
A Fuzzy Expert System for the Early 
Warning of Accidents Due to Driver Hypo-

Vigilance 

I. G. Damousis, D. Tzovaras and M. G. Strintzis 
Informatics & Telematics Institute 

1'* Km Thermi-Panorama Road, PO Box 361, 
GR-57001 Thermi-Thessaloniki, Greece 

{damousis, tzovaras }(g)iti.gr 

Abstract. In this paper a Fuzzy Expert System for the prediction of 
Hypovigilance-related accidents is presented. The system uses physiological 
modalities in order to detect signs of extreme hypovigilance. An advantage of 
such a system is its extensibility regarding the physiological modalities and 
features that it can use as inputs. In that way, even though currently only 
eyelid-related features are exploited, in the future and for prototypes designed 
for professionals other physiological modalities, such as EEG can be easily 
integrated in the existing system in order to make it more robust and reliable. 

1 Introduction 

The loss or the disruptions of sleep result in sleepiness during periods when the 
person should usually be fully awake. The loss of even one night's sleep can lead to 
extreme short-term sleepiness. The effects of sleep loss are cumulative and regularly 
losing one or two hours of sleep a night can result to chronic sleepiness over time 

Sleep deprivation and related phenomena of excessive fatigue, prolonged 
inattention, hypovigilance and stress are among the key causes of serious industrial 
accidents such as nuclear accidents, chemical and environmental disasters, as well as 
fatal accidents [1]. 

An automated sleepiness monitoring system could watch over people to make sure 
the alertness and attention levels are high and warn or even take predefined measures 
when extreme hypovigilance is detected, in order to prevent an accident. This kind of 
system could increase the level of safety for everyone since it can be applied on a 
wide range or users, from regular drivers to sensitive equipment operators. 

Several monitoring systems for the automatic hypovigilance detection have been 
developed over the past years [references]. The majority of those systems focus on 
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the diagnosis of the physiological demonstration of sleepiness, by recording and 
analyzing features that in most cases are related to the driver's blinking behavior. 

Even though blink-related features intuitively and experimentally [2] seem to be 
the most suitable candidates for hypovigilance detection, studies show that these 
features are not enough accurate and reliable enough since they exhibit strong 
interpersonal (between persons) and intrapersonal (same person different times) 
variability. Aiming to address the limitations of the current hypovigilance detection 
and accident warning systems, we develop a new multimodal sleep prediction 
algorithm, which will be integrated in an automatic accident warning and sleep 
prediction prototype for drivers within the Integrated Project SENSATION. 

The major objective of SENSATION is the development of new, unobtrusive 
sensors, capable of providing measurements that allow the online extraction of 
advanced physiological features that are not currently available in the existing 
warning systems. These features will potentially allow more accurate hypovigilance 
detection and the development of more reliable sleep prediction systems (less false 
warnings). 

In this paper we describe the framework for such a multimodal physiological 
sleep prediction system, which is based on fuzzy logic expertise and trained with the 
use of real-coded Genetic algorithms. Also some preliminary results from the 
analysis of the training data, concerning the accident prediction effectiveness of 
blink-related features are reported. 

2 The Fuzzy Expert System in general (FES) 

Fuzzy logic is a research area based on the principles of approximate reasoning 
and computational intelligence. It departs from classical sets, logic and strict 
Boolean (True or False) decisions and assignments. Instead, it uses soft linguistic 
variables (e.g. small, medium, large), and a continuous range of truth-values in the 
interval [0, 1]. Fuzzy models are employed in cases where a system is difficult to 
model exactly (but an inexact model is available), or ambiguity and vagueness is 
encountered in the problem formulation. 

A typical fuzzy system comprises the following key parts: 
• A rule base containing a number of IF-THEN rules, 
• A fuzzy inference unit, which performs the inference operations of the rules 
• The fiizzification interface which transforms crisp inputs into fuzzy variables 

that are processed by the fuzzy inference unit, 
• The defuzzification interface that transforms the fuzzy output into a crisp 

number. 
Expert knowledge can be "stored" in a fuzzy system's IF-THEN rules. This 

transfusion of knowledge in the system can take place either by the manual 
definition of the fuzzy rules, or by the training of the system using training cases or 
pattems. After the flizzy rules are defined, the system is capable of making 
inferences and its output or decision simulates the one of an expert's. In that way the 
system is called Fuzzy Expert System. 

Recently, the fuzzy inference system suggested by Takagi, Sugeno and Kang 
(TSK fuzzy model) has gained a great interest in several applications in fuzzy 
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modelling and control. The TSK fuzzy models consist of linguistic fuzzy rules 
represented in the following form: 

R^^: IF (xpj is A{) AND ... AND (Xp,NPi is A^pj) 
THENyj = Fj (x,j, x.^,..., x,,,,ci) J=l..-,NR (1) 

where NR is the number of fuzzy rules. 
The 'IF'* precondition statements define the premise part while the 'THEN'' 

rule functions constitute the consequent part of the fiizzy model. 
'X = [Xpj, ..., Xp^MPiJ^ is the input vector to the premise part comprising NPI 

input variables. 
- Af are labels of fuzzy sets describing linguistically the input component Xpj i = 

i,..., NJPL (e.g. "low", "medium", "high"). 
- Z^ = [xc,h .... XcNci f denotes the input vector to the consequent part of R^^ 

containing NCI input_yariables. 
Finally, yj = F(X^) represents thQj-th rule output which is a fimction of the 

consequence part input components x̂ ,/, i = 1,..., NCI. A special case of particular 
importance is encountered when the rule functions are linear polynomials of the 
consequent inputs: 

7^.=F(Z, )=^ + J;A/X,,. (2) 

where Aj are weight coefficients and ;!̂  is a bias term. 
Each linguistic label Af is associated with a membership function ju/(x^j). 

These are usually unimodal functions (triangular, Gaussian, bell shaped, etc.), taking 
values in the interval [0,1]. Gaussian type memberships are employed described by 

Mi(Xpj) = Qm 
I {xpj-m{) (?) 

where mf and or/ are the mean value and the standard deviation of the membership 
fimction, respectively (Fig. 1 (a)). 

The firing strength of the rule i?^^^representing the degree to which R^^ is excited 
by a particular premise input vector Xp, is determined by 

MjiX,)=Y[Mi(Xpjl (4) 
/=i 

The antecedent fuzzy sets pertaining to a rule i?̂ ^̂  define a fuzzy region within 
the premise space (Fig.l (b)) 

A^J^=A{XA{X-'XAIPJ. (5) 

Essentially, Â -̂ ^ represents a multidimensional fuzzy set with a membership 
distribution defined by (4). 
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Using this notation, the TSK rule can be brought in the following compact form: 

R^j^ : IF Xp is A^J^ THEN yj =Fj{x^) (6) 
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Ai,i(Xp,,) A,.2(Xp,i) 

(a) (b) 
Fig.l. (a) Assuming the "very long blinks duration per minute" feature is a premise input, Xpj, 
three fuzzy sets Ajj, Ajj and^/j can express the linguistic propositions that the measured 
"very long blinks duration per minute" is "Low", "Medium" or "High", respectively. Thus, for 
a specific sample Xpj = 4 sec the memberships for each of the fuzzy sets are 0.2,0.62,0.0 
respectively and the measured "very long blinks duration" is linguistically described as 
"medium to low", (b) Three membership functions Aij(Xp̂ i), Aî 2(Xp,i), and Ai3(Xpj) are used 
for each premise input i, to express linguistic properties of the inputs, forming nine fuzzy 
regions that define the boundaries of the system's fuzzy rules. 

Given the input vectors Xp and X^, the final output of the fuzzy model is 
inferred using the weighted average defuzzification method [12] as follows 

NR __ 
(7) 

From the above description, it can be seen that the basic philosophy of the TSK 
model is to decompose the premise space into fuzzy regions A^̂ ^ and approximate 
the system's behaviour in every region by a simple submodel F(X^). Thus, the 
overall model can be regarded as a fiizzy blending of linear submodels with simpler 
structure. 

3. Accident Prediction Fuzzy Expert System 

Our objective is to develop a TSK ftizzy model that provides early warnings for 
accidents that are due to driver's hypovigilance or sleep onset, based on 
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physiological features. The flizzy decomposition of the premise space should allow 
the discrimination between different physiological demonstrations of extreme 
sleepiness and address the inter-personal variability. In order though for such a 
system to be efficient and to model (in order to detect) all the different ways that 
people exhibit extreme hypovigilance just before the sleep onset, we have to select 
the appropriate physiological features that describe adequately these ways. 

3.1 Selection of the physiological inputs 

To construct the fuzzy model structure, a number of premise inputs Xpj, ..., Xp^^pj 
should be properly selected. These are the decision variables that constitute the 
premise space and will allow the formulation of rules (discrete cases). Each premise 
variable will then partitioned by a certain number of fuzzy sets that cover adequately 
its universe of discourse as shown in Fig. 1(a). 

The number of premise inputs should be as small as possible. A reasonable choice 
is to select one or two inputs. This is dictated by our requirement to keep the number 
of rules to an acceptably low level. However the great inter-personal variability of 
the physiological signs that characterize the phase prior to sleep onset may require 
the use of several features that will serve as FES premise inputs in order to define as 
accurately as possible all the different classes of physiological behaviours prior to 
falling asleep. There are several studies in the literature that aim to determine the 
appropriate physiological signals that allow hypovigilance diagnosis from a broad set 
of candidate inputs [5], [6], however most of them are inconclusive and there seems 
to be no golden standard in feature selection or combination of features that can lead 
to a full proof prediction system. 

The physiological features that are related to hypovigilance are EEG features such 
as alpha and theta waves, eyelid activity features such as long blinks, eye activity 
related features such as slow eye movements (SEM) and pupillography. 

However, since EEG and SEM data can only be acquired via electrodes, they 
cannot be used for online predictions due to restrictions stemming from user 
unobtmsiveness requirements. Because of this, EEG analysis is only used as a 
reference and we can only utilize eyelid activity features (blinks) that can be 
recorded unobtrusively with CMOS cameras. 

For the proposed FES, the decision on the blink-related features selection was 
taken following a two-steps process: 

1) Literature review study in order to pinpoint the most promising features for the 
discrimination of the various behaviours prior to sleep [5],[6] and also following the 
guidelines over the use of various physiological for hypovigilance diagnosis and 
sleep prediction provided by [7],[9]. 

2) Experimental parametric analysis of the above features using real driving data 
from 37 subjects [3], in order to select the features with the highest correlation to 
accidents (Fig.2). 
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Fig. 2. Parametric analysis of the "number of long blinks" feature. The variables are the 
duration of a "long blink" and the number of long blinks during a 20 second window that 
slides every five seconds. Even though the sensitivity of the feature is good (e.g. when 5 
detected blinks with duration over 0,2 s around 70% of the hits are predicted within the next 2 
minutes), the specificity of the system is not acceptable (more than 40% of the warnings are 
inaccurate). 

4. Genetic Algorithm (GA) training of tlie FES parameters 

The objective of the FES training is to set the values of the premise and 
consequence part variables in such way as to predict as accurately as possible the 
accidents, based on the eyelid-related features that are used as inputs. The training 
patterns have the following structure: 

l̂ . X\ Y,. •I 
where Xp and X^ are the input vectors to the premise and the consequent part 

respectively (blink-related features) and YACCIDENT is a binary value that indicates 
whether an accident happened at that moment ("1") or not ("0"). We must note here 
that the accidents are filtered based on EEG and EOG analysis in order to take into 
considerations only those accidents that are due to hypovigilance [4]. 

For the training of the accident prediction FES a real-coded GA is used. For this 
GA implementation the parameters of the premise and the consequence parts are 
concatenated in order to form a genotype or chromosome which is a consolidated 
representation of a FES. The premise parameters are the mean values and standard 
deviations of the membership functions that partition the premise inputs. These 
variables define fully the membership functions and also set the boundaries of the 
fuzzy rules (the ZPpart of the rules). 

The consequence part parameters are the A/, i = 0, ..., NCI, j = h -., NR 
coefficients that define the output of each fiizzy rule as shown in (7). 

All training parameters, as well as the training patterns' data are normalized in the 
[0, 1] space. An obvious advantage of the real-coded GA over binary-coded GAs is 
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that with the direct encoding of floating-point numbers in the chromosomes we 
achieve absolute precision, overcoming the critical decision of the number of bits to 
be used for the encoding ofSeach FES parameter. 

The training process of the FES using GA begins with the random generation of 
an initial population of m genotypes. The quality of the solution that a specific 
genotype represents is measured by calculating its fitness following the next steps: 

a) Decomposition of the chromosome into FES premise and consequence 
parameters 

b) Calculation of FES output for each training pattern 
Equation (3) provides the memberships of the training pattern to the fuzzy sets 

that partition the premise inputs. Then the pattern's firing strength for each fuzzy 
rule is calculated (4). Each rule has an output that corresponds to the specific pattern 
as is shown in (2). The overall output of the FES for the specific pattern is the 
weighted average of the fuzzy rules' outputs as shown in (7). Each rule's 
contribution to the final solution is analogous to the degree that the pattern triggers 
the specific rule. 

c) Calculation of the chromosome s fitness 
The FES output is compared with a threshold. The threshold is also part of the 

chromosome, hence trainable as well. If the output of the FES is larger than the 
threshold then the expert system produces an accident warning ("1"). If not, the 
system's output is "0". The outputs of the system are compared to the actual 
accidents and a measure of accuracy is calculated: 

r. . l + shpi%) (8) 
FitnessFuwtwn = ^ ̂  

l + /aK%) 
Where shp(%) is the successful hit prediction ratio, defined as the percentage of 

hits that were predicted and^r{^%j is the false alarms ratio which is defined as the 
percentage of FES warnings that did not correspond to an accident up to 2 minutes 
ahead. As it can be seen from (8) this fitness function promotes the sensitivity 
(promoting accurate predictions) and the specificity of the system (false alarms). 

The GA is allowed to evolve for a number of generations. The evolution takes 
place using the well-known genetic operators of selection, crossover [9] and 
mutation [8]. The final FES derives from the elite solution of the GA at the final 
generation. Upon termination of the training process, the quality of the obtained 
model is verified with the testing data set. While GA training lasts from minutes to 
some hours, depending on the size of the measurements database, the on-line 
predictions that are based on real time measurements are attained instantly. 

5. Experimental results and Conclusions 

A FES was developed as described in Sections 2, 3 and 4. However because the 
feature extraction process is currently not concluded, only blink-related features that 
are available by conventional low frame rate cameras were used. As it was 
mentioned in section 3.1, the only blink-related feature that exhibited adequate 
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sensitivity and specificity was the number of long-blinks feature. In order to present 
this feature as a fuzzy premise input, we used the duration of the "long blinks" that 
were detected during the previous 20 second window. Based on the findings of 
section 3.1 we defined the duration that characterizes a long blink, using the 
sensitivity/specificity ratio as criterion. In that special case that we only use one 
feature to create our system, the FES can only be considered as a fine-tuning method 
based on AI techniques, aiming to maximize sensitivity (prediction accuracy) and 
specificity (false alarms minimization). This process led to 72% accuracy in hit 
prediction accompanied by 32% false alarms. Future work includes the study and 
integration of new more advanced eyelid-activity related features when they are 
available, in order to develop a more reliable accident prediction system. These 
features include PERCLOS [2], amplitude and peak closing velocity as well as lid 
closure and opening speed [6]. Eye gaze features are also being extracted in order to 
provide information about fixations that usually accompany extreme hypovigilance. 
A second step will be the integration of EEG features such as alpha and theta waves 
for the development of a sleep prediction system for professionals, where sensor 
unobtrusiveness is less important than reliability. 

These new features can be easily integrated due to the open structure of the FES 
and the flexibility of the GA training as opposed to the various mathematical models. 
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