
Towards an Ontology for Open Source Software
Development

Gregory L. Simmons^ and Tharam S. Dillon^
1 School of InformationTechnology and Mathematical Sciences,
Univeristy of Ballarat, Australia, WWW home page: http://uob-

community.ballarat.edu.au/~gsimmons
2 Faculty of Information Technology, University of Technology Sydney,

Australia, WWW home page: http://staffit.uts.edu.au/~tharani/

Abstract. Software development is a knowledge intensive process and the
information generated in open source software development projects is
typically housed in a central Internet repository. Open source repositories
typically contains vast amounts of information, much of it unstructured,
meaning that even if a question has previously been discussed and dealt with it
is not a trivial task to locate it. This can lead to rework and confusion amongst
developers and possibly deter new developers from getting involved in the
project in the first place. This paper will present the case for an open source
software development ontology. Such an ontology would enable better
categorization of information and the development of sophisticated knowledge
portals in order to better organize community knowledge and increase
efficiency in the open source development process.

1. Introduction

Open source software (OSS) development provides an alternative model of
development to commercial systems developed by or for a single corporate entity. In
this model of development, a variety of developers carry out development and
distribute the source code associated with the product. This allows for incremental
improvement by others or development of complementary products that can
seamlessly interoperate with the open source products.

Open source projects can be broadly characterized by their distributed
development, loose management practices and their uncertain requirements [1, 2],
these are considered briefly below:

• Distributed development teams: Open source developers are potentially
drawn from a global pool of talent using the Internet; developers do not
typically meet face to face. Rather the development community for any
one project is centered on a public World-Wide-Web site and
communication conducted using mailing lists and discussion forums.

Please use the following format when citing this chapter:
Simmons, G.L., and Dillon, T.S., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 65-75

66 Gregory L. Simmons and Tharam S. Dillon

• Loose management: There are no time constraints in an open source
project and no mechanism to insist that functionality is implemented.
Management is less concerned with utilizing resources efficiently and
more concerned with which contributions should be committed to the
product and which should be discarded.

• Uncertain requirements: Open source projects are constantly evolving
with developers choosing to contribute what they think the product needs
rather than the solution to any problem they are assigned, requirements
are therefore elicited rather than assigned.

The community around an open source software project usually interacts through
asynchronous textual modes of conimunication, such as email and threaded
discussions, which are logged in publicly browsable World-Wide-Web repositories.
The merits of proposed changes, requirements for the product, any problems are all
debated in the open and archived along with the source code for the product.

Open source repositories serve to advertise the product, document its use, provide
help to end users of the product, capture feature requests and bugs from users and
developers, support developer collaboration and provide the entry point for new
developers to accustom themselves with the project. Repositories are also the means
by which users and developers upload and download the product in source and binary
form. It is therefore not surprising that these repositories typically contain vast
amounts of information.

The information contained within an open source repository serves as a record of
the community knowledge accumulated throughout the development process and as
such represents an artefact of vital importance. It is therefore unfortunate that the
current open source software repositories in widespread use provide little support in
terms of their ability to structure information so that it is meaningful to different types
of user. Much of the information contained within open source repositories is
unstructured, meaning that even if a question has previously been discussed and dealt
with it is not a trivial task to locate it, leading to rework, conftision amongst
developers and possibly deterring new developers from getting involved. Ankolekar,
Herbsleb and Sycara [3] sum up this problem succinctly "there is a need to get the
right information to the right person for the current task, and to present it in an
understandable, usable way".

One approach to better understand and organize the structure of information from
a particular domain is to use ontologies. Ontologies explicitly define a structure of
concepts from a particular domain and their relationships to one another. Next
generation (semantic) World-Wide-Web applications rely on meaningftilly annotated
content and often use ontologies to define their annotation vocabulary; with access to
the underlying ontology we understand how to process the annotated content, and we
have a basis for organizing the information into a meaningfully navigable hierarchy of
terms.

The remainder of this paper is organized as follows. Section 2 presents a short
description of ontologies and why they can be useful in open source software
development. Section 3 introduces an ontology to describe open source softAvare
development. Section 4 discusses how such an ontology could be applied by

Towards an Ontology for Open Source Software Development 67

proposing a software architecture for semantic portal development. Finally section 5
presents a brief discussion and conclusion.

2. Ontologies

Gruber [4] defines an ontology as "explicit formal specifications of the terms in
the domain and relations among them". An ontology includes definitions of basic
concepts in a domain and relations among them, these definitions are expressed in a
machine-interpretable way allowing for the development of artificially intelligent
applications. More importantly ontologies denote a shared conceptualization, for the
ontology to be useful its specificafion must be one that is accepted in its use by
domain experts.

Ontologies broadly contain Instances, Classes and Properties. Classes represent
important concepts of the domain (these classes may be arranged in a taxonomy
indicating superclass-subclass relationships between classes), properties represent a
type of association between the domain concepts (which may or may not have
restrictions) and instances represent an observed instance of a concept.

For example: An ontology about animals may state that a subclass of the concept
Domestic-Animal called Domestic-Dog requires the properties color, breed, age and
name. Furthermore you can place restrictions on concepts governing what definitions
are legal or not, for example Domestic-Dog could have a restriction stating that all
instances are quadrupeds therefore preventing any two-legged Domestic-Dog
subclasses being defined. There may then be many instances of a Domestic-Dog, each
describing a different four-legged animal such as the bull terrier known as Max and
the retriever known as Rover, who both belong to the class Domestic-Dog.

Noy and McGuinness [5] provide five reasons for the development of an
ontology:

1. To share common understanding of the structure of information among
people or software agents

2. To enable reuse of domain knowledge
3. To make domain assumptions explicit
4. To separate domain knowledge from the operational knowledge
5. To analyze domain knowledge

Ontologies have been developed to describe everything from pizza^ to wine [5] to
cataloguing artefacts from a museum as displayed by the Museum of Finland
website"̂ .

^ http://www.co-ode.org/ontologies/pizza/2005/10/18/
"* http : //museosuomi .cs .helsinki . f i/

68 Gregory L. Simmons and Tharam S. Dillon

2.2 Open source development - A case for ontologies?

Despite its popularity a number of challenges exist with the potential to reduce the
perceived benefits of open source development. One key issue for open source
development is its scalability with its high dependence on source code as project
documentation and its lack of formal documentation.

"Complexity and size effectively close source code for system programming
projects like OSes compilers after, say, lOOK lines of code without good higher
level documentation or participation in the project from its early stages. This
"binarization" of source code in large system programming projects may mean that
there is little strategic importance to keep the source code of system programs
closed after it reaches a certain level of maturity."[6]

Another issue facing open source development is the scarcity of developers, a
number of authors [7-9] has noted a Pareto distribution in the size of the number of
developers participating in open source projects with the majority of projects having
only one developer and a much smaller percentage with larger, ongoing involvement.

There is also a high degree of conceptual dissonance exhibited between open
source projects, development models, licensing, source-code structure, terminology
all differ markedly from project to project. The badge open source might suggest a
collection of homogeneous projects but the reality is quite different and projects can
differ quite markedly from the apparent bazaar style development in the Linux project
as documented by Raymond [10] to the Extreme Programming influenced
development evident in the Zope project [1].

It would seem obvious that a common understanding of how to the structure of
information in open source repositories is something desirable. A common
vocabulary could help reduce conceptual dissonance and provide budding
contributors with easier access to information about a project than is possible at
present. If a potential developer could easily access information about the source-code
structure, the tools employed, the development model and the software license easily
then perhaps the "binarization" of source code becomes less of a problem and
developers would find it easier to join a development effort mid-stream.

In order to better organize the information generated in an open source project we
need a conceptual framework that promotes agreement on how information should be
organized, without losing any of the flexibility of allowing people to express and view
parts in their own familiar expression language. Understanding the meaning of
shared information on the web can substantially be enhanced if the information is
mapped onto a domain ontology.

An open source software development ontology would encompass diverse,
complex, domain knowledge, technology and skills. It will ensure a common ground
for distributed collaboration and interactions. It is envisaged that such an ontology
could be used as a basisi for better organizing the community knowledge contained
within open source repositories by providing the backbone for next-generation
semantic open source development portals/repositories [11,12]

Towards an Ontology for Qpen Source Software Development 69

3. An open source development ontology

This section presents the top level of a preliminary Open Source Development
Ontology (OSDO). The OSDO would provide definitions of relevant classes and
properties providing a unified vocabulary and structure for open source development.
Each open source project would take the ontology and create instances refiecting the
individual circumstances for that project. For example one project might contain the
instance CVS for the class Version-Control whilst another project might have the
Version-Control instance Subversion.

As with all ontologies the OSDO is a work in progress and the authors welcome
any feedback. Due to space limitations it is not possible to present the entire ontology,
rather the base concepts are presented along with some restrictions to demonstrate
how the ontology could be reasoned with. A full version of the ontology is available
from the author's website^

3.1 Ontology design

When designing a new ontology one needs design principles to guide
development and provide a basis for evaluation, Gruber [13] identifies five design
principles which should guide the development of ontologies:

1. Clarity - does the ontology effectively communicate its intended
meaning?

2. Coherence - is the ontology logically consistent? 'Tf a sentence that can
be inferred from the axioms contradicts a definition or example given
informally, then the ontology is incoherent."

3. Extendibility - ontologies should be designed in a way that allows for the
definition of new terms for special uses without needing to redefine
existing terms.

4. Minimum Encoding Bias - ontologies should be designed at the
"knowledge level" rather than committing the ontology to a particular
implementafion language and its specific limitations.

5. Minimal Ontological Commitment - ontologies should make as few
claims as possible about the domain being modeled without sacrificing
the usability of the ontology.

3.2 Overview of the ontology

The first activity to be performed in any engineering activity is to decide upon the
system's purpose and its intended uses, ontology engineering is no different in that we
begin with specifying a number of competency questions, and scenarios of use [14].

'http://uob-community.ballarat.edu.au/~gsimmons

70 Gregory L. Simmons and Tharam S. Dillon

By establishing a series of competency questions we can determine the ontology's
scope, and its applicability, competency questions also provide a means to evaluate an
ontology.

An open source ontology designed with the intention to better organize
community knowledge would need to be able to answer questions like; who performs
the different tasks? how are the tasks performed? what tools are used? and so on. The
following key competency questions can be identified:

1. What output is produced?
2. What activities are performed?
3. Who is responsible for performing the different activities?
4. What procedures need to be followed?
5. What tools are used?

These questions are by no means exhaustive but as they are used to initially scope
the ontology and may be revised if later found to be missing. Once the scope of the
ontology and its competency questions are identified relevant concepts and relations
should be identified. This task can initially be performed using a top-down approach,
where the most general concepts are identified and then broken down into
specializations, or a bottom-up approach, which begins by defining specific concepts
and groups them into related classes.

Using the competency questions as input, a top-down approach is used to discover
the base classes (concepts). Table 1 presents the resultant six base classes for the
OSDO along with their respective descriptions.

Table 1: OSDO Base Classes

Class
1 Participant

Role

Activity

Procedure

Artefact
Tool

Description
Any person who uses or contributes to the project. Some participants may
remain anonymous such as those that download and use the product but do
not contribute in any other way.
Represents in what capacity a participant was acting when they performed
an activity in the project. There are some roles that may be assumed by any
participant whilst only certain participants may assume other roles.
Any action that results in a contribution to the project or where the projects
resources have been used in some way.
Any established and well defined behaviour for the accomplishment on
some activity.
Any storable input to or output from an activity.
Any software resource used by a procedure in order to accomplish some
activity.

Once defined these classes can be represented in a formal ontology language
(such as RDF, DAML+OIL or OWL). We have chosen to implement our ontology
using OWL-DL [15] as it is a dedicated ontology language with large-scale semantic

Towards an Ontology for Open Source Software Development 71

web community support. The ontology was constructed in OWL using the Protege^
application.

The full ontology specification in OWL is omitted from this paper for sake of
brevity but an example is provided as a means of illustration providing the OWL
definition for the "Participant" class (Table 2).,

Table 2 - OWL Definition

<owl: Class tdt t al30Ut>^**iFarticipant;**>

<dt«ri: e^iva.leiitCia3S>

<owl: Obji€ctfMptt:i:f t4it lP^*%Bsm^^B*'/>

<owit somtfmMtfFicon tMt XMSonm^^'^Mt^l^''/>

<uwl
</owl:Class>

The base classes are further defined through a series of property restrictions.
Restrictions are used to restrict the individuals that may belong to a class and enable
us to reason with the ontology [16]. For example the class Participant is restricted
with the existential restriction:

3 assumes Role

This states that any individual of the Participant class assumes at least one Role.
Restrictions can be used to express complicated logic. The following restrictions
define an Acfivity (al) to be preactivity of Activity (a2) iff (al) produces an Artefact
(s) which (a2) requires.

' http://protege.stanford.edu/

72 Gregory L. Simmons and Tharam S. Dillon

(\/a, s) (produces (a, s) -> activity (a, ^) A artefact(s))

(Va, s) (requires(a, s) -^activity(a,*) Aartefact(s))

(Val, a2) (preactivity(al, a2) <->(3s) requires (a2,s) A produces (a I, s))

Once appropriate restrictions are defined for each of the base classes, defining
sub-classes for each of Role, Activity, Procedure, Artefact and Tool can further
extend the ontology. For example Role can be further broken down into either a
Consumer_ov a Contributor, Consumers typically use the product but do not actively
contribute to its development (other than promoting the product through its very use)
and may often be anonymous; contributors however contribute directly to the product
through source code development, project support, documentation, administration and
so on. The Contributor role can therefore be broken down into a number of further
specialized classes.

4. Putting it to work-An ontology driven architecture

Whilst ontologies are useful things in themselves, their real power can only be
realized when applied to a broader application framework. In the case of the OSDO
our motivation was to better organize open source project repositories. It is proposed
that the OSDO could provide the basis for the development of a semantically aware
project repository (or portal).

A number of semantic portals have been described in the literature including
SEAL [11] and OntoViews [12]. In this section we propose an architecture (depicted
in Figure 6) for a semantic portal based on the SEAL project.

The architecture consists of the following components:
• Semantic database - provides storage of semantic content and

inferencing capabilities.
• Semantic query - querying facilities that exploit the inferencing

capabilities of the semantic database and provides facilities such as
semantic ranking.

• RDF generation - a facility to enable remote applications to interact at
the RDF level.

• Template services -form generation for user input based on the reference
ontology.

• Navigation - provides semantic linking and a dynamically generated
portal structure.

• Annotation / Parsing - all new content is parsed against the reference
ontology and semantically annotated before being stored in the database.

Each of the components of the architecture with the exception of the
Annotator/Parser is present and well described in the SEAL project. To adopt a
semantic portal for use in an open source project the addition of some form of

Towards an Ontology for Open Source Software Development 73

automatic/semi-automatic annotation is a necessity because of the high likelihood of
developers rejecting the requirement to manually annotate their contributions.

WEB SERVER

ANNOTATOR
/PARSER

L
TEMPLATE

RDF
GENERATOR

SEMANTIC DATABASE (ONTOLOGY + KNOWLEDGE BASE)

Figure 1: Ontology Driven Architecture

Take for example a bug report. Typically bugs are entered using a web form that
requires the user to enter a bug description in free form text (perhaps a binary dump
or screen shot) and some metadata (which may or may not be optional). The free form
text can be parsed to identify terms known to the ontology and annotated accordingly
whilst the metadata could be checked for consistency using the inferencing
capabilities of the semantic database and if consistent annotated before being stored in
the database for future reference. The problem of identifying duplicate bug reports
and resolving incorrectly classified reports has been identified previously in the
literature [17], semantically annotated bug reports could suggest possible duplicates
via semantic query and ranking mechanisms thus aiding in this (largely manual) time
consuming task. Semantic annotation could also allow bug reports could also be
automatically emailed (or stored in a pigeon hole) to the responsible module
maintainer or allow developers to identify a relevant discussion from a mailing-list
archive, there are numerous possibilities for such a system.

5. Conclusion

Software development is well established and well understood in practice.
However, distributed open source software development spread over multiple sites
using open softM âre for collaboration is a new challenge. The challenge is to develop

74 Gregory L. Simmons and Tharam S. Dillon

a conceptual meta-model that will provide the architecture for the collaboration of
distributed software teams and better supports the software development.

The problem of knowledge management in open source software development has
been identified in the literature by a number of authors [3, 17, 18], however we note
there has been no previous attempt at using an ontology based approach to address
knowledge management in open source software development.

This paper presents the case for an ontology for open source software
development, the proposed ontology is intended to be a starting point for discussion
and adaptation rather than precise definition. All ontology engineering is iterative and
collaborative and the authors welcome any comment on what is presented herein.

There are many possibilities for ftirther research. The authors intend to further
refine the ontology and to validate it using data from live open source projects. The
architecture proposed needs to be implemented and validated using real data. Indeed
the use of semantic portals in applications such as the one proposed and the
continuing evolution of web portal technology provide numerous potential research
opportunities.

Importantly the proposed ontology will provide practitioners with a basis for
developing semantic web services in order to better organize community knowledge
in open source development projects. Such web services have the potential to increase
the efficiency of open source development and to make open source projects more
accessible to those developers who would like to contribute to a project but are
discouraged by the high barriers to entry.

References

1. Simmons, G. and T.S. Dillon. Open Source Development and Agile Methods, in The
7th lASTED International Conference on Software Engineering and Applications.
2003. Marina del Rey, CA, USA: ACTA Press.

2. Simmons, G. and T.S. Dillon. A Critical Comparison of Agile Methods and Open
Source Development through a Case Study, in International Conference on Software
and Systems Engineering and their Applications. 2003. Paris, France.

3. Ankolekar, A., J. Herbsleb, and K. Sycara. Addressing Challenges to Open Source
Collaboration With the Semantic Web. in Taking Stock of the Bazaar: The 3rd
Workshop on Open Source Software Engineering, the 25th International Conference
on Software Engineering (ICSE). 2003. Portland OR, USA.

4. Gruber, T.R., A Translation Approach to Portable Ontology Specification.
Knowledge Acquisition, 1993. 52(6): p. 1111-1133.

5. Noy, N.F. and D. McGuinness, Ontology Development 101: A Guide to Creating
Your First Ontology, S.K.S. Laboratory, Editor. 2001, Stanford Knowledge Systems
Laboratory.

6. Bezroukov, N., A Second Look at the Cathedral and the Bazaar. First Monday, 1999.
4(12).

Towards an Ontology for Open Source Software Development 75

7. Hars, A. and S. Ou. Working for free? - Motivations of participating in Open Source
Projects, in The 34th Hawaii International Conference on System Sciences. 2001.

8. Hunt, F. and P. Johson. On the Pareto Distribution of SourceForge Projects, in Open
Source Software Development Workshop. 2002. Newcastle, UK.

9. Madey, G., V. Freeh, and R. Tynan. The Open Source Software Development
Phenomenon: An Analysis Based on Social Network Theory, in American Conference
on Information Systems. 2002. Dallas, TX.

10. Raymond, E.S., The Cathedral & the Bazaar. 2 ed. 2001, Sebastapol, CA: O'Reilly.
11. Maedche, A., et al., Semantic portal - the SEAL approach. 2001, Institute AIFB,

University of Karlsruhe, Germany.
12. Makela, E., et al. OntoViews - A Tool for Creating Semantic Web Portals, in The

Semantic Web - ISWC 2004. 2004. Hiroshima, Japan: Springer.
13. Gruber, T.R., Towards principals for the design of ontologies used for knowledge

sharing. Intemation Journal of Human-Computer Studies, 1995. 43: p. 907-928.
14. Gruninger, M. and M.S. Fox. Methodology for the Design and Evaluation of

Ontologies, in IJCAI-95 Workshop on Basic Ontological Issues in Knowledge
Sharing. 1995. Montreal.

15. McGuinness, D.L. and F.v. Harmelen, OWL Web Ontology Language Overview.
2004, W3C.

16. Falbo, R.A., C.S. Menezes, and A.R. Rocha. Using Ontologies to Improve
Knowledge Integration in Software Engineering Environments, in World
Multiconference on Systemic, Cybernetics and Informatics / 4th International
Conference on Information Systems Analysis and Synthesis. 1998. Orlando, USA.

17. Gasser, L., et al. Understanding Continuous Design in F/OSS Projects, in
International Conference on Software and Systems Engineering and their
Applications. 2003. Paris, France.

18. Scacchi, W., Understanding Requirements for Developing Open Source Software
Systems. lEE Proceedings - Software, 2002. 149(1): p. 24-39.

