, 
Damgkd, and van de Graaf [5], and Tedrick [ll]. 

In this section, we give an informal sketch of how a controlled gradual disclosure 
scheme can be used to strengthen the security of the secret bit exchanging protocols 
proposed by Luby, Micali and Rackoff [lo], and Yao in [ls]. In all these protocols (as 
well as ours) it is assumed that, initially, each party presents a correct commitment 
of its secret to the other party. 

4.1 Overview of Previous Results 

In this section, we briefly review previous work on protocols for fair secret bit ex- 
changes. 

Halpern and Rabin [9] overcome the main difficulties of the problem by making 
the assumption in their model that, as soon as one party, say Alice, learns Bob’s 
secret, Alice p e r f o m  some action that Bob can observe. From this and what Bob 
has learned during the execution of the protocol, Bob is then able to infer what Alice’s 
secret is. 

In [14], Ym claims that in some contexts, a ”fair” secret bit exchanging protocol 
does not exist. In [15], yao claims that there exists a protocol for a generalized form 
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of secret exchanging in which the protocol of Luby, Micali and Rackoff [lo], explained 
below, arises as a special case. 

The protocol of Luby, Micali and Rackoff [lo] is a secret exchanging scheme that 
satisfies the following properties. If both parties follow the protocol faithfully then, 
with very high probability, they successfully exchange secrets. If one party cheats then 
(under the quadratic residuosity conjecture) the amount of information that it obtains 
about the other party's secret is "fairly close" to the amount of information that the 
other party obtains about its secret. More precisely, if the total number of rounds in 
the protocol is w(m2 log' rn) then, after the execution of the protocol, the following 
holds. If both parties are honest then they can both guess each other's secrets with 
probability 1 - ($ )u ( l ) .  If one party, say Alice, is honest and she can guess Bob's 
secret with probability p then Bob (even if he has cheated) can guess Alice's secret 
with probability bounded by p + k. (Note that, in this protocol, the discrepancy of 
$ between Alice's and Bob's knowledge cannot be made super-polynomially small 
(i.e. ( ; ) w ( l ) )  unless it runs for a super-polynomial number of rounds (i.e. nw(')). The 
lower bound that we show in Section 4.3 implies that no other protocol can achieve 
a super-polynomial discrepancy in a polynomial number of rounds.) 

The protocol of Luby, Micali and Rackoff simulates a "symmetrically biased coin" 
that enables Alice and Bob to both gain a little knowledge (in a probabilistic sense) 
about each others secrets at each stage. Informally, if the secrets of Alice and Bob 
are S, and Sa (respectively) then the symmetrically biased coin, C, is biased towards 
S, @ Sb by i. The protocol repeatedly "flips" C, each time enabling Alice and Bob, 
in turn, to see the outcome. Neither Alice nor Bob knows what the exact bias of 
C is (if one of them did, it would know Sa @ Sb and could deduce the other party's 
secret). But seeing the outcome of a flip of C gives each party a little probabilistic 
information about the bias of C and, thus, the value of S, @ Sb. Since each party also 
knows its own secret, each party as a result learns a little probabilistic information 
about the secret of the other party. As the coin C is flipped repeatedly, each party's 
expected knowledge of the other party's secret increases. After w(m2 log' rn) rounds, 
the expected confidences of the two parties about each others secrets are both 1 - 
(i)w('). If one party cheats by quitting the protocol early, it only learns the outcome 
of at most one more coin flip of C than the other party learns. Thus, since C is only 
biased towards S a  8 Sh by k, the discrepancies between the two parties confidence of 
their knowledge of each other's secrets is bounded by i. 

During the execution of the above protocol, the pieces of knowledge that the two 
parties have about each other's secrets are highly correlated with each other. In fact, 
Alice and Bob's best guesses of each other's secrets after each stage are either both 
right or both wrong. Suppose that at some time before the execution of the protocol 
terminates, one party, say Alice, is confident about her knowledge of Bob's secret and 
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performs some Uaction in the outside world” based on what she thinks Bob’s secret 
is, and Bob observes this action. Then Bob can infer Alice’s secret in the following 
way. Bob knows his own secret and what Alice thinks Bob’s secret is. If Alice is 
right then Bob knows that his current estimate of Alice’s secret is right, otherwise 
Bob knows that his current estimate of Alice’s secret is wrong. It is desirable for 
secret exchanging protocols to be secure against any such inferences. If Alice and 
Bob’s knowledge about each other’s secrets are independent of each other then no 
such inferences can be made. In the next section, we present a secret bit exchanging 
protocol, based on our controlled gradual disclosure scheme, that has this property 
and is thus secure against the aforementioned kinds of inferences. 

It is important to  note that the independent interleaving of two biased coin 
schemes (as described in Section 1) will yield a very insecure secret bit exchang- 
ing scheme. This observation (due to Luby, Micali and Rackoff [lo]) is based on the 
fact that two sequences of probabilities that follow independent random walks will 
be very likely to, at some point, drift apart significantly. Thus, during the execution 
of such a protocol, there will likely be some point where there is a significant gap 
between Alice and Bob’s respective knowledge about each other’s secrets. 

4.2 A Secret Bit Exchanging Protocol Based on a Con- 
trolled Gradual Disclosure Scheme 

An m-round secret exchanging protocol can by constructed by interleaving two con- 
trolled gradual disclosure schemes, one in which Alice discloses her secret to Bob, and 
one in which Bob discloses his secret to Alice. The two executions of the controlled 
gradual disclosure scheme can be run independently in the sense that the honest par- 
ties use different random bits for the two protocols. If one party quits a protocol or 
does not send a valid message at some stage then the other party immediately quits 
both protocols and retains its current best estimate of the other party’s secret. 

This protocol has the property that if one of the players is honest then, during the 
execution of the protocol, the information that the parties have about each other’s 
secrets are independent and, therefore the protocol is secure against the kinds of 
attacks discussed in Section 4.1. 

Also, by setting pi = f + (z E { 1, ..., m}) in the controlled gradual disclosure 
schemes, we obtain the following property if one party cheats. After the execution 
of the protocol, if the honest party can guess the secret of the cheating party with 
probability p then the cheating party can guess the secret of the honest party with 
probability bounded by p + $ (thus, the discrepancy is k). The total number of 
rounds in the protocol is O ( n )  (whereas the protocol of Luby, MiCali and Rackoff 
[lo] requires w(m2 log’ rn) rounds to obtain the same discrepancy). In Section 4.3, 
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we prove that this relationship between discrepancy of information and number of 
rounds is asymptotically the best possible. 

4.3 A Lower Bound on the Number of Rounds Required 
for a Secret Exchanging Protocol With a Given Level 
of Security 

Theorem: For any m-round secret exchanging scheme, one party can learn a(&) 
more (in terms of its confidence level) about the other party's secret than it reveals 
about its own secret by quitting at  an opportune time. 

Sketch of Proof: To understand the intuition behind this proof, consider the 
confidence of each party at intermediate stages during the execution of the protocol. 
Initially, these quantities are both close to f and eventually they must approach 1 SO 

the average "gap" between these confidence levels during the execution of the protocol 
is a($). A party that cheats by quitting where one of these gaps arises will have an 
advantage of a($). 0 

5 Multi-Party Function Evaluation Protocols 
Suppose that Alice possesses bits 21, ...,zk and Bob possesses bits y1, ...,yk and 
that they are interested in learning the value of some function f ( ~ 1 ,  ..., X k , y 1 7  ...,yk) 
through the execution of some protocol. Supposing that Alice and Bob do not trust 
each other, there are several notions of security that are of interest. One of these 
notions, called 'Yairness", is the property that one party, even by cheating during the 
execution of the protocol, cannot learn more about the value of f ( q ,  . . a ,  Z k , y l ,  ...,yk) 
than the other party learns. A two-party version of this problem was considered by 
Yao [15], and a multi-party version is considered by Beaver and Goldwasser 111. 

In this section, we very briefly review how the previous protocols handle the issue 
of fairness, and how a controlled gradual disclosure scheme can be used to  make the 
protocols more efficient in the number of rounds that they require (and asymptotically 
optimal in this respect). 

For simplicity, let us only consider the case where f ( z ,y )  = z @ y (so k = l), 
and the prior distributions of z and y are independent and unformly random (the 
results that we discuss here extend to more general functions, and more general prior 
distributions of z and y). 

Along the lines of the theorem in Section 4.3, it can be shown that any m-round 
protocol for this problem has the property that one party, by quitting an an oppor- 
tune time, can obtain an "advantage" of n2(k) in the following sense. That party's 
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confidence level about the value of f(z,y) exceeds the confidence level of the other 

The protocols proposed by Yao [15], and Beaver and Goldwasser [l] (in the two- 
party case), operate as follows. Alice and Bob jointly construct a coin C that is biased 
towards f (I, y) by &, and, at successive stages, learn the outcome of independent flips 
of C. After w(m2 log' m) stages, the expected value of Alice and Bob's confidence 
levels (about the value of f(s, y)) are 1 - (?)"('). If one party cheats by quitting the 
protocol early then the advantage of that party is at most the result of one more coin 
flip of C and is thus bounded by $. Note the gap between this result and the lower 
bound above: to bound the possible advantage of one party by $, O(m) rounds are 
necessary, while these protocols show that w ( m 2  log' m) rounds are sufficient. 

Using a controlled gradual scheme, an (asymptotically optimal) O(m) round ver- 
sion of the above protocols is possible. This is achieved by (independently) interleav- 
ing the execution two controlled gradual schemes, one disclosing f (5, y)  to Alice, the 
other disclosing f(e, y) to Bob. 

party by q:). 
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