
.-

EFFICIENT, PERFECT RANDOM NUMBER GENERATORS

S. Micall

Laboratory for Computer Science

M IT

C.P.Schaorr

Fachbereich Mathematik/Informatik

Universitat Frankfurt

Abstract We describe a method that transforms every perfect random number generator

into one that can be accelerated by parallel evaluation. Our method of parallelization is

perfect, m parallel processors speed the generation of pseudo-random bits by a factor rn;
these parallel processors need not to communicate. Using sufficiently many parallel

processors we can generate pseudo-random bits with nearly any speed. These parallel

generators enable fas t re t r ieval of substrings of very long pseudo-random strings.

Individual b i t s of pseudo-random strings of length 102* can be accessed within a few

seconds. We improve a n d extend the RSA-random number generator to a polynomial

generator that is almost a s e f f ic ien t as the linear congruential generator. We question the

existence of polynomial random number generators that are perfect and use a Prime

modulus.

*) R.r*.rch prr{ormad rhd. vi i i t ing the D.partmont of C o m p u h r sCi*nc* of Univ*r*ity Chle'co

MIT - Patent P e d b g
S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 173-198, 1990
0 Spnnger-Verlag Berlin Heidelberg 1990

174

1. I n troductloe

A random number generator (R N G) is an efficient algorithm that transforms short

random seeds into long pseudo-random strings. A classical RNC is the linear congruential

generator (LCG) tha t is based on the recursion xi+l := axf + b (mod N). It is well known

that the LCG passes cer ta in statistical tests, e.g. for a clever choice of the parameters

a,b.N it generates well mixed numbers (see Knuth 1980). There are more elaborate

statistical tests which the LCG fails. Stern (1987) shows that the sequence generated by

the LCG can be infer red even if the parameters a,b.N and the seed xo are all unknown.

The concept of perfect random number generator has been introduced b y Blum, Micali

(1982) and Yao (1982). A RNG is perfect if i t passes all polynomial time statistical tests,

i.e. the distribution of output sequences cannot be distinguished from the uniform

distribution of sequences of the same length. So f a r the proofs of perfectness a re all

based on unproven complexity assumptions. This is because we cannot prove

sup erpo l y nomia 1 corn p lexi t y lo wet bounds.

Perfect random number generators have been established for example based on the

discrete logarithm by Blum, Micali (1982), based on quadratic residuosity by Blum,

Blum. Shub (1986). based on one way functions by Yao (1982), based on RSA encryption

and factoring by Alexi , Chor , Goldreich and Schnorr (1984). All these R N G s are less

efficient than the LCG. The RSA/RABIN-generator is the most eff ic ient of these

generators. It successively generates log n pseudo-random bits by one modular

multiplication wi th a modulus N that is n bit long. The modulus N must be a t least 512

bits long.

We extend and accelerate the RSA-generator in various ways. We give evidence for more

powerful complexity assumptions that yield more efficient generators. Let be

product of two large random primes p and q and let d be a natural number that is

relatively prime to p(N) - (p-l)(q-1). The number d must be small compared to log N SO

that the interval [l,NZ’d] is sufficiently large. We conjecture that the following

distributions a r e indis t inguishable by eff ic ient statistical tests (see Hypothesis 2.1):

N - D 9

d . the distribution of x

. the uniform dis t r ibut ion on [l,N].

(mod N) f o r random x E [1,N2’d].

This hypothesis is closely related to the security of the RSA-scheme. Under t h i s

175

hypothesis the transformation

2 /d [l.N 1 3 x - xd(mod N) E [1,N]

stretches short random seeds x E [1,N2’d] into a pseudo-random numbers x d (mod N) i n

the interval [l ,N]. We build various random number generators on this transformation.

The sequential polynomial generator (SPG) generates from random seed x E [l,NZ’d] a

sequence of numbers x - xI,xZ, ..., X I , ... E [1,N 2/d 1. The n(l-2/d) Least significant bits of

the binary representation of xf(mod N) are the output of xi and the 2n/d most

significant bits form the successor xi+l of xi.

It follows from a general argument of Goldreich, Goldwasser. Micali (1986) and the

above hypothesis tha t a l l these generators are perfect, i.e. the distribution of output
strings is indistinguishable. by e f f ic ien t statistical tests, from the uniform distribution

of binary strings of the same length. The sequential generator is nearly as eff ic ient as

the LCG. Using a modulus N, that is n bit long, it outputs n(l-2/d) pseudo-random bits

per iteration step. T h e costs of a n iteration step

corresponds to the costs of about one ful l multiplications modulo N. This is because the

evaluation of x (mod N) over numbers x 5 N2’d consists almost entirely of

multiplications wi th small numbers that d o not require modular reduction.

d x - x (mod N) with x E [1,NZfd]

d

We extend the SPG to a parallel polynomial generator (PPG). The PPG generates from

random seed x E [l,N”d] a tree. T h e nodes of this iteration tree are pseudo-random

numbers i n [l,NZ’d] w i t h outdegree a t most d/2. To compute the successor nodes

y(l)....,Y(S) and the o u t p u t string of node y we stretch y into a pseudo-random number

Y (mod N) that is n bits long. Then the successors y(1).y(s) of y are obtained b y

partitioning the most s ignif icant bits of yd(mod N) into s 5 d / 2 bit strings of length

L2n/dJ . The output of node y consists of the remaining least significant bits of y (mod

N). Any collection of subtrees of the iteration tree can be independently processed in

parallel once the corresponding roots a re given. In this way m parallel processors can

speed the generation of pseudo-random bits by a factor m. These parallel processors need

not to communicate; they a r e given pseudo-independent input strings and their OUtPUt

strings are simply concatenated. T h e concatenated output of all nodes of the iteration

tree is pseudo-random, i.e. the parallel generator is perfect. The PPG enables fast

retrieval of substrings of the pseudo-random output. To access a node of the iteration

tree we follow the path f rom the root to this node, After retrieving a bit the subsequent

d

d

176

bits in the output can be generated a t full speed. Iteration trees of depth a t most 60 are

sufficient for practical purposes; they generate pseudo-random strings of length lozo (for

outdegree 2) such tha t individual bits can be retrieved within a few seconds.

The parallel generator is based on a method that has been invented by Goldreich,

Goldwasser and Micah (1984) for the construction of random functions. Our contribution

consists of the observation that this construction can be applied to speed every perfect

random number generator by a factor m using m parallel processors. Using this principle

and sufficiently many parallel processors we can generate pseudo-random bits with

almost any speed. This impor tan t method of parallelization applies to all perfect RNG's
but the RSA-generator is particularly suited for this method. Our method of

parallelization does not apply to imperfect R N G s as the LCG since this method can

further detoriate a weak generator.

The paper is organized a s follows. In section 2 we formulate our basic Hypothesis which

is somewhat stronger than the assumption that factoring large integers is diff icul t . We

give support t o this hypothesis a n d show that a weak version of it follows from the

assumption tha t the RSA-scheme is safe. We present i n section 3 sequential and parallel

random number generators that a r e based on this hypothesis. In the open problem session

we question whether there exist perfect pseudo-random number generators that use a

prime modulus. This would lead to pseudo-random number generators which use a

modulus that is only 224 bits long.

2. T h e Complexity Assumption for the Polynomial Random Generator

Let P(x) be a polynomial of degree d 2 2 with integer coefficients and let N be an

integer that is n bits long, i.e. 2*-' 5 N i 2". We denote I = L2n/d]. Residue classes

modulo N are ideht i f ied w i t h the corresponding integers in the interval [1,N].

The polynomial generator is based on the transformation

where x ranges over a suff ic ient ly large subinterval [1,M] of [l,N]. We would like that

the outputs of (l) , f o r random be indistinguishable

f rom random y E [l.N]. T h e following conditions and restrictions are clearly necessary.

x E (1,M] and given N, M and P.

177

the modulus N must be d i f f icu l t to factor since given the factorization of N w e can

easily invert (1).

. The interval [LM] must be so large that a random seed x E [1.M] cannot be easily
recovered from P(x) (mod N) by guessing x. M must be sufficiently large to make

P(x)/N large f o r almost a l l x E [l.M]. This is because we can easily invert (I)

provided that P(x)/N i s small.

. P(x) must not be a square polynomial. If P(x) - Q(x)* for some polyoomial Q then

the Jacobi-symbol [y) is 1 f o r a l l x whereas prob [[$] - 11 = prob [[$]
7

= - I] fo r random y E [I,N]. Since the Jacobi-symbol can be evaluated efficiently we

can distinguish P(x) mod N f rom random numbers y E [l,N].

. P(x) must not be a linear t ransform of a square polynomial. If P(x) = aQ(x)* + b we

Q(x 1' [N I - " can, f rom P(x) mod N. recover Q(x)' mod N and check that

We choose N,M,P(x) as to correspond to these conditions. Let N be a random number that

is uniformly distributed over the set

S, - { N E N I N = p-q for distinct primes p,q
such that 2'12-' c p,q < 2"'

of integers that a r e products of two distinct primes which each is n/2 bits long. We

choose the interval length M proportional to 22n'd, M - 6(22n1d); i.e. I/c 5 2'"' / M 5 c

f o r some absolute constant c > 0. Then M is proporrional to N21d f o r all N E S,. The

choice f o r the polynomials P(x) seems to be subject to only a few restrictions. We are

going to study a par t icu lar class of permutation polynomials where the hypothesis below

can be justified by known theory. These are the RSA-polynomials with d

relatively prime to p (N) = (p-l)(q-1).

P(x) - xd

Rivest, Shamir a n d Adleman (1978) have invented the RSA-cryptoscheme that is based

on the multiplicative group

Z i - (x(mod N) I gcd(x.N) - 1)

178

of residue classes modulo N that a re relatively prime to N. The integer N is product of

two odd primes, N - P.9. The order of the group ZN is o(N) = (p- l) (q- l) . The

transformation

(2) x - xd (mod N)

with gcd(cp(N1.d) = 1 is a permutation on the residue classes modulo N, i.e. it permutes

the integers i n the interval [l,N]. The inverse transformation is given by x - X'

(mod N) where e = d" mod (p(N). The permutation (2) with gcd(p(N),d) = 1 and d

1 is an RSA-enciphering junction. The enciphering key d does not reveal the inverse key

e provided that p(N) is unknown. Knowledge of p(N) is equivalent to knowing the

factorization N = p.4. The security of the RSA-scheme relies on the assumption that

RSA-enciphering x - x is difficult to invert when d. N are given but p(N)

and e = d-' mod p (N) a r e unknown. All known methods for inverting RSA-enciphering

require the factor izat ion of N.

d (mod N)

We are going to show that the following hypothesis is closely related to the security of

the RSA-scheme. Our random number generators wil l rely on this hypothesis.

Hypothesis 2.1 Let d 2 3 be an o d d integer and 1 = L 2 n / d J . For random N E S n such

that gcd(d.cp(NJ) = I and f o r a l l M = 8(2) the following distributions on [I . N] are

indistinguishable b y polynomial t ime statisticaI tests:

1

d the uniform distribution on [1 . N] . + x (mod N) fo r random x E [L . M] .

We explain the hypothesis i n more detail. The concept of a statistical lest has been

introduced by Yao (1982). A polynomial time statistical test is a sequence T = (Tn)nEN

of probabilistic a lgori thms wi th a uniform polynomial time bound no(*). According to

Yao i t i s suff ic ient to consider statistical tests with 0.1-output. Let

be the probability that T, outputs 1. The probability space is that of all integers N E Sn

with gcd(d.pp(N)) = 1, a l l numbers and all 0-1 sequences of internal coin

tosses, with uni form dis t r ibut ion. Let FZ(M) be the same probability with random

numbers y E [1,N] replaced by y = xd(mod N) for random x E [1,M] and f ixed d . The

y E [l,N]

179

hypothesis means that f o r every polynomial time statistical test T and all M, = e(2 1)

In particular the hypothesis means that any polynomial time algorithm can a t most

factor a negligible f rac t ion of the integers in S,. There are algorithms that can

efficiently factor a very small f ract ion of the integers in S,. e.g. Pollard's p-method

efficiently factors a l l integers N - p . q such that either p-1 or q-1 is a product of small

primes. But no algorithm is known that can factor in polynomial time a n-'-fraction of

the integers in S, f o r some f ixed t > 0.

We introduce some useful terminology. We say that the statistical test T cn-rejects

RSA-ciphertexts x (mod N) of random x E [l ,Mn] if Ip;f - Fz(M,)l t I , for infinitely

many n. If (3) holds fo r a l l polynomial time statistical tests T we call RSA-ciphertexts

x (mod N) of random messages x E [l ,M,] pseudo-random in [1,N]. In this case the

distributions of xd(mod N) for random x E [1.M,] and the uniform distribution on [1,N]

are called indistinguishable.

d

d

In general two sequences of distributions (D n) , ~ m and (nn)nepq are called

indistinguishable if fo r every pol. t ime statistical test (T,),,=N, that is given random

inputs with respect to D, (En, resp.) the probability p, (p n , resp.) of output 1 satisfy

lim Ipn - pnln = 0 f o r a l l t > 0. In case of indistinguishable distributions D,, D,, where

D, is the uniform dis t r ibut ion on set C,. random elements with respect to b, are called

pseudo-random in C,. In case of pseudo-random pairs (x,y) we call x and y

pseudo-independent. A random number generator is called perfect if it transforms

random seeds into pseudo-random strings.

T -T

T -T t -
n

It can easily be seen that the Hypothesis 2.1 can only fai l if RSA-enciphering leaks

partial information on RSA-messages.

Fact 2 .2 Suppose Hypothesis 2.1 fai ls . Then given d and N we can distinguish between

RSA-ciphertexts x (m o d N) of random messages x E [I , N] and of random messages X E

[I,Mn J f o r some Mn = O(2).

d

I

d
Proof The t ransformation x - x (mod N) permutes the integers in the interval [1,N].

180

d The RSA-enciphering x (mod N) of random messages x E [1,N] is uniformly distributed
over [l,N]. If Hypothesis 2.1 fa i ls the uniform distribution can be distinguished from

RSA-ciphertexts x (mod N) f o r random x € [I.Mn] ; i.e. RSA-ciphertexts x (mod N)
d d

would leak information on whether the message x is contained in [l ,Mn]. Q ED

Fact 2.2 does not mean that the RSA-scheme breaks down if the hypothesis fails. This is

because messages in the interval [1,2] are rather unlikely. Nevertheless the hypothesis is

close to the security of the RSA-scheme. Using the following Theorem 2.3 we can relate

the hypothesis to RSA-security (see Corollary 2 .5) .

1

Theorem 2.3 Alex i . Chor . Goldreich. Schnorr (1 9 8 4)

Let d,N be integers such that gcd(d. lp(N)) - I. Every probabilistic algorithm A L . which
d given t h e RSA-enciphering x (m o d N) of a message x . has an cH-advantage in guessing the

least signif icant bit o f t he message x . can be transformed (un i formly in N) into a

probabilistic algori thm A L for deciphering arbitrary RSA-ciphertexts. The deciphering

algorithm AL. when given f o r input x (mod N). d and N, terminates a f t e r at most
- a 3 O (~ N n) elementary s teps and outputs x with probability at least 1 / 2 .

-
d -

We count for elementary s teps the ZN-operations (addition. multiplication, division),

RSA-encryptions a n d calls f o r algorithm AL a t unit cost. We say that algorithm A L has

a n EN-adVanIage i n guessing the least significant bit of x if

1
2 prob[AL(xd(mod N).N) - x(mod 2)] >- - + E N .

The probability space is the set of all x E 11,N] and all 0-1 sequences of internal coin

tosses, with uni form probabi l i ty .

By Theorem 2.3 the security of the RSA-scheme with parameters N, d implies that the

following two dis t r ibut ions cannot be distinguished given only N and d:
. the uniform distribution on [1,N],

xd(mod N) for random, even x E [I,N]. .
Everyone who is able to distinguish these distributions can decode arbitrary

RSA-ciphertexts x (mod N) given only N and d. We will present in Corollary 2.4 a more

formal version of this statement.

d

181

We say that a probabilistic algorithm A L EN-rejects the distribution D on [l ,N] if

/PA - FA/ 2 CN
A where p y E [1,N] outputs 1. The

probability space is the set of a l l y E [I,N]. distributed according to D (with uniform

distribution. resp.) a n d of all 0-1 sequences of internal coin tosses of algorithm AL.

Using this notion we can reformulate Theorem 2.3 as follows.

(FA, reSp.1 is the probability that A L on input

Corollary 2.4 Le t d . N be integers such that g c d (d . p (N)) = I . Every probabilistic

algorithm A L . that en-rejects RSA-ciphertexts x (m o d N) of even random messages x can

be transformed (u n i f o r m l y in N) into a probabilistic algorithm for decoding arbitrary

RSA-ciphertexts. This deciphering algorithm terminates after p1 most O(eN n) elementary

steps (i .e. ZN-operations. RSA-encryptions and cal ls f o r A L) .

d

a 3

We next show that Corollary 2.4 remains valid if we replace RSA-ciphertexts of random

even messages x, by RSA-ciphertexts of random messages x E [1,N/2].

Corollary 2.5 Let d . N be odd integers such thai gcd(d.lp(N)) - 1. Every probabilistic

algorithm A L . that EN-rejects RSA-ciphertexts x (m o d N) o f random messages x E

[I . N / 2] , can be t rans formed (u n i f o r m l y in N) i n f o a probabilistic algorithm f o r decoding

arbitrary RSA-ciphertexts . This deciphering algorithm terminates a f t e r 41 most O(E. n I
elementary steps.

d

- 8 3

Proof For odd N and a l l x E [1.N] we have

x E [I,N/2] (* Zx(m0d N) is even

(i.e. x E [I.N/Z] i f f t h e representative of 2x(mod N) in [1.N] is even).

We see f rom this equivalence t h a t the following distributions are identical for odd N:
d . x (mod N) for random x E [I,N/Z],

. 2-dyd(mod N) f o r random even y E [1,N].

Moreover we can t ransform i n polynomial time yd(mod N) into 2-dyd(mod N). Thus an

EN-rejection of RSA-enciphering, x (mod N) of random messages x E [1,N/2] can be

transformed (uniformly i n N) into a n en-rejection of RSA-ciphertexts y (mod N) of

random even y E [1,N]. Corollary 2.5 follows from Corollary 2.4 by this transformation.

d

d

QED

Under the assumption tha t the RSA-scheme is safe Corollary 2.5 proves a slight

182

1 modification of our hypothesis. The interval (1.2] of Hypothesis 2.1 is replaced by the

interval [1,N/2] i n this modification. This poses the question whether the length of the

interval is crucial f o r the hypothesis to be valid. We next show that Hypothesis 2.1, with

the interval [1.2 I replaced by the interval [1,N 2-r'0' nl], is valid if the RSA-scheme is

safe.

l

Theorem 2.6 Let d . iv be o d d integers such that gcd(d .rp(N)) = I . Every probabilistic

algorithm A L , that EN-rejects RSA-ciphertexts x (m o d N) of random messages

x E [I . N2 J , can be t rans formed (uni formly in N) into a probabilistic algorithm fo r

decoding arbi t rary RSA-c ipher texrs . This deciphering algorithm terminates a f t e r a f most

o(ztk n 3) e l ementary s teps .

d

-k

Proof Under the assumption that the RSA-scheme is safe, Alexi et a l i i (1984) have

shown that the log n least significant bits of RSA-messages x are pseudo-random when

given x (mod N), d a n d N. Thei r proof transforms every algorithm AL, that cn-rejects

RSA-encipherings xd(mod N) of random messages x satisfying x - O(mod 2'). (uniformly

in N) into a probabi l is t ic algorithm for deciphering arbitrary RSA-ciphertexts. This

RSA-deciphering procedure terminates af ter a t most 0(2*' e i 8 n') elementary steps (i.e.

ZN-operations, RSA-encipherings a n d calls f o r algorithm AL).

d

For odd N and a l l x E [l ,N] we obviously have

x E [l.N2-'] e) 2'x(mod N) - O(mod 2')

(i.e. x E [1,N 2-'1 i f f t h e representative of Z'x(mod N) in [1,N] is a multiple of 2').

Therefore the fol lowing two distributions are identical for odd N:

f o r random x E [l,N2-'] , . xd(mod N)
2-kd d . y (mod N) f o r random y E [1,N] satisfying y - O(mod 2') .

d - t d d Moreover we c a n t ransform i n polynomial time y (mod N) into 2 y (mod N). Thus an

EN-rejection of RSA-ciphertexts x (mod N) of random messages x E [1,N 2-'] can be

transformed (uni formly i n N) into a n EN-rejection of RSA-ciphertexts y (mod N) O f

random messages y sat isfying y - O(mod 2'). Corollary 2.6 follows from this

d

d

transformation a n d the above mentioned proof of Alexi et alii (1984). QED

Notice that the t ime bound f o r the RSA-deciphering algorithm of Corollary 2.6 is

polynomially related to the t ime bound of algorithm A L provided that k 5 log n. Hence

1 3 if Hypothesis 2.1 fails, wi th the interval [1,2] replaced by the interval [l. N2-r'0' "' I

183

then RSA-ciphertexts can be deciphered in probabilistic polynomial time. Also i f

Hypothesis 2.1 fa i ls , wi th the interval [1,2] replaced by the interval [I. N2-LGJ], then

RSA-ciphertexts can be deciphered in time eo(G). However the fastest known algorithm

for RSA-deciphering. via factoring N . requires about e o ' e 9 s G steps, where 0.693 J

log2. Thus if Hypothesis 2.1 fa i ls f o r the interval [I, N2'LGJ], then we can speed up the

presently known at tacks to the RSA-scheme.

1

d It remains the question whether the computational properties of the distribution x (mod

N) change when x ranges over very small integers x. In fact Hypothesis 2.1 does not hold

for the interval [l,N"d] since we have xd c N for all x E [l,N"d] and therefore

RSA-ciphertexts xd(mod N) can easily be deciphered for x E [I,N"d]. On the other hand

the d-powers x are of order Na f o r almost all numbers x E [l.2 1. We conjecture that this

is sufficient to make the task of deciphering xd(mod N) hard. This is justified because

inverting the squaring

d I

2 x - x (mod N)

is known to be as hard as factor ing N , and the squares x' are of order N', too.

We are going to s tudy the question whether Hypothesis 2.1 should be extended to

polynomials p(x) t h a t a r e more general than RSA-polynomials P(x) 9 xd with

gcd(d.v(N)) * 1. There is a n obvious extension of Hypothesis 2.1 to arbitrary exponents d

2 2. It seems that t h e condition gcd(d,p(N)) = 1 is not necessary for odd d. This is

because no extension of the Jacobi-symbol is known for residues xd(mod N) of odd

prime powers d. On the other hand we must modify the hypothesis f o r even d since the

Jacobi-symbol gives e f f ic ien t information on the quadratic residuosity. We formulate the

extended hypothesis SO that i t can be applied in the proof of Theorem 3.1 to establish

perfect RNG's. For reasons of eff ic iency we are particularly interested in even exponents

d and in exponents t h a t a r e powers of 2.

1
Extension to even d of Hypothesis 2.1 For random N E S n . ail M = @ (2 1. 1 - L2n/dJ,

and random x E f I . M] rhe jol lowing holds.

(I) y := x (m o d N) is a pseudo-random quadralic residue modulo N .

(2) Partitioning y into disjoint seciions z := ~y 2-"+lj and y(mod 2

d

n-1) y ie lds

pseudo-random numbers in [I . N 2'"'J and [1 , 2 n - 1] .

f 3) z (mod N) and y (m o d 2"-') are pseudo-independent. d

184

Article (1) of the extended hypothesis can be justified b y the work of Alexi et alii (1984)

for the case that N is a Blunt-integer, i.e. N is product of two primes p and q such that p - 3(mod 4) and q = 3(mod 4). One can prove that distinguishing xd(mod N). for random

x E [l , N n-'] f r o m random quadrat ic residues modulo N is equivalent, by probabilistic

polynomial time reductions, to factoring N. Article (2) means that neither z nor y(mod

2"-') contains e f f ic ien t information on the quadrat ic residuosity of y. Article (3) means

that the dependence of z and y(mod 2"-'), via the quadratic residuosity of y . gets hidden

by the transformation z - zd(mod N).

Next we consider a rb i t ra ry polynomials P(x) of degree d. We are going to show that some

elementary methods f o r distinguishing random numbers y E [l ,N] and P(x) mod N for

random x E [l ,Nf id] d o not work. Theorem 2.7 is a first step in this direction. This

problem clearly deserves fur ther study.

In general we can invert the transformation

x - P(x) mod N (l j

only if the factor izat ion N - pq is given. Then, using Berlekamps algorithm for

polynomial factor izat ion we invert (1) modulo p and modulo q and apply the Chinese

remainder construction. This c a n be done i n probabilistic time (nd)'''). Without knowing

the factorization of N we do not know how to invert (1). In the particular case that P(x)

divides x * (~) we c a n invert (1) provided that we know the cofactor x")/P(x), but in

this case we can even factor N.

Can we invert (1) f o r small integers x ? If IP(x)/ / N is small we can guess z = P(x) and

factorize P(x) - z. Theorem 2.7 below shows that IP(x)(/N is large for almost all x E

[1,N 1 provided t h a t P(x) has degree a t most d. A degree bound is necessary since there

exist polynomials of degree N"d that vanish on the interval1 [l,N"d].

Zfd

Thearem 2.7 Let A . B . d be integers such that M 2 (B N) ' / d 16Ad. and let P (x) E Z [X /

have degree d . Then we have prob[lP(x) l 5 BN] 5 I / A f o r random x E [I S M / .

Proof Let x i , x k be the distinct real numbers in [O,N] satisfying P(xi)' - BzN2 for

i=1, ..., k. We have k 5 2d since P(x)' has degree 2d. We partition the real interval [O.M]

, -

I a5

into J A d intervals I of length M/(4Ad). A fundamen ta l theorem in approximation theory

(see e.g. Stiefel (1969). p. 236) implies that

f o r each of these in t e rva l s 1. Hence

Th i s shows that eve ry in t e rva l I , t h a t contains a n integer x satisfying IP(x)) s EN, must

also con ta in some po in t xi, 1 5 i 5 k . T h e intervals I that contain some point xi can
have a t most

integer points. T h i s accoun t s f o r a t most a f r ac t ion of

of the points i n [l,M]. Q E D

3. The Sequential and the Parallel Polynomial Generator

In this section we build several RNG's on polynomials P(x) of degree d 2 2 that have the

fol lowing generator p rope r ty . T h e g e n e r o t o r p r o p e r t y formulates Hypothesis 2.1 f o r

a r b i t r a r y polynomials P(x).

Definition T h e p o l y n o m i a l P(x) has the generator proper ty if f o r random N E S,. a l l M

proport ional to Nz'd a n d r a n d o m x E [1,M] the number P(x) mod N is pseudo-random in

[1,Nl.

T h e generator p r o p e r t y means t h a t P stretches random seeds x E [l,Nf'd] into

pseudo-random n u m b e r s P(x) mod N in the interval [1.N]. By Hypothesis 2.1

RSA-polynomials P (x) = x d wi th gcd(d,p(N)) I 1 and d ? 3 have the generator property.

186

The sequential polynomial generaror (SPG) generates a sequence of numbers x =

x1,xz. Xi. ... in [l.N’’d] that a re represented by bit strings of length 1 := L2n/dJ . The

outpul a t Xi, Out(xi) E {O,1lU-’ , is the bit string consisting of the n- l least significant

bits of the binary representation of P(xi) mod N. The successor xi+l of x i is the number

corresponding to the other bits of P(xi) mod N,

The sequential polynomial generator can be figured by the following infinite tree

figure of th. mequential polynornid graerstor (SPC)

Let the k-output of the SPG

be the concatenated output of the first k steps.

Notice that the most s ignif icant bits of P(xi) mod N are biased depending on the most

s ignif icant bits of N. Even though the most significant bits of P(xi) mod N are not

pseudo-random we c a n form from these bits the successor xi+l of xi. This is because the

generator property a n d Hypothesis 2.1 imply that P(xi) mod N is pseudo-random i f xi is
1 random in [1,M], for all . M proportional to 2 .

Theorem 3.1 Suppose that P has the generator properly. Then for random N E Sn. random

187

x E f I . N 2 / d J and polynomially bounded k (i . e . k = k f n) = no"') the k-output

SPGk,p (X ,N) of the sequential polynomial generaror is pseudo-random.

Proof For random N E Sn and random x1 E [1,N2'd] the number P(x1) mod N E [1,N] is

pseudo-random. It follows that the bit string Out(x1) E (0,1)*-' is pseudo-random and

that the number x 2 E [1,2'] is pseudo-random. We also see that the pair (Out(xi), xa) is

pseudo-random. It follows from the generator property and since xz is pseudo-random

[hat

is pseudo-random, too. To prove this claim we replace in a statistical test T - (T n) n E ~
fo r z :- (Out(x1) Out(x2). xs) the pair (Out(x2). xs) (the string Out(xl). resp.) by

random objects generated through internal coin tosses. This transforms f into statistical

tests for P(x1) mod N (P(x2)mod N, resp.). If z is o,-rejected then either P(x2) mod N or

P(x1) mod N is (a,/2)-rejected. In either case this yields a statistical test that

(cn/2)-rejects P(x1) mod N.

By induction on k the same argument proves that

is pseudo-random f o r every f ixed k. The pseudo-randomness also holds if k - k(n) is

poIynomialIy bounded in n , i.e. k = no(*). Using the above argument we can transform a

test that €,-rejects (SPGk,p(xl,N), xk+l) into a test that (c,/k)-rejects P(x1) mod N. QED

I t is important that the above proof also applies to polynomials P(x) = xd with even d.

Instead of using the generator property of P we can use the extension to even d of

Hypothesis 2.1. Speaking informally. i t does not hurt that xd(mod N) ranges over

quadrat ic residues since the output merely contains the least significant bits of x (mod

N) and these bits give no e f f ic ien t information on the quadratic residuosity of x (mod

N). E.g. we can use f o r random bi t generation the polynomial P(x) x* which yields

particular eff ic ient RNG's.

d

d

PRACTICAL SEQUENTIAL POLYNOMIAL GENERATORS: The modulus N and the

number must be f i x e d in practical applications, W e study the complexity conditions

that N and N2'd must satisfy to prevent an efficient analysis of the generator output.

It must be practically impossible to factor the modulus N. For this let N be product of

two random primes p a n d q which each is a t least 256 bits long. The numbers p-1, pcl ,

q-I , q + l must each have a t least some prime factor which is larger than 2 . 80

d The number N*" must be SO large that, given x (mod N), it is practically impossible to

f ind x E [1,N2'd] by e f f ic ien t search methods. Pollard (1988) has proposed the following

method to search f o r a n input x that is product x = uv of two numbers u,v E [i,N']:

1. Generate the set S1 = (ud(mod.N) I u E [l,Na]) and sort this set.

2. Generate the set S2 = (xd vmd(mod N) I v E [l.Na]) and sort this set.

3. Test whether S1 a n d Sz have a common element. If u = xd v-d(mod N) E S1 n S2 then d

one has found x = uv.

Pol lards attack performs O(Na) arithmetical steps modulo N and stores N a residues

m o d u b N. It is most e f f ic ien t when x is product of two numbers in [l,N'/dJ. In order to

make Pollard's a t tack infeasible i t is sufficient that NIId is a t least 2 .
Ex8rnplc 1: Let N be n = 512 bits long and let gcd(7,lp(N)) = 1. We choose d = 7, P(x) =

x . Let Out(xi) consist of the 365 least significant bits of P(xi) mod N and let xicl be the

number corresponding to the 128 most significant bits of P(xi) mod N. We compute

x (mod N) by computing x2, x', x' = x . x2 . XI. Only the last multiplication requires

modular reduction. T h e other multiplications a re with small numbers. The costs of one

iteration step correspond to one fu l l modular multiplication. Thus this SPG iteratively

outputs 384 pseudo-random bits a t the cost of one full modular multiplication with a

modulus that is 512 bits long.

Exampic 2: Another sui table polynomial is P(x) - I even though this polynomial does

not have the generator property. T h e computation of x8(mod N) is particularly easy; we

compute x , x , x iteratively outputs

384 bits at the cost of one fu l l modular multiplication with a modulus N that is 512 bits

long.

64

7

7

8

3 4 8 8 by successive squaring. The SPG with P(x) = x

Efflcient public key encoding 8nd decoding. We can use the above RNGs to generate a

one-time-pad f o r message encoding. When given the seed x t of the one-time-pad,

encoding and decoding c a n be done a t a speed of about n(l-2/d) bits per multiplication

modulo N. A public key coding scheme as e.g. RSA can be used to encode and fo decode

the seed XI.

189

The psrs l lc l polynomial generator. The paral le l polynomial generator (PPG) generates

f rom random seed x E [l,NZ’d] a tree with root x and outdegree at most d/2. T h e nodes

of this ireration rree are pseudo-random numbers i n [I,N”d] that are represented by bit

strings of length I .

The successors y(l) , ...,y (s) of a node y with degree s and the ourpur siring Out(y) of node

y a re defined as follows. Let b1, ..., b,, be the bits of the binary representation of P(y)
mod N, with bl being the most significant bit, i.e.

n
i = l C bi 2 O - l P(y) mod N .

We partition the sl most signif icant bits into s block with I bits i n each block. The

corresponding numbers

are the successors of node y in the iteration tree. The output Out(y) a t node y consists

of the remaining low order bits of P(y) mod N,

For convenience we denote the nodes on level k of the iteration tree as xh , . , . . jd :

x(j1, ..&-I) is the direct predecessor of x(j1, ..&) and j k ranges from 1 tO Sk-1 =

“outdegree of x(j1, ..&-I)‘. For simplicity we let the outdegree of node x(j1, ..&) be a

funct ion depending on k only; we assume that Sk 5 1.

The parallel polynomial generator can be figured by the following infinite tree

190

x - x(A)

figura of tha parallrl polynomial grnrrrkor (PPG)

We define the k-outpuf PPGk,p(x,N) of the PPG with seed x as the concatenation of all

bit strings Out(x(j1. . . . ,ji)) on levels i with 0 5 i J k, with respect to a n y eff ic ient

enumeration order, as e.g. preorder .traversal, postorder traversal, inorder traversal or

enumeration by levels.

In the particular case that a l l outdegrees are one, i.e. so - s1 - ... = sk = 1 , the parallel

and the sequential polynomial generator coincide. The argument of Goldreich,

Goldwasser and Mical i (1986) extends Theorem 3.1 f rom the SPG to arbi t rary PPG’s,

provided that we process a t most polynomially many nodes in the iteration tree. This

yields the following theorem.

Theorem 3.2 Suppose that P has the generator property. Then for random N E S n , random

x E f1.2] !he k-output PPGk,p(x.N) of the parallel polynomial generator is

pseudo-random provided that the Iength of p P G k , p (x . ~ V j is polynomially bounded.

I

Ide8 of proof There is a s t ra ightforward way to extend the proof of Theorem 3.1.

Suppose that the k-output PPGk,p(x.N) collects the outputs of nodes. Then every

statistical test that E,-rejects PPGk,p(x,N) for random x E [l,NZ’d] and random N E s,
can be transformed into a statistical test that (E,/r)-rejects P(x) mod N. Q ED

191

For the output of the PPG we can use any efficient enumeration for the nodes of the

iteration tree. TO support parallel evaluation we can adjust the shape of the iteration

tree and the enumeration order to the number of available parallel processors. For m

parallel Processors we can use a n y iteration tree consisting of m isomorphic subtrees

attached to the root; we can enumerate, in any order, the m-tuples of corresponding

nodes in these subtrees. The enumeration within the subtrees can be chosen to support

fast retrieval; for this we can enumerate the nodes e.g. i n preorder traversal or in

inorder traversal. It is a n obvious but important observation that m processors can speed

the pseudo-random bi t generation of the PPG by a factor m. Once we are given m nodes

on the same level of the i terat ion tree we can process the subtrees below these nodes

independently b y m parallel processors. These processors do not need to communicate.

Corollary 3.3 Using m processors in parallel we can speed the pseudo-random bit

generation o/ the parallel polynomial generator b y a factor m.

PRACTICAL PARALLEL POLYNOMIAL GENERATORS
8 Let N be product of t w o random primes so that N is 512 bits long. Let P(x) - x .

Example 3: We construct from random x E [1,2'*'] a tree with 4 nodes per level.

1. Stretch a random seed x E [l.212'] into xa(mod N).

2. Partition the binary representation of x8(mod N) into 4 bit strings x(l), ..., x(4) of
length 128. Put k - 1 a n d let PPGl,p(x,N) the empty string.

k 3. For j - 1, ..., 4 let x (j 1) E I t z 8 consist of the 128 most significant bits of the binary

representation of x(j mod N, and let Out(x(j lk)) E 1384 consist of the

remaining 384 least s ignif icant bits.
4

j= l
4. PPGk+lp(x,N) - PPGk,P(x,N) Out(x(j 1'))

k := k + 1 , go to 3.

192

I V I v 3. V 1
X(11.**1) X(21.-l) ~(31-1) ~(41-1) .

Figure of th. PPC of axampla S

Using 4 parallel processors this PPG iteratively generates 4 . 384 - 1536 pseudo-random
bits in the time f o r one fu l l modular multiplication with a modulus N that is 512 bits

long. With current processors f o r smart cards such a full modular multiplication can be

done in less t h a n 0.2 sec. Thus 4 parallel processors can generate about 9000

pseudo-random bits per sec.

Example 4: We construct f rom random x E [1.2"'] a complete tree of outdegree 2.

1. Choose a random seed x E [1.2'2'] for root of the tree.

2. For every node y E [1,2'28] of the tree compute the successors y(l), y(2) and the output

Out(y) by par t i t ioning the binary representation B of y'(mod N) as

B - 81 Ba Out(y) E I:tr x J2so ,
and compute f o r i - 1,2

y(i) :- 1 + "the number with binary representation Bi'.
The main interest in such a PPG comes from fast retrieval methods.

Fast re t r ievd for the PPC. If the PPG has a complete iteration tree one can efficiently

retrieve substrings o f the output . Consider example 4 with a complete iteration tree of

outdegree 2. Level k of the tree has 2 nodes and the first k levels have 2"' - 1 nodes in

total. Suppose the nodes of the tree are enumerated i n preorder traversal. Each node

yields 256 output bits. To retrieve node y we follow the path from the root to Y. This

requires processing a n d storage of a t most k nodes and can be done a t the costs Of about

k ful l modular multiplications. Once w e have retrieved node y and stored the path from

k

193

the root to node Y. the bit string that follows Out(y) in the output can be generated

using standard retrieval methods a t the speed of 256 bits per modular multiplication. For

most practical applications the depth k wil l be a t most 60 which permits to generate a

pseudo-random string tha t is 3.7 . lozo bits long. We see that retrieval of substrings is

very efficient, i t merely requires a preprocessing stage of a few seconds to retrieve the

initial segment of the substring.

Theorem 3.4 Every node y o f depth k in the iferation free o f ihe PPG can be accessed and

processed at the costs of O(k) modular multiplications.

k 10 20 30 40 50 60

2047 2.106 t.l.lOQ 2.2.1012 2.25.10'' 2.3.10" # nodes in
the first k levels
output bits 5.2.10 5 5.7.10' 5.5.10" 5.6.10" 5.8.1017 5.9-10''

Tabla: retrieval parformanee of tha PPC, rumple 4

Parallelizrtion and f a s t retrieval for arbitrary perfect RNG's. It is a n important

observation that the above methods of parallelization and of efficient retrieval apply to

every perfect RNG (G,),&J. The parallel version of the generator associates a n iteration

tree to a random seed. For example let G, : I, -, Is, stretch a random strings in I, into

pseudo-random strings i n 13,. We construct f rom random seed x E I, a binary iteration

tree with nodes in I,,. Le t x be the root of the tree. Construct the two successors y(l), y(2)

and the output Out(y) of node y by partitioning G,(y) E I,, into three substrings of

length n,

Gn(Y) ~ (1) ~ (7 -) O U ~ (Y) .
Let PGk,G(X) be the concatenated output of a l l nodes with depth a t most k (compare with

the def ini t ion of PPGk,p(x.N)).

Theorem 3.5 Let (G n) n m be any perfect RNG. Tken for random seed x E In the

concatenated output PGk.G(X) of all nodes with depth 5 k i s pseudo-random provided that

its length is polynomially bounded in n .

We illuminate our method of parallelization in applying i t to some less eff ic ient versions

of the RSA/Rabin generator. Let N be a product of two random primes such that N is

512 bits long and gcd(3, p(N)) = 1.

194

Example 5 : From random seed x E [1,N] we generate the sequence of numbers

x1,xZ ,..., xi ,... E [l ,N] a s

S
X I * X , X i + 1 * x,(mod N)

Under the assumption that the RSA-enciphering is safe for the
pnrf icufar N, Alexi et a l i i (1984) have shown that about the 16 least significant bits of xi

are pseudo-independent f rom xi+l. This suggest the following output of x i

x - xs(mod N)

Out(xi) = "the 16-least significant bits of xi".

Thus f o r random x i E [l ,N] a n d under the assumption that RSA-enciphering is safe we

obtain pseudo-random bi t strings n Out(xi) of length 1600. We apply a binary tree

construction to the funct ion

100

i s 1

G : 1612 * I1600
100

i= 1
that stretches the binary representation of X I E [1,N] into n Out(xi) . The binary tree

has nodes in 1612. The successors y(1). y(2) and the output of node y are obtained by

partitioning G(y) into two successor strings of length 512 and an output string OutC(y)

E 1576. Processing a node of the binary iteration tree costs 200 modular multiplication.

Example 6: We can accelerate this generator under the reasonable assumption that the

448 least s ignif icant bi ts of the number x and the number x'(mod N) are

pseudo-independent f o r random x E [l,N]. We set

OUt(Xi) :- "the 448 least significant bits of xi" .
The assumption implies that n Out(xi) E is pseudo-random for random x1 E

[l,N]. We apply the binary tree construction to the function

S

i s 1

G : ISIS 4 Its44
s

i r l
that stretches the binary representation of x1 E (1 3 1 into

y(l), y(2) E 1613 a n d the output Outc(y) E I s t o of node y are obtained by partitioning

G(y) E I1344 into two strings i n Islt and OutC(y) E Iszo. Processing a node of the binary

tree costs 6 modular multiplications.

Out(x,). The suCCeSSOrS

195

Example 7: We can fur ther speed u p this generator under the assumption that the 448

least significant bits of random x E [1,N] and the number x2(mod N) are

pseudo-independent. (It follows from Alexi et alii (1984) that the 16 least significant bits

of random x E [l,N) and the number x2(mod N) are pseudo-independent if factoring the

particular N is hard. Under this assumption we can replace the iteration xi := x,,l(mod

N) by xi+l := xi(mod N). As in Example 5 we associate with a random x E [1,N] a binary

iteration tree with nodes in 1 ~ ~ 2 . Processing a node of this tree costs about 4 modular

multiplications and yields 320 pseudo-random bits for output.

3

2

It is interesting to compare the efficiency of these parallel RNG's with the parallel

RNG's based on Hypothesis 2.1. For the latter RNG's in examples 1-4 the cost per node

of the iteration tree is about 1 multiplication modulo N. This shows that the new perfect

RNG's are more sui table f o r our method of parallelization and fast retrieval.

4 . Open Problems: Random Number Generators Based on 1 Prime Modulus

In Hypothesis 2.1 we need that the modulus N is difficult to factor. This is because given

the factorization of N a n d given xd(mod N) we can recover x = xd*(rnod N) using the

inverse exponent e = d-'(mod cp(N)). Now suppose we are only given the least significant

bits of x (mod N). Then we cannot easily recover x even if d-'(mod cp(N)) is known.

This poses the question whether Hypothesis 2.1 can be extended to arbi t rary prime

moduli p.

d

Problem 4.1. Let p be a n a rb i t ra ry prime, 2"-' < p < 2". let d be relatively prime to p-1,

d I 3 and let I 2 Ltn/dJ . Is i t t rue that f o r random x E [1.2] and y :- x (mod p) the n -
I least significant bits of y a re pseudo-random?

1 d

If this pseudo-randomness does not hold for all primes w e ask whether i t holds f o r

random primes.

Problem 4.2. Let d L 3, 1 z L2nldJ and let p be a random prime such that 2"-' < p < Zn

and gcd(d,p-l) - 1. Is i t t rue that f o r random x E [1,2] and y :- x (mod p) the n-1 least

significant bits of y a r e pseudo-random?

1 d

If we replace in Problem 4.2 the prime modulus p by a random composite modulus i n s,

196

the pseudo-randomness in question follows from Hypothesis 2.1. These problems are

important since this would modify Hypothesis 2.1 so that i t is no more related to the

diff icul ty of factor ing the modulus. We consider the random number generators that

would follow.

The sequential generator using a prime modulus The SPG generates from a random seed

X I E [1,2] a sequence of numbers x1,xZ. ..., xi E [1,2] that are represented by bit strings of

length I. The outpuf a t xi, out(xi) E (O , l) n - z l , is the bit string consisting of the n-21 least

significant bits of the binary representation of xi(mod p). The successor xi+l of xi is the

number corresponding to the next I least significant bits of xd(mod p); these a re the bits

in positions n-I, ..., n-21+1 f rom the left.

I I

d

Corollary 4.3

f o r random prime p with 2

[O p- I] into a pseudo-random ouiput n oUt(xi).

If pseudo-randomness holds in problem 4.2, then the above SPG transforms

c p < 2" and every k with k - no(') a random seed X I E n- I

i

i= l

In practical appl icat ions the number I must be so large that, given the n-I least

significant bits of x (mod p). i t i s practically impossible to f ind x E [1,2 1. Now Pollard's

attack (see section 3) does not work since the most significant bits of xd(rnod p) are

unknown. Therefore i t would be suff ic ient to start with a random seed xl that is 64 bits

long.

d I

Example 8: Let p be a pr ime tha t is 224 bits long, let gcd(p-1,7) - 1, d = 7 and I = 64.

The output Out(xi) consists of the 96 least significant bits of xi(mod p), the successor

X i + l Of X i is formed by the next 6 4 least significant bits of x:(mod p). T h e 64 most

significant bits of xi(mod p) a r e not used a t all. Each iteration step generates 96

pseudo-random bi ts roughly a t the cost of one full modular multiplication with a

modulus that is 224 bits long.

7

7

If we choose a 512 b i t long pr ime modulus p and d - 7, 1 - 64 then we can output 384

pseudo random bits per iteration. This achieves the same performance that is obtained

with a composite modulus of the same length, see example 1. However using a prime

modulus that is about 224 bits long the arithmetic can be done with much smaller

numbers, and thus the generator can be implemented on a cheaper chip.

197

Acknowledgement T h e second author wishes to thank the Department of Computer

Science of the University of Chicago for supporting the research of this paper which

was done during a stay a t this department. He also wishes to thank A.K. Lenstra and A.

Shamir for very inspiring discussions during this work.

Refereoces

Alexi, W., Chor, B., Coldreich, O., a n d Schnorr, C.P.: RSA and Rabin Functions: certain

parts a re as hard as the whole. Proceeding of the 2Sth Symposium on Foundations of

Computer Science. 1984. pp. 449-457; also: Siam Journal on Comput., 17,2 (1988).

Blum, L., Blum, hi. and Shub, M.: A simple unpredictable pseudo-random number

generator. Siam J. on Computing (1986). pp. 364-383.

Blum, M. and Micali, S.: How to generate cryptographically strong sequences of

pseudo-random bits. Proceedings of the 25th IEEE Symposium on Foundations of
Computer Science, IEEE. New York (1982); also Siam J. Comput. 13 (1984), pp. 850-864.

Goldrelch, O., Goldwasser, S., Mlcali, S.: How to Construct Random Functions.

Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, IEEE,

New York. (1984); also Journa l ACM 33,4 (1986). pp. 792-807.

K n u t h , D.E.: The Ar t of Computer Programming. Vol. 2, second edition. Addison Wesley

(1981).

Luby, M. and Rackoff , Ch.: Pseudo-random permutation generators and cryptographic

compositioa. Proceedings of the 18th ACM Symposium on the Theory of Computing.

ACM, New York (1985) pp. 356-363.

Pollrrd, J.: private communicat ion (1988).

Stern, J.: Secret linear congruent ia l generators are not cryptographically secure.

Proceedings of the 28th IEEE-Symposium on Foundations of Computer Science (1987) PP.

421-426.

Stiefei, E.: Einflihrung i n d i e numerische Mathematik. Teubaer, Stuttgart (1969)

198

Yao, A X . : Theory and appiiCatiOnS of trapdoor functions. Proceedings of the 25th IEEE
Symposium on Foundations of Computer Science, IEEE, New York (1982). pp. 80-91.

	Abstract

	The Complexity Assumption for the Polynomial Random Generator
	Hypothesis 2.1
	Fact 2.2
	Theorem 2.3
	Corollary 2.4
	Corollary 2.5
	Theorem 2.6
	Thearem 2.7

	3. The Sequential and the Parallel Polynomial Generator
	Theorem 3.1
	Theorem 3.2
	Corollary 3.3
	Theorem 3.4
	Theorem 3.5

	4. Open Problems: Random Number Generators Based on 1 Prime Modulus
	Problem 4.1.
	Problem 4.2.
	Corollary 4.3

