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Abstract We describe a method that  transforms every perfect random number generator 

into one that can  be accelerated by parallel evaluation. Our method of parallelization is 

perfect, m parallel processors speed the generation of pseudo-random bits by a factor  rn; 
these parallel processors need not to communicate. Using sufficiently many parallel 

processors we can generate  pseudo-random bits with nearly any speed. These parallel 

generators enable fas t  re t r ieval  of substrings of very long pseudo-random strings. 

Individual b i t s  of pseudo-random strings of length 102* can be accessed within a few 

seconds. We improve a n d  extend the RSA-random number generator to a polynomial 

generator that is almost a s  e f f ic ien t  as the linear congruential generator. We question the 

existence of polynomial  random number generators that are perfect and use a Prime 

modulus. 
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1. I n  troductloe 

A random number generator ( R N G )  is an efficient algorithm that transforms short 

random seeds into long pseudo-random strings. A classical RNC is the linear congruential 

generator (LCG) tha t  is based on the recursion xi+l  := axf + b (mod N).  It is well known 

that the LCG passes cer ta in  statistical tests, e.g. for  a clever choice of the parameters 

a,b.N it generates well mixed numbers (see Knuth 1980). There are  more elaborate 

statistical tests which the LCG fails. Stern (1987) shows that the sequence generated by 

the LCG can be infer red  even if the parameters a,b.N and the seed xo are  all unknown. 

The concept of perfect  random number generator has been introduced b y  Blum, Micali 

(1982) and Yao (1982). A RNG is perfect if i t  passes all polynomial time statistical tests, 

i.e. the distribution of  output  sequences cannot be distinguished from the uniform 

distribution of sequences of  the same length. So f a r  the proofs of perfectness a re  all 

based on unproven complexity assumptions. This is because we cannot  prove 

sup erpo l y nomia 1 corn p lexi t y lo wet  bounds. 

Perfect random number  generators have been established for  example based on the 

discrete logarithm by  Blum, Micali (1982), based on quadratic residuosity by Blum, 

Blum. Shub (1986). based on one way functions by Yao (1982), based on RSA encryption 

and factoring by Alexi ,  Chor ,  Goldreich and Schnorr (1984). All these R N G s  are  less 

efficient than the LCG. The RSA/RABIN-generator is the most eff ic ient  of these 

generators. It successively generates log n pseudo-random bits by one modular 

multiplication wi th  a modulus N that  is n bit long. The modulus N must be a t  least 512 

bits long. 

We extend and accelerate  the  RSA-generator in  various ways. We give evidence for  more 

powerful complexity assumptions that  yield more efficient generators. Let be 

product of two large random primes p and q and let d be a natural number that is 

relatively prime to p(N) - (p-l)(q-1). The number d must be small compared to log N SO 

that the interval  [l,NZ’d] is sufficiently large. We conjecture that  the following 

distributions a r e  indis t inguishable  by eff ic ient  statistical tests (see Hypothesis 2.1): 

N - D 9  

d . the distribution of x 

. the uniform dis t r ibut ion on [l,N]. 

(mod N) f o r  random x E [1,N2’d]. 

This  hypothesis is closely related to the security of the RSA-scheme. Under  t h i s  
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hypothesis the transformation 

2 /d  [l.N 1 3  x - xd(mod N) E [1,N] 

stretches short random seeds x E [1,N2’d] into a pseudo-random numbers x d (mod N) i n  

the interval [l ,N].  We build various random number generators on this transformation. 

The sequential polynomial generator (SPG) generates from random seed x E [l,NZ’d] a 

sequence of numbers x - xI,xZ, ..., X I ,  ... E [1,N 2/d 1. The n(l-2/d) Least significant bits of 

the binary representation of xf(mod N )  are  the output of xi and the 2n/d most 

significant bits form the successor xi+l of xi. 

It follows from a general  argument  of Goldreich, Goldwasser. Micali (1986) and  the 

above hypothesis tha t  a l l  these generators are  perfect, i.e. the distribution of output 
strings is indistinguishable. by e f f ic ien t  statistical tests, from the uniform distribution 

of binary strings of the same length. The sequential generator is nearly as eff ic ient  as 

the LCG. Using a modulus N, that  is n bit long, it outputs n(l-2/d) pseudo-random bits 

per iteration step. T h e  costs of a n  iteration step 

corresponds to the costs of  about  one ful l  multiplications modulo N. This is because the 

evaluation of x (mod N)  over numbers x 5 N2’d consists almost entirely of 

multiplications wi th  small numbers that  d o  not require modular reduction. 

d x - x (mod N )  with x E [1,NZfd] 

d 

We extend the SPG to a parallel polynomial generator (PPG). The PPG generates from 

random seed x E [l,N”d] a tree. T h e  nodes of this iteration tree are pseudo-random 

numbers i n  [l,NZ’d] w i t h  outdegree a t  most d/2. To compute the successor nodes 

y(l)....,Y(S) and the o u t p u t  string of node y we stretch y into a pseudo-random number 

Y (mod N) that  is  n bits  long. Then the successors y(1). ....y( s) of  y are obtained b y  

partitioning the most s ignif icant  bits of yd(mod N )  into s 5 d / 2  bit strings of length 

L2n/dJ .  The output  of node y consists of the remaining least significant bits of y (mod 

N). Any collection of subtrees of the iteration tree can be independently processed in 

parallel once the corresponding roots a re  given. In this way m parallel processors can 

speed the generation of pseudo-random bits by a factor m. These parallel processors need 

not to communicate; they a r e  given pseudo-independent input strings and their  OUtPUt 

strings are  simply concatenated. T h e  concatenated output of all nodes of the iteration 

tree is pseudo-random, i.e. the  parallel generator is perfect. The PPG enables fast 

retrieval of substrings of the pseudo-random output. To access a node of the iteration 

tree we follow the path f rom the root to this node, After retrieving a bit the subsequent 

d 

d 
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bits in the output  can  be generated a t  full speed. Iteration trees of depth a t  most 60 are  

sufficient for  practical purposes; they generate pseudo-random strings of length lozo ( for  

outdegree 2 )  such tha t  individual  bits can be retrieved within a few seconds. 

The parallel generator is  based on a method that has been invented by Goldreich, 

Goldwasser and Micah  (1984) for  the construction of random functions. Our contribution 

consists of the observation that  this construction can be applied to speed every perfect 

random number generator  by a factor  m using m parallel processors. Using this principle 

and sufficiently many parallel processors we can generate pseudo-random bits with 

almost any  speed. This  impor tan t  method of parallelization applies to all perfect RNG's 
but the RSA-generator is  particularly suited for  this method. Our method of 

parallelization does not apply to imperfect R N G s  as the LCG since this method can 

further detoriate a weak generator. 

The paper is organized a s  follows. In section 2 we formulate our basic Hypothesis which 

is somewhat stronger than  the assumption that factoring large integers is diff icul t .  We 

give support t o  this  hypothesis a n d  show that a weak version of it follows from the 

assumption tha t  the  RSA-scheme is safe. We present i n  section 3 sequential and parallel 

random number generators that  a r e  based on this hypothesis. In the open problem session 

we question whether  there  exist perfect pseudo-random number generators that  use a 

prime modulus. This  would lead to pseudo-random number generators which use a 

modulus that is only 224 bits  long. 

2. T h e  Complexity Assumption for  the Polynomial Random Generator 

Let P(x) be a polynomial  of degree d 2 2 with integer coefficients and let N be an 

integer that is  n bits  long, i.e. 2*-' 5 N i 2". We denote I = L2n/d]. Residue classes 

modulo N are  ideht i f ied  w i t h  the corresponding integers in the interval [1,N]. 

The polynomial generator  is based on the transformation 

where x ranges over  a suff ic ient ly  large subinterval [1,M] of [l,N]. We would like that  

the outputs of  ( l ) ,  f o r  random be indistinguishable 

f rom random y E [l.N]. T h e  following conditions and restrictions are  clearly necessary. 

x E (1,M] and given N, M and P. 
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the modulus N must be d i f f icu l t  to factor since given the factorization of N w e  can 

easily invert (1). 

. The interval [LM]  must be so large that  a random seed x E [1.M] cannot be easily 
recovered from P(x) (mod N )  by guessing x.  M must be sufficiently large to make 

P(x)/N large f o r  almost a l l  x E [l.M]. This is because we can easily invert ( I )  

provided that P(x)/N i s  small. 

. P(x) must not be a square polynomial. If P(x) - Q(x)* for  some polyoomial Q then 

the Jacobi-symbol [y) is  1 f o r  a l l  x whereas prob [ [$] - 11 = prob [ [$] 
7 

= - I ]  fo r  random y E [I,N]. Since the Jacobi-symbol can be evaluated efficiently we 

can distinguish P(x)  mod N f rom random numbers y E [l,N]. 

. P(x) must not be a linear t ransform of a square polynomial. If P(x) = aQ(x)* + b we 

Q( x 1' [ N I - "  can, f rom P(x) mod N. recover Q(x)' mod N and check that 

We choose N,M,P(x) as  to correspond to these conditions. Let N be a random number that 

is uniformly distributed over  the set 

S, - { N E N I  N = p-q for  distinct primes p,q 
such that 2'12-' c p,q < 2"' 

of integers that a r e  products of two distinct primes which each is n/2 bits long. We 

choose the interval length M proportional to 22n'd, M - 6(22n1d); i.e. I/c 5 2'"' / M 5 c 

f o r  some absolute constant  c > 0. Then M is proporrional to N21d f o r  all N E S,. The 

choice f o r  the polynomials P(x) seems to be subject to only a few restrictions. We are 

going to study a par t icu lar  class of permutation polynomials where the hypothesis below 

can be justified by known theory. These are the RSA-polynomials with d 

relatively prime to p ( N )  = (p-l)(q-1). 

P(x) - xd 

Rivest, Shamir a n d  Adleman (1978) have invented the RSA-cryptoscheme that  is based 

on the multiplicative group 

Z i  - ( x(mod N )  I gcd(x.N) - 1 ) 
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of residue classes modulo N that  a re  relatively prime to N. The integer N is product of 

two odd primes, N - P.9. The order of the group ZN is o(N) = (p- l ) (q- l ) .  The 

transformation 

( 2 )  x - xd (mod N) 

with gcd(cp(N1.d) = 1 is a permutation on the residue classes modulo N, i.e. it  permutes 

the integers i n  the interval  [l,N]. The inverse transformation is given by x - X' 

(mod N) where e = d" mod (p(N). The permutation (2)  with gcd(p(N),d) = 1 and d 

1 is an RSA-enciphering junction. The enciphering key d does not reveal the inverse key 

e provided that  p(N) is unknown. Knowledge of p(N) is equivalent to knowing the 

factorization N = p.4. The  security of the RSA-scheme relies on the assumption that 

RSA-enciphering x - x is difficult to invert when d. N are given but  p(N)  

and e = d-'  mod p ( N )  a r e  unknown. All known methods for  inverting RSA-enciphering 

require the factor izat ion of N. 

d (mod N)  

We are  going to show that  the following hypothesis is closely related to the security of 

the RSA-scheme. Our random number generators wil l  rely on this hypothesis. 

Hypothesis 2.1 Let d 2 3 be an o d d  integer and 1 = L 2 n / d J .  For random N E S n  such 

that gcd(d.cp(NJ) = I and f o r  a l l  M = 8(2 ) the following distributions on [ I . N ]  are 

indistinguishable b y  polynomial t ime statisticaI tests: 

1 

d the uniform distribution on [ 1 . N ] .  + x (mod N) fo r  random x E [ L . M ] .  

We explain the hypothesis i n  more detail. The concept of a statistical lest has been 

introduced by Yao (1982). A polynomial time statistical test is a sequence T = (Tn)nEN 

of probabilistic a lgori thms wi th  a uniform polynomial time bound no(*). According to 

Yao i t  i s  suff ic ient  to consider statistical tests with 0.1-output. Let 

be the probability that  T, outputs  1. The probability space is that of all integers N E Sn 

with gcd(d.pp(N)) = 1, a l l  numbers  and all 0-1 sequences of internal coin 

tosses, with uni form dis t r ibut ion.  Let FZ(M) be the same probability with random 

numbers y E [1,N] replaced by y = xd(mod N )  for  random x E [1,M] and f ixed  d .  The 

y E [l,N] 
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hypothesis means that  f o r  every polynomial time statistical test T and all M, = e(2 1 ) 

In particular the hypothesis means that any polynomial time algorithm can a t  most 

factor a negligible f rac t ion  of the integers in S,. There are  algorithms that can 

efficiently factor a very small f ract ion of the integers in S,. e.g. Pollard's p-method 

efficiently factors a l l  integers N - p . q such that either p-1 or q-1 is a product of small 

primes. But no algorithm is known that can factor in polynomial time a n-'-fraction of 

the integers in S, f o r  some f ixed  t > 0. 

We introduce some useful terminology. We say that the statistical test T cn-rejects 

RSA-ciphertexts x (mod N) of random x E [ l ,Mn]  if Ip;f - Fz(M,)l t I ,  for infinitely 

many n. If (3)  holds fo r  a l l  polynomial time statistical tests T we call RSA-ciphertexts 

x (mod N)  of random messages x E [l ,M,] pseudo-random in  [1,N]. In this case the 

distributions of  xd(mod N )  for  random x E [1.M,] and the uniform distribution on [1,N] 

are called indistinguishable. 

d 

d 

In general two sequences of distributions ( D n ) , ~ m  and (nn)nepq are  called 

indistinguishable if fo r  every pol. t ime statistical test (T,),,=N, that  is given random 

inputs with respect to  D, (En, resp.) the probability p, ( p n ,  resp.) of output 1 satisfy 

lim Ipn - pnln = 0 f o r  a l l  t > 0. In case of indistinguishable distributions D,, D,, where 

D, is the uniform dis t r ibut ion on set C,. random elements with respect to b, are  called 

pseudo-random in  C,. In case of pseudo-random pairs (x,y) we call x and y 

pseudo-independent. A random number generator is called perfect if it transforms 

random seeds into pseudo-random strings. 

T -T 

T -T t - 
n 

It can easily be seen that  the Hypothesis 2.1 can only fai l  if RSA-enciphering leaks 

partial information on RSA-messages. 

Fact 2 .2  Suppose Hypothesis 2.1 fai ls .  Then given d and N we can distinguish between 

RSA-ciphertexts x ( m o d  N )  of random messages x E [ I , N ]  and of random messages X E 

[ I,Mn J f o r  some Mn = O(2 ). 

d 

I 

d 
Proof The t ransformation x - x (mod N )  permutes the integers in  the interval [1,N]. 
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d The RSA-enciphering x (mod N) of random messages x E [1,N] is uniformly distributed 
over [l,N]. If Hypothesis 2.1 fa i ls  the uniform distribution can be distinguished from 

RSA-ciphertexts x (mod N )  f o r  random x € [I.Mn] ; i.e. RSA-ciphertexts x (mod N )  
d d 

would leak information on whether the message x is  contained in [l ,Mn]. Q ED 

Fact 2.2 does not mean that  the RSA-scheme breaks down if the hypothesis fails. This is 

because messages in  the interval  [1,2 ] are rather unlikely. Nevertheless the hypothesis is 

close to the security of  the RSA-scheme. Using the following Theorem 2.3 we can relate 

the hypothesis to RSA-security (see Corollary 2 .5 ) .  

1 

Theorem 2.3 Alex i .  Chor .  Goldreich.  Schnorr ( 1 9 8 4 )  

Let d,N be integers such that  gcd(d. lp(N))  - I. Every probabilistic algorithm A L .  which 
d given t h e  RSA-enciphering x ( m o d  N) of a message x .  has an cH-advantage in guessing the 

least signif icant bit o f  t he  message x .  can be transformed (un i formly  in N )  into a 

probabilistic algori thm A L  for deciphering arbitrary RSA-ciphertexts.  The deciphering 

algorithm AL.  when given f o r  input x (mod  N). d and N, terminates a f t e r  at most 
- a  3 O ( ~ N  n ) elementary s teps  and outputs x with probability at least 1 / 2 .  

- 
d - 

We count  for  elementary s teps  the  ZN-operations (addition. multiplication, division), 

RSA-encryptions a n d  calls f o r  algorithm AL a t  unit cost. We say that algorithm A L  has 

a n  EN-adVanIage i n  guessing the  least significant bit of x if 

1 
2 prob[AL(xd(mod N).N) - x(mod 2)] >- - + E N .  

The probability space is the set of all x E 11,N] and all 0-1 sequences of internal  coin 

tosses, with uni form probabi l i ty .  

By Theorem 2.3 the  security of the RSA-scheme with parameters N, d implies that  the 

following two dis t r ibut ions cannot  be distinguished given only N and d: 
. the uniform distribution on [1,N], 

xd(mod N) for random, even x E [I,N]. . 
Everyone who is  able  to distinguish these distributions can decode arbitrary 

RSA-ciphertexts x (mod N)  given only N and d. We will present in Corollary 2.4 a more 

formal  version of this  statement. 

d 
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We say that a probabilistic algorithm A L  EN-rejects the distribution D on [l ,N] if 

/PA - FA/ 2 CN 
A where p y E [1,N] outputs 1. The 

probability space is the  set of a l l  y E [I,N]. distributed according to D (with uniform 

distribution. resp.) a n d  of all 0-1 sequences of internal coin tosses of algorithm AL. 

Using this notion we can  reformulate Theorem 2.3 as follows. 

(FA, reSp.1 is the probability that A L  on input 

Corollary 2.4 Le t  d .  N be integers such that g c d ( d . p ( N ) )  = I .  Every probabilistic 

algorithm A L .  that en-rejects  RSA-ciphertexts  x ( m o d  N) of even random messages x can 

be transformed ( u n i f o r m l y  in N )  into a probabilistic algorithm for  decoding arbitrary 

RSA-ciphertexts.  This  deciphering algorithm terminates after p1 most O(eN n ) elementary 

steps (i .e.  ZN-operations. RSA-encryptions and cal ls  f o r  A L ) .  

d 

a 3  

We next show that  Corollary 2.4 remains valid if we replace RSA-ciphertexts of random 

even messages x, by RSA-ciphertexts of random messages x E [1,N/2]. 

Corollary 2.5 Let  d .  N be odd integers such thai gcd(d.lp(N)) - 1. Every probabilistic 

algorithm A L .  that EN-rejects RSA-ciphertexts  x ( m o d  N )  o f  random messages x E 

[ I . N / 2 ] ,  can be t rans formed  ( u n i f o r m l y  in N) i n f o  a probabilistic algorithm f o r  decoding 

arbitrary RSA-ciphertexts .  This  deciphering algorithm terminates a f t e r  41 most O(E. n I 
elementary steps. 

d 

- 8  3 

Proof For odd N and  a l l  x E [1.N] we have 

x E [I,N/2] (* Zx(m0d N) is even 

(i.e. x E [I.N/Z] i f f  t h e  representative of 2x(mod N) in  [1.N] is even). 

We see f rom this equivalence t h a t  the following distributions are identical for  odd N: 
d . x (mod N )  for  random x E [I,N/Z], 

. 2-dyd(mod N) f o r  random even y E [1,N]. 

Moreover we can t ransform i n  polynomial time yd(mod N )  into 2-dyd(mod N). Thus an 

EN-rejection of RSA-enciphering, x (mod N )  of random messages x E [1,N/2] can be 

transformed (uniformly i n  N) into a n  en-rejection of RSA-ciphertexts y (mod N) of 

random even y E [1,N]. Corollary 2.5 follows from Corollary 2.4 by this transformation. 

d 

d 

QED 

Under the assumption tha t  the RSA-scheme is safe Corollary 2.5 proves a slight 
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1 modification of our  hypothesis. The interval (1.2 ] of Hypothesis 2.1 is replaced by  the 

interval [1,N/2] i n  this modification. This poses the question whether the length of the 

interval is crucial  f o r  the  hypothesis to be valid. We next show that Hypothesis 2.1, with 

the interval [1.2 I replaced by the interval [1,N 2-r'0' nl], is valid if the RSA-scheme is 

safe. 

l 

Theorem 2.6 Let  d .  iv be o d d  integers such that gcd(d .rp(N))  = I .  Every probabilistic 

algorithm A L ,  that  EN-rejects RSA-ciphertexts x ( m o d  N )  of random messages 

x E [ I .  N2 J ,  can  be  t rans formed  (uni formly  in N )  into a probabilistic algorithm fo r  

decoding arbi t rary  RSA-c ipher texrs .  This deciphering algorithm terminates a f t e r  a f  most 

o(ztk n 3 )  e l ementary  s teps .  

d 

-k 

Proof Under the assumption that  the RSA-scheme is safe, Alexi et a l i i  (1984) have 

shown that  the log n least significant bits of RSA-messages x are pseudo-random when 

given x (mod N), d a n d  N. Thei r  proof transforms every algorithm AL, that  cn-rejects 

RSA-encipherings xd(mod N) of random messages x satisfying x - O(mod 2'). (uniformly 

in  N) into a probabi l is t ic  algorithm for  deciphering arbitrary RSA-ciphertexts. This 

RSA-deciphering procedure terminates af ter  a t  most 0(2*' e i 8  n') elementary steps (i.e. 

ZN-operations, RSA-encipherings a n d  calls f o r  algorithm AL). 

d 

For odd N and a l l  x E [ l ,N]  we obviously have 

x E [l.N2-'] e) 2'x(mod N) - O(mod 2') 

(i.e. x E [1,N 2-'1 i f f  t h e  representative of Z'x(mod N) in [1,N] is a multiple of 2'). 

Therefore the fol lowing two distributions are  identical for  odd N: 

f o r  random x E [l,N2-'] , . xd(mod N) 
2-kd d . y (mod N)  f o r  random y E [1,N] satisfying y - O(mod 2') . 

d - t d  d Moreover we c a n  t ransform i n  polynomial time y (mod N) into 2 y (mod N). Thus an 

EN-rejection of  RSA-ciphertexts x (mod N) of random messages x E [1,N 2-'] can be 

transformed (uni formly  i n  N) into a n  EN-rejection of RSA-ciphertexts y (mod N) O f  

random messages y sat isfying y - O(mod 2'). Corollary 2.6 follows from this 

d 

d 

transformation a n d  the  above mentioned proof of Alexi et alii (1984). QED 

Notice that the  t ime bound f o r  the RSA-deciphering algorithm of Corollary 2.6 is 

polynomially related to the t ime bound of algorithm A L  provided that k 5 log n. Hence 

1 3  if Hypothesis 2.1 fails, wi th  the interval [1,2 ] replaced by the interval [l. N2-r'0' "' I 
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then RSA-ciphertexts can  be deciphered in probabilistic polynomial time. Also i f  

Hypothesis 2.1 fa i ls ,  wi th  the interval [1,2 ] replaced by the interval [I. N2-LGJ], then 

RSA-ciphertexts can  be deciphered in time eo(G). However the fastest known algorithm 

for  RSA-deciphering. via  factoring N .  requires about e o ' e 9 s G  steps, where 0.693 J 

log2. Thus if Hypothesis 2.1 fa i ls  f o r  the interval [I, N2'LGJ], then we can speed up the 

presently known at tacks to the RSA-scheme. 

1 

d It remains the question whether  the computational properties of the distribution x (mod 

N)  change when x ranges over very small integers x. In fact Hypothesis 2.1 does not hold 

for  the interval [l,N"d] since we have xd c N for  all x E [l,N"d] and therefore 

RSA-ciphertexts xd(mod N) can easily be deciphered for  x E [I,N"d]. On the other hand 

the d-powers x are  of order  Na f o r  almost all numbers x E [l.2 1. We conjecture that this 

is sufficient to make the  task of deciphering xd(mod N )  hard. This is justified because 

inverting the squaring 

d I 

2 x - x (mod N)  

is known to be as hard  as  factor ing N ,  and the squares x' are of order N', too. 

We are  going to s tudy the question whether Hypothesis 2.1 should be extended to 

polynomials p(x) t h a t  a r e  more general than RSA-polynomials P(x) 9 xd with 

gcd(d.v(N)) * 1. There  is a n  obvious extension of Hypothesis 2.1 to arbitrary exponents d 

2 2. It seems that  t h e  condition gcd(d,p(N)) = 1 is not necessary for  odd d. This is 

because no extension of the Jacobi-symbol is known for residues xd(mod N) of odd 

prime powers d. On the other  hand we must modify the hypothesis f o r  even d since the 

Jacobi-symbol gives e f f ic ien t  information on the quadratic residuosity. We formulate the 

extended hypothesis SO that  i t  can be applied in  the proof of Theorem 3.1 to establish 

perfect RNG's. For reasons of eff ic iency we are particularly interested in even exponents 

d and  in exponents t h a t  a r e  powers of 2. 

1 
Extension to  even d of Hypothesis 2.1 For random N E S n .  ail M = @ ( 2  1. 1 - L2n/dJ, 

and random x E f I . M ]  rhe jol lowing holds.  

( I )  y := x ( m o d  N) is  a pseudo-random quadralic residue modulo N .  

( 2 )  Partitioning y into disjoint seciions z := ~y 2-"+lj and y(mod 2 

d 

n-1 ) y ie lds  

pseudo-random numbers in  [ I .  N 2'"'J and [ 1 , 2 n - 1 ] .  

f 3 )  z (mod  N )  and y ( m o d  2"-') are pseudo-independent. d 
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Article (1) of the extended hypothesis can be justified b y  the work of Alexi et alii (1984) 

for  the case that  N is  a Blunt-integer,  i.e. N is product of  two primes p and q such that p - 3(mod 4 )  and q = 3(mod 4). One can prove that distinguishing xd(mod N). for  random 

x E [ l ,  N n-'] f r o m  random quadrat ic  residues modulo N is equivalent, by probabilistic 

polynomial time reductions, to factoring N. Article (2)  means that neither z nor y(mod 

2"-') contains e f f ic ien t  information on the quadrat ic  residuosity of y. Article (3) means 

that the dependence of z and y(mod 2"-'), via the quadratic residuosity of y .  gets hidden 

by the transformation z - zd(mod N). 

Next we consider a rb i t ra ry  polynomials P(x) of degree d. We are going to show that some 

elementary methods f o r  distinguishing random numbers y E [ l ,N]  and P(x) mod N for 

random x E [ l ,Nf id]  d o  not work. Theorem 2.7 is a first step in this direction. This 

problem clearly deserves fur ther  study. 

In general we can  invert  the transformation 

x - P(x) mod N ( l j  

only if the factor izat ion N - pq is given. Then, using Berlekamps algorithm for  

polynomial factor izat ion we invert  (1) modulo p and modulo q and apply the Chinese 

remainder construction. This  c a n  be done i n  probabilistic time (nd)'''). Without knowing 

the factorization of N we do not know how to invert (1). In the particular case that P(x) 

divides x * ( ~ )  we c a n  invert  (1) provided that  we know the cofactor x")/P(x), but in 

this case we can  even factor  N. 

Can we invert (1) f o r  small integers x ? If IP(x)/ / N is small we can guess z = P(x) and 

factorize P(x) - z. Theorem 2.7 below shows that IP(x)(/N is large for  almost all x E 

[1,N 1 provided t h a t  P(x) has degree a t  most d. A degree bound is necessary since there 

exist polynomials of  degree N"d that  vanish on the interval1 [l,N"d]. 

Zfd  

Thearem 2.7 Let  A . B . d  be  integers such that M 2 ( B N ) ' / d  16Ad. and let P ( x )  E Z [ X /  

have degree d .  Then we have prob[ lP(x) l  5 BN] 5 I / A  f o r  random x E [ I S M / .  

Proof Let x i ,  .... x k  be the distinct real numbers in [O,N] satisfying P(xi)' - BzN2 for  

i=1, ..., k. We have k 5 2d since P(x)' has degree 2d. We partition the real interval [O.M] 
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I a5 

into J A d  intervals I of length M/(4Ad).  A fundamen ta l  theorem in approximation theory 

(see e.g. Stiefel  (1969). p. 236) implies  that  

f o r  each of these in t e rva l s  1. Hence 

Th i s  shows that  eve ry  in t e rva l  I ,  t h a t  contains  a n  integer x satisfying IP(x)) s EN, must 

also con ta in  some po in t  xi, 1 5 i 5 k . T h e  intervals I that  contain some point  xi  can 
have a t  most 

integer points.  T h i s  accoun t s  f o r  a t  most a f r ac t ion  of 

of the points  i n  [l,M]. Q E D  

3.  The Sequential and the Parallel Polynomial Generator 

In this  section we build several  RNG's  on  polynomials P(x) of degree d 2 2 that  have  the 

fol lowing generator  p rope r ty .  T h e  g e n e r o t o r  p r o p e r t y  formulates Hypothesis 2.1 f o r  

a r b i t r a r y  polynomials  P(x).  

Definition T h e  p o l y n o m i a l  P(x)  has  the  generator  proper ty  if f o r  random N E S,. a l l  M 

proport ional  to Nz'd a n d  r a n d o m  x E [1,M] the  number P(x) mod N is pseudo-random in 

[1,Nl. 

T h e  generator  p r o p e r t y  means  t h a t  P stretches random seeds x E [l,Nf'd] into 

pseudo-random n u m b e r s  P(x)  mod N in the interval [1.N]. By Hypothesis  2.1 

RSA-polynomials P ( x )  = x d wi th  gcd(d,p(N))  I 1 and  d ? 3 have the generator property.  
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The sequential polynomial generaror (SPG) generates a sequence of numbers x = 

x1,xz. .... Xi.  ... in [l.N’’d] that  a re  represented by bit strings of length 1 := L2n/dJ . The 

outpul a t  Xi, Out(xi) E {O,1lU-’ , is the bit string consisting of the n- l  least significant 

bits of the binary representation of P(xi) mod N. The successor xi+l  of x i  is the number 

corresponding to the other  bits of P(xi) mod N, 

The sequential polynomial generator can be figured by the following infinite tree 

figure of th. mequential polynornid graerstor (SPC) 

Let the k-output of  the  SPG 

be the concatenated output  of the first k steps. 

Notice that  the most s ignif icant  bits of P(xi) mod N are biased depending on the most 

s ignif icant  bits of N. Even though the most significant bits of P(xi) mod N are  not 

pseudo-random we c a n  form from these bits the successor xi+l  of xi. This is because the 

generator property a n d  Hypothesis 2.1 imply that P(xi) mod N is pseudo-random i f  xi is 
1 random in [1,M], for all .  M proportional to 2 . 

Theorem 3.1 Suppose that P has the generator properly. Then for random N E Sn. random 
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x E f I . N 2 / d J  and polynomially bounded k ( i . e .  k = k f n )  = no"') the k-output 

SPGk,p (X ,N)  of the sequential polynomial generaror is pseudo-random. 

Proof For random N E Sn and random x1 E [1,N2'd] the number P(x1) mod N E [1,N] is 

pseudo-random. It follows that  the bit string Out(x1) E (0,1)*-' is pseudo-random and 

that the number x 2  E [1,2'] is pseudo-random. We also see that the pair (Out(xi), xa) is 

pseudo-random. It follows from the generator property and since xz is pseudo-random 

[hat 

is pseudo-random, too. To prove this claim we replace in a statistical test T - ( T n ) n E ~  
fo r  z :- ( Out(x1) Out(x2). xs  ) the pair  ( Out(x2). xs ) (the string Out(xl). resp.) by 

random objects generated through internal  coin tosses. This transforms f into statistical 

tests for  P(x1) mod N (P(x2)mod N, resp.). If z is o,-rejected then either P(x2) mod N or 

P(x1) mod N is (a,/2)-rejected. In either case this yields a statistical test that  

(cn/2)-rejects P(x1) mod N. 

By induction on k the  same argument  proves that  

is  pseudo-random f o r  every f ixed  k. The pseudo-randomness also holds if k - k(n) is 

poIynomialIy bounded in n ,  i.e. k = no(*). Using the above argument we can transform a 

test that €,-rejects ( SPGk,p(xl,N), xk+l ) into a test that (c,/k)-rejects P(x1) mod N. QED 

I t  is important that  the above proof also applies to polynomials P(x) = xd with even d. 

Instead of using the  generator property of P we can use the extension to even d of 

Hypothesis 2.1. Speaking informally. i t  does not hurt that xd(mod N )  ranges over 

quadrat ic  residues since the  output  merely contains the least significant bits of x (mod 

N )  and these bits give no e f f ic ien t  information on the quadratic residuosity of x (mod 

N). E.g. we can use f o r  random bi t  generation the polynomial P(x) x* which yields 

particular eff ic ient  RNG's. 

d 

d 

PRACTICAL SEQUENTIAL POLYNOMIAL GENERATORS: The modulus N and the 

number must be f i x e d  in  practical applications, W e  study the complexity conditions 



that N and  N2'd must satisfy to prevent an efficient analysis of the generator output. 

It must be practically impossible to factor the modulus N. For this let N be product of 

two random primes p a n d  q which each is a t  least 256 bits long. The numbers p-1, pcl ,  

q-I ,  q + l  must each have a t  least some prime factor which is larger than 2 . 80 

d The number N*" must be SO large that, given x (mod N), it  is practically impossible to 

f ind x E [1,N2'd] by e f f ic ien t  search methods. Pollard (1988) has proposed the following 

method to search f o r  a n  input  x that  is product x = uv of two numbers u,v E [i,N']: 

1. Generate the set S1 = (ud(mod.N) I u E [l,Na]) and sort this set. 

2. Generate the set S2 = (xd vmd(mod N) I v E [l.Na]) and sort this set. 

3. Test whether S1 a n d  Sz have a common element. If u = xd v-d(mod N) E S1 n S2 then d 

one has found x = uv. 

Pol lards  attack performs O(Na) arithmetical steps modulo N and stores N a  residues 

m o d u b  N. It is most e f f ic ien t  when x is product of two numbers in [l,N'/dJ. In order  to 

make Pollard's a t tack infeasible i t  is sufficient that NIId is a t  least 2 . 
Ex8rnplc 1: Let N be  n = 512 bits  long and let gcd(7,lp(N)) = 1. We choose d = 7, P(x) = 

x . Let  Out(xi) consist of the 365 least significant bits of P(xi) mod N and let xicl be the 

number corresponding to  the 128 most significant bits of P(xi) mod N. We compute 

x (mod N )  by computing x2, x', x' = x . x2 . XI. Only the last multiplication requires 

modular reduction. T h e  other  multiplications a re  with small numbers. The costs of one 

iteration step correspond to one fu l l  modular multiplication. Thus this SPG iteratively 

outputs 384 pseudo-random bits a t  the cost of one full modular multiplication with a 

modulus that  is 512 bits long. 

Exampic 2: Another sui table  polynomial is P(x) - I even though this polynomial does 

not have the generator property. T h e  computation of x8(mod N )  is particularly easy; we 

compute x , x , x iteratively outputs 

384 bits at  the cost of one fu l l  modular multiplication with a modulus N that  is 512 bits 

long. 

64 

7 

7 

8 

3 4 8  8 by  successive squaring. The SPG with P(x) = x 

Efflcient public key encoding 8nd decoding. We can use the above RNGs to generate a 

one-time-pad f o r  message encoding. When given the seed x t  of the one-time-pad, 

encoding and decoding c a n  be done a t  a speed of about n(l-2/d) bits per multiplication 

modulo N. A public key coding scheme as e.g. RSA can be used to encode and fo decode 

the seed XI. 
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The psrs l lc l  polynomial generator. The paral le l  polynomial generator (PPG) generates 

f rom random seed x E [l,NZ’d] a tree with root x and outdegree at  most d/2. T h e  nodes 

of this ireration rree are  pseudo-random numbers i n  [I,N”d] that are represented by bit 

strings of length I .  

The successors  y( l ) ,  ...,y (s) of a node y with degree s and the ourpur siring Out(y) of node 

y a re  defined as follows. Let  b1, ..., b,, be the bits of the binary representation of P(y) 
mod N, with bl being the most significant bit,  i.e. 

n 
i = l  C bi 2 O - l  P(y) mod N . 

We partition the sl  most signif icant  bits into s block with I bits i n  each block. The 

corresponding numbers 

are the successors of node y in  the iteration tree. The output Out(y) a t  node y consists 

of the remaining low order  bits of P(y) mod N, 

For convenience we denote  the nodes on level k of the iteration tree as xh , . , . . jd :  

x(j1, ..&-I) is the direct  predecessor of x(j1, ..&) and j k  ranges from 1 tO Sk-1 = 

“outdegree of x(j1, ..&-I)‘. For simplicity we let the outdegree of node x(j1, ..&) be a 

funct ion depending on k only; we  assume that Sk 5 1. 

The parallel polynomial generator can  be figured by the following infinite tree 
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x - x(A)  

figura of tha parallrl polynomial grnrrrkor (PPG) 

We define the k-outpuf PPGk,p(x,N) of the PPG with seed x as the concatenation of all  

bit strings Out(x(j1. . . . ,ji)) on levels i with 0 5 i J k, with respect to a n y  eff ic ient  

enumeration order, as  e.g. preorder  .traversal, postorder traversal, inorder traversal or 

enumeration by levels. 

In the particular case that  a l l  outdegrees are  one, i.e. so - s1 - ... = sk = 1 , the parallel 

and the sequential polynomial  generator coincide. The argument of Goldreich, 

Goldwasser and Mical i  (1986) extends Theorem 3.1 f rom the SPG to arbi t rary PPG’s, 

provided that we process a t  most polynomially many nodes in  the iteration tree. This 

yields the following theorem. 

Theorem 3.2 Suppose that P has the generator property. Then for random N E S n ,  random 

x E f1.2 ] !he k-output PPGk,p(x.N) of the parallel polynomial generator is 

pseudo-random provided that the Iength of p P G k , p ( x . ~ V j  is  polynomially bounded. 

I 

Ide8 of proof There  is a s t ra ightforward way to extend the proof of Theorem 3.1. 

Suppose that the k-output  PPGk,p(x.N) collects the outputs of nodes. Then every 

statistical test that  E,-rejects PPGk,p(x,N) for  random x E [l,NZ’d] and random N E s, 
can be transformed into a statistical test that (E,/r)-rejects P(x) mod N. Q ED 
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For the output of the PPG we can use any efficient enumeration for  the nodes of the 

iteration tree. TO support parallel evaluation we can adjust the shape of the iteration 

tree and the enumeration order  to the number of available parallel processors. For m 

parallel Processors we can use a n y  iteration tree consisting of m isomorphic subtrees 

attached to the root; we can enumerate, in any order, the m-tuples of corresponding 

nodes in these subtrees. The  enumeration within the subtrees can be chosen to support 

fast retrieval; for  this we can enumerate the nodes e.g. i n  preorder traversal or in 

inorder traversal. It is a n  obvious but important observation that m processors can speed 

the pseudo-random bi t  generation of the PPG by a factor m. Once we are given m nodes 

on the same level of the  i terat ion tree we can process the subtrees below these nodes 

independently b y  m parallel processors. These processors do not need to communicate. 

Corollary 3.3 Using m processors in parallel we can speed the pseudo-random bit 

generation o/  the parallel polynomial generator b y  a factor m. 

PRACTICAL PARALLEL POLYNOMIAL GENERATORS 
8 Let N be product of t w o  random primes so that N is 512 bits long. Let P(x) - x . 

Example 3: We construct from random x E [1,2'*'] a tree with 4 nodes per level. 

1. Stretch a random seed x E [l.212'] into xa(mod N). 

2. Partition the binary representation of x8(mod N) into 4 bit strings x(l), ..., x(4) of 
length 128. Put k - 1 a n d  let PPGl,p(x,N) the empty string. 

k 3.  For j - 1, ..., 4 let x ( j  1 ) E I t z 8  consist of the 128 most significant bits of the binary 

representation of x(j mod N, and let Out(x(j lk)) E 1384 consist of the 

remaining 384 least s ignif icant  bits. 
4 

j= l  
4.  PPGk+lp(x,N) - PPGk,P(x,N) Out(x(j 1')) 

k := k + 1 , go to 3. 
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I V I v 3. V 1 
X( 11.**1) X(21.-l) ~(31-1) ~(41-1) . 

Figure of th. PPC of axampla S 

Using 4 parallel processors this PPG iteratively generates 4 . 384 - 1536 pseudo-random 
bits in  the time f o r  one  fu l l  modular multiplication with a modulus N that is 512 bits 

long. With current  processors f o r  smart cards such a full modular multiplication can be 

done in  less t h a n  0.2 sec. Thus 4 parallel processors can generate about  9000 

pseudo-random bits per  sec. 

Example 4: We construct f rom random x E [1.2"'] a complete tree of outdegree 2. 

1. Choose a random seed x E [1.2'2'] for  root of the tree. 

2. For every node y E [1,2'28] of the tree compute the successors y(l), y(2) and the output 

Out(y) by par t i t ioning the binary representation B of y'(mod N) as 

B - 81 Ba Out(y) E I:tr x J2so , 
and compute f o r  i - 1,2 

y(i) :- 1 + "the number with binary representation Bi'. 
The main interest in such a PPG comes from fast retrieval methods. 

Fast re t r ievd for the PPC. If the PPG has a complete iteration tree one can efficiently 

retrieve substrings o f  the  output .  Consider example 4 with a complete iteration tree of 

outdegree 2. Level k of  the tree has 2 nodes and  the first k levels have 2"' - 1 nodes in 

total. Suppose the nodes of the tree are  enumerated i n  preorder traversal. Each node 

yields 256 output  bits. To retrieve node y we follow the path from the root to Y. This 

requires processing a n d  storage of a t  most k nodes and can be done a t  the costs Of about 

k ful l  modular multiplications. Once w e  have retrieved node y and stored the path from 

k 
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the root to node Y.  the  bit string that follows Out(y) in the output can be generated 

using standard retrieval methods a t  the speed of 256 bits per modular multiplication. For 

most practical applications the depth k wil l  be a t  most 60 which permits to generate a 

pseudo-random string tha t  is 3.7 . lozo bits long. We see that retrieval of substrings is 

very efficient, i t  merely requires a preprocessing stage of a few seconds to retrieve the 

initial segment of the substring. 

Theorem 3.4 Every node y o f  depth k in the iferation free o f  ihe PPG can be accessed and 

processed at the costs of O(k) modular multiplications. 

k 10 20 30 40 50 60 

2047 2.106 t.l.lOQ 2.2.1012 2.25.10'' 2.3.10" # nodes in 
the first k levels 
# output bits 5.2.10 5 5.7.10' 5.5.10" 5.6.10" 5.8.1017 5.9-10'' 

Tabla: retrieval parformanee of tha PPC, rumple  4 

Parallelizrtion and f a s t  retrieval for  arbitrary perfect RNG's. It is a n  important 

observation that the above  methods of parallelization and of efficient retrieval apply to 

every perfect RNG (G,),&J. The parallel version of the generator associates a n  iteration 

tree to a random seed. For example let G, : I, -, Is, stretch a random strings in  I, into 

pseudo-random strings i n  13,. We construct f rom random seed x E I, a binary iteration 

tree with nodes in I,,. Le t  x be the root of the tree. Construct the two successors y(l), y(2) 

and the output  Out(y)  of node y by partitioning G,(y) E I,, into three substrings of 

length n, 

Gn(Y) ~ ( 1 )  ~ ( 7 - )  O U ~ ( Y )  . 
Let PGk,G(X) be the  concatenated output  of a l l  nodes with depth a t  most k (compare with 

the def ini t ion of  PPGk,p(x.N)). 

Theorem 3.5 Let ( G n ) n m  be any perfect RNG. Tken for random seed x E In the 

concatenated output PGk.G(X)  of all nodes with depth 5 k i s  pseudo-random provided that 

its length is polynomially bounded in n .  

We illuminate our method of parallelization in  applying i t  to  some less eff ic ient  versions 

of the RSA/Rabin generator. Let N be a product of two random primes such that N is 

512 bits long and  gcd(3,  p(N))  = 1. 
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Example  5 :  From random seed x E [1,N] we generate the sequence of numbers 

x1,xZ ,..., xi ,... E [ l ,N]  a s  

S 
X I  * X , X i + 1  * x,(mod N) 

Under the assumption that  the RSA-enciphering is safe for  the 
pnrf icufar  N,  Alexi et a l i i  (1984) have  shown that about the 16 least significant bits of xi 

are pseudo-independent f rom xi+l. This  suggest the following output of x i  

x - xs(mod N) 

Out(xi) = "the 16-least significant bits of xi". 

Thus f o r  random x i  E [ l ,N]  a n d  under the assumption that RSA-enciphering is safe  we 

obtain pseudo-random bi t  strings n Out(xi) of length 1600. We apply a binary tree 

construction to the funct ion 

100 

i s 1  

G : 1612 * I1600 
100 

i= 1 
that stretches the binary representation of X I  E [1,N] into n Out(xi) . The binary tree 

has nodes in  1612. The successors y(1). y(2) and the output of node y are  obtained by 

partitioning G(y)  into two successor strings of length 512 and an output string OutC(y) 

E 1576. Processing a node of the  binary iteration tree costs 200 modular multiplication. 

Example 6: We can accelerate this generator under the reasonable assumption that  the 

448 least s ignif icant  bi ts  of  the  number x and the number x'(mod N) are 

pseudo-independent f o r  random x E [l,N]. We set 

OUt(Xi) :- "the 448 least significant bits of xi" . 
The assumption implies that  n Out(xi) E is pseudo-random for random x1 E 

[l,N]. We apply the  binary tree construction to the function 

S 

i s 1  

G : ISIS 4 Its44 
s 

i r l  
that  stretches the binary representation of x1 E ( 1 3 1  into 

y(l), y(2) E 1613 a n d  the output  Outc(y)  E I s t o  of node y are  obtained by partitioning 

G(y) E I1344 into two strings i n  Islt and OutC(y) E Iszo. Processing a node of the binary 

tree costs 6 modular multiplications. 

Out(x,). The suCCeSSOrS 
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Example 7: We can fur ther  speed u p  this generator under the assumption that  the 448 

least significant bits of random x E [1,N] and the number x2(mod N)  are 

pseudo-independent. (It follows from Alexi et alii (1984) that the 16 least significant bits 

of random x E [l,N) and  the number x2(mod N)  are pseudo-independent if factoring the 

particular N is hard. Under  this assumption we can replace the iteration xi := x,,l(mod 

N )  by xi+l  := xi(mod N). As in  Example 5 we associate with a random x E [1,N] a binary 

iteration tree with nodes in  1 ~ ~ 2 .  Processing a node of this tree costs about 4 modular 

multiplications and  yields 320 pseudo-random bits for  output. 

3 

2 

It is interesting to  compare the efficiency of these parallel RNG's  with the parallel 

RNG's based on Hypothesis 2.1. For the latter RNG's in examples 1-4 the cost per node 

of the iteration tree is about  1 multiplication modulo N. This shows that the new perfect 

RNG's are  more sui table  f o r  our method of parallelization and fast retrieval. 

4 .  Open Problems: Random Number Generators Based on 1 Prime Modulus 

In Hypothesis 2.1 we need that  the modulus N is difficult to factor. This is because given 

the factorization of N a n d  given xd(mod N) we can recover x = xd*(rnod N)  using the 

inverse exponent e = d-'(mod cp(N)). Now suppose we are only given the least significant 

bits of x (mod N). Then we cannot  easily recover x even if d-'(mod cp(N)) is known. 

This poses the question whether Hypothesis 2.1 can be extended to arbi t rary prime 

moduli p. 

d 

Problem 4.1.  Let p be  a n  a rb i t ra ry  prime, 2"-' < p < 2". let d be relatively prime to p-1, 

d I 3 and let I 2  Ltn/dJ .  Is i t  t rue  that  f o r  random x E [1.2 ] and y :- x (mod p)  the n - 
I least significant bits of y a re  pseudo-random? 

1 d 

If this pseudo-randomness does not hold for  all primes w e  ask whether i t  holds f o r  

random primes. 

Problem 4.2. Let d L 3, 1 z L2nldJ and  let p be a random prime such that 2"-' < p < Zn 

and gcd(d,p-l) - 1. Is i t  t rue that  f o r  random x E [1,2 ] and y :- x (mod p)  the n-1 least 

significant bits of y a r e  pseudo-random? 

1 d 

If we replace in  Problem 4.2 the  prime modulus p by a random composite modulus i n  s, 
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the pseudo-randomness in question follows from Hypothesis 2.1. These problems are 

important since this would modify Hypothesis 2.1 so that i t  is no more related to the 

diff icul ty  of factor ing the modulus. We consider the random number generators that 

would follow. 

The sequential generator using a prime modulus The SPG generates from a random seed 

X I  E [1,2 ] a sequence of numbers x1,xZ. ..., xi E [1,2 ] that are represented by bit strings of 

length I. The outpuf a t  xi, out(xi) E ( O , l ) n - z l ,  is the bit string consisting of the n-21 least 

significant bits of the  binary representation of xi(mod p). The successor xi+l of xi is the 

number corresponding to the next  I least significant bits of xd(mod p); these a re  the bits 

in positions n-I, ..., n-21+1 f rom the left. 

I I 

d 

Corollary 4.3 

f o r  random prime p with 2 

[ O  .....p- I ]  into a pseudo-random ouiput n oUt(xi). 

If pseudo-randomness holds in problem 4.2,  then the above SPG transforms 

c p < 2" and every k with k - no( ' )  a random seed X I  E n- I 

i 

i= l  

In practical appl icat ions the number I must be so large that, given the n-I least 

significant bits of x (mod p). i t  i s  practically impossible to f ind x E [1,2 1. Now Pollard's 

attack (see section 3) does not  work since the most significant bits of xd(rnod p) are 

unknown. Therefore i t  would be suff ic ient  to start with a random seed xl  that  is  64 bits 

long. 

d I 

Example 8: Let p be  a pr ime tha t  is 224 bits long, let gcd(p-1,7) - 1, d = 7 and I = 64. 

The output  Out(xi) consists of the  96 least significant bits of xi(mod p), the successor 

X i + l  Of X i  is formed by the  next  6 4  least significant bits of x:(mod p). T h e  64 most 

significant bits of xi(mod p)  a r e  not used a t  all. Each iteration step generates 96 

pseudo-random bi ts  roughly a t  the cost of one full modular multiplication with a 

modulus that  is 224 bits  long. 

7 

7 

If we choose a 512 b i t  long pr ime modulus p and d - 7, 1 - 64 then we can output  384 

pseudo random bits per iteration. This  achieves the same performance that is obtained 

with a composite modulus of the same length, see example 1. However using a prime 

modulus that  is about  224 bits long the arithmetic can be done with much smaller 

numbers, and thus the  generator can  be implemented on a cheaper chip. 
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