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Abstract Perturbations of Karush-Kuhn-Tuckerconditions play an importantrole forprimal-
dual interior point methods. Beside the usual logarithmic barrier various further 
techniques of sequential unconstrained minimization are well known. However 
other than logarithmic embeddings are rarely studied in connection with Newton 
path-following methods. A key property that allows to extend the class of meth­
ods is the existence of a locally Lipschitz continuous path leading to a primal-dual 
solution of the KKT-system. In this paper a rather general class of barrier/penalty 
functions is studied. In particular, under LICQ regularity and strict complemen­
tarity assumptions the differentiability of the path generated by any choice of 
barrier/penalty functions from this class is shown. This way equality as well as 
inequality constraints can be treated direcdy without additional transformations. 
Further, it will be sketched how local convergence of the related Newton path-
following methods can be proved without direct applications of self-concordance 
properties. 
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1. Barrier/penalty functions and primal-dual paths 
Barrier/penalty methods and its path-following variants form an important 

class of numerical methods for constrained optimization problems via a fam­
ily of unconstrained ones (cf. [2], [8], [9]). While large classes of classical 
barrier/penalty methods are well studied already in [3] path-following methods 
mainly restrict to log-barrier terms. The aim of the present paper is to provide 
a convergence concept for a wide range of path-following Newton methods un­
der strong regularity assumptions. The concerning results are derived in detail 
in [5]. In addition, following [6] for the log-barrier method we discuss the 
relaxation of the LICQ regularity assumption by MFCQ. In this case we show 

'Paper written with financial support of DFG grant GR 1777/2-2. 

Please use the following format when citing this chapter: 

Grossmann, C, 2006, in IFIP International Federation for Information Processing, 
Volume 202, Systems, Control, Modeling and Optimization, eds. Ceragioli, F., 
Dontchev, A., Furuta, H., Marti, K., Pandolfi, L., (Boston: Springer), pp. 195-204. 



196 PROCEEDINGS, IF1P-TC7, TURIN 2005 

that the study of the behavior of the log-barrier method applied to a locally 
linearized problem provides full information upon the convergence properties 
of the approximated duals of the original nonlinear problem. 

Considered are nonlinear programming problems 

f{x) -^ min ! 

s.t. a; e G := { a; 6 i?" : gi{x) = 0, i e I^, gi(x) < 0, z G /«} , 

where 
I<^ := {l,...,q}, I^ := {q + l,...,m}, I ~ P U I^ 

and f, Qi : BP- -^ R, i e I denote twice Lipschitz continuously differentiable 
functions. Let abbreviate g : K^ ~* R"^ with g — {gi,..., gmY "̂"̂  

Gg ~ {x e i?" : gi{x) = 0, i G 7^}, G° := {x G R"" : gi{x) < 0, i G r } . 

Problem (1) is supposed topossess some local solution x* G G that satisfies the 
linear independence constraint qualification (LICQ). In particular, this implies 
that a uniquely defined multiplier vector y* G R^ exists such that the KKT-
conditions 

9i{x*) < 0, Vi* > 0, i G 7", v*'^g{x*) = 0. 

hold. In addition to LICQ we assume strict complementarity, i.e. 
y^ j^ 0 <=> i e IQ and that x* satisfies the well-known second order suf­
ficiency condition. Here denotes IQ := 7o(a;*) := {i G 7 : gi{x*) = 0 } . 
Further, let V^;!/, V^^.^ be the partial gradient and Hessian, respectively, of 
the Lagrangian L. Taking into account strict complementarity second order 
sufficiency condition simplifies to (2) and 

v'^Wl^L{x*,y*)v > Q \JveR", Vgi{x*fv = 0,ieIo,v^O. (3) 

Further, we notice that LICQ also implies Gg n G° 7̂  0 which allows to 
apply classical barrier methods locally to all the inequality constraints of the 
optimization problem (1). 

In barrier/penalty-methods the constraints of the original nonlinear program­
ming problem (1) are incorporated into the objective in such a way that violations 
of the constraints are asymptotically avoided by extra costs. Instead of problem 
(1) we consider the related unconstrained auxiliary problems 

F{x,s) := f{x) + Yl (t)i{gi{x),s) -* min ! 

s.t. a; G i?s := { x G i?" I 4>i{9i{x),s) < -|-oo, i G 7}. 
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Here (j)i{-, •) : Rx i?+_|_ —^R,i£l, denote barrier/penalty-functions which 
depend upon the barrier/penalty-parameter s > 0. Let 

R+ := {te R: t>0}, R++ := {t e R : t > 0}, i? := i?U{+oo}. 

To ensure differentiability of the local path throughout this paper we assume that 
for any s > 0 the barrier/penalty-functions ^j(-, s) : i? —+ i? are differentiable 
in dom (/'i(-, s) and satisfy 

— 0i(t,s) = ^ J - j \/te dom (pi{-,s), s>0, (5) 

with some ^Ji : R -^ R, i e I^, i^i : R-^ H, i e T, iJi ^ 0, i e I. The 
functions Tpi we call the generating functions for the barrier/penalty-method. 
The relation (5) between barrier/penalty-functions and their generating func­
tions was proposed in [4] for path-following algorithms applied to inequality 
constrained problems. 

REMARK 1 The same structural assumption (5) was considered by Auslender 
et. al. [1] for saddle point problems. The following supposed properties, 
however, differ from those made in [I] due to our goal to establish convergence 
of path-following Newton methods. 

Assumed properties for ipi, i e I'^ : 
Ul: doxnipi = {—oo, di) with some di e R and lim ipi{r) = -|-oo. 

U2: ipi : R -^ R convex, differentiable in dom xl)i with ip[ locally Lipschitz 

WiiPi) - i^[{p2)\ < Li{r)\pi -p2\ ypi, P2<r<di 

and 

1 1 

Pi P2 

with some nondecreasing Li(-), L2{-) : R++ -^ R++-
\]3'. ijj'Ar) > 0 Vr S Aormpi, lim tpi{r) = Q, lim r"^ip'Ar) exists 

r—»—oo r—*—oo 

and is finite. 
Assumed properties for V'i, i e I^ : 

Gl: doTaipi = R, R = •(/'i(dom?/),). 
G2: ipi differentiable with V'i locally Lipschitz continuous 

li'Kpl) ~ ^^''^ip2)\ < L3{r)\pi-P2\ V | ; 9 I U P 2 | <r 

with some nondecreasing Lz{-) : R++ -^ R++-
G3: ip'iir) > 0, WeR and tpi(r) ^ 0 = » ipUr) > 0. 

mpi)^^'i{p2)\<L2ir) y Pi, P2<r < minjO, d j . 
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Examples for generating functions are: 

[ +00 , if r > di, 
in case dj = 0: p = 1 log-barrier, p = 2 Fiacco/McCormick's SUMT; 
otherwise shifted version. 

• 'i/'i(r) := maxP~^{0, r } , r G R, 
p>2 corresponds to p-th order penalty function. 

• i'iir) = exp(r), r e R 
exponential penalty. 

• t/Jiir) = sign(r)|r|P~^, r e R 
with fixed p > 1, (penalty for equality constraints). 

We notice that strict complementarity, LICQ and the second order sufficiency 
conditions guarantee that the wanted minimizers of F(-, s) can be characterized 
by the necessary and sufficient local optimality condition 

x{s) e B, : Vf(x{s)) + Y.y^{s)Vg^{x{s)) = 0 
iei 

with the so-called barrier/penalty multipUers yi{s) := tpii^^y^)- The main 
result concerning stability behavior of the specific perturbation of the KKT-
system is 

T H E O R E M 2 Under the made assumptions, there exist some s > 0, (5 > 0 
such that for any s S (0, s] the parametric system 

V/(a;(s)) + E Viis) '^9^{x{s)) = 0 
iei (6) 

yi{s) - ipi{gi{x{s))/s) = 0, z e / 

possesses a unique solution {x{s) ,y{s)) with x{s) £ i?<j D f/̂  (x*), and we have 

\\m{x{s),y{s)) = {x*,y*). 
s—>0+ 

With 
x(0):=x*, y{0)-y*, (7) 

the functions x(-), y{-) are continuously dijferentiable in (0, s], possess right 
sided derivatives at s = 0 and these derivatives are bounded for s -^ 0+. 

The proof of this theorem essentially rests on the implicit function theorem 
applied to the following perturbed KKT-system 

V/(a;(s,r)) + E y^{s,r)Vgi{x{s,r)) = r, 
i€lo 

sip~^{yi{s,r)) = gi{x{s,r)), i € IQ-
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For this the main property (see [5]) is the regularity of the matrix 

/ V^^L(x(s),y(s)) Vgi{x{s)) • • VgUx{s)) \ 

His) r-
^ / ( a iM£) ) )V5 i (a ; ( s ) f - s 0 • 0 

^^ (MM2))) vp2(a;(s)r 0 -s • 0 

(̂  ^/^ ( iU£M)) V5„^(x(s)^ 0 0 • -s 

for sufficiently small s > 0. 
As a direct consequence of Theorem 2 holds 

COROLLARY 3 Under the given assumptions there exist some constants SQ e 
(0, s] and c > 0 such that 

| |a ;(s)-x(t) | i < cAs~t\ 1 
V s , t e [ 0 , s o ] . (8) 

2. Log-Barriers Under Weaker Assumptions 

In this section we follow widely [6] and restrict us to inequality constrained 
optimization problems, i.e. to 

/ (x ) -^ min ! s.t. x e G ^ {x e K" : gi{x) < 0, i G / " }. (9) 

To this problem we apply log-barrier embedding and obtain the auxiliary prob­
lem 

F{x, s) •- fix) - s ^ \ni-giix)) -> min ! s. t. x G G°. (10) 

In contrast to the first part of the paper, now the regularity assumptions are 
relaxed as follows: 

(Al) X* is some local minimizer of (9). 

(A2) MFCQ is satisfied at X*, i.e., 

U° ~ {u e i?" : Vg^ix*)'^u < 0 Vi G /Q} 7̂  0. 

(A3) the strict complementarity condition w.r. to Y* holds, i.e., 

3j/* G y* with y* > 0 Vi G /Q. (11) 
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For a general study of regularity conditions and stability in nonlinear program­
ming we refer to [7]. 

Next we introduce a locally linearized problem and show that log-barrier 
methods applied to it behave asymptotically like log-barrier methods applied 
to the original problem. Let denote 

A:= {... Vgi{x*)... )ieio (column-wise) 

Related to x* with d = x — x* we study the locally linearized problem 

Vf{x*fd -^ min ! s.t. d E 7^(A), A^d < 0. (12) 

Here Tl{A) stands for the range of A. Notice that the point d* = 0 forms the 
unique solution of problem (12). Log-barriers applied to (12) yield the auxiliary 
problems 

<fs{d) = Vf{x*fd-s E H~Vgi{x*fd) - . min ! 
ie/o (13) 

s.t. d€D° = {de'JZ{A) : A'^d<0}. 

For these we have 

LEMMA 4 For any s > 0 problem (13) possesses a unique solution d{s). 
Further, there is a unique solution d* of the problem 

iS/o ^ ' 

and it holds d{s) — t^d* with some ts > 0 for all s > 0 as well as 
\\d(s)\\ = 0{s). 

THEOREM 5 The log-barrier method (13) yields for the barrier multipliers 
y{s) related to the solutions x{s) that 

—s 
yi{s) := , , , . ,. = iii, i G /o, (15) 

9i{x{s)) 
where 

1 Vf(x*)'^d* 
Ml := V7 r *\Tj*' ^ ^ -̂ 0 andd* solves (14). (16) 

Setting jii — Q'ii E Ii, 11 is a multiplier of the original problem (9). 

Next we study the nonlinear problem 

m 
F{x, s) = f{x) - s E ln(-5j(x)) ^ min ! 

i = l 

s. t. X e G^ := {x e -R"- : gi{x) < 0, i = 1 , . . . ,TO, ||x - x*|| < e}, 
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In addition to (Al), (A2), (A3) assume: 

(A4) Thie second-order optimality condition holds: 

u^Vl^L{x*,y)u > 0 for all yeY* and a\lueU*,u^O, 

where 

U* := {u : Vf{x*fu = 0, Vgi{x*fu < OVi G /Q} 

is the critical cone for x*. 

T H E O R E M 6 There are s > 0 and e > 0 such that for all s G (0, s), the func­
tion F{-, s) on G^ has a global minimizer x{s) which is the unique stationary 
point ofF{-,s) on G^. The associated multipliers y{s) converge to (j, given in 
Theorem 5 where 

dist((a;(s),y(s)),(a;*,y*)) < C*s withsome C* > 0, 

theHessianV'^F{x{s), s) is uniformly positive definite and x{-) is continuously 
differentiable on (0, s). 

3. Path-Following Primal-Dual Methods 
We consider the convergence of Newton's method applied to the complete 

primal-dual system (6). Unlike in primal methods its first part stabilizes the 
approximation of the duals. However, as in the primal approach system, (6) 
also becomes increasingly ill-conditioned as s -^ 0+. 

Let denote 

y 

the vector of all primal and dual components. Further, let T : Z ^> Z denote 
the mapping 

-(-'=( (̂1:1,) 
with 

T i ( ^ ) : = V , L ( x , y ) , T^iz, s)-.^ i^ {^-^^ - y. 

With these notations (6) can be written as the following parametric system of 
nonlinear equations 

T(z,s) = 0. (17) 

For a fixed barrier/penalty-parameter s > 0 a single Newton-step maps an old 
guess z e Z to a new approximate z e Z of the solution z{s) of (17) by 

T'{z,s){z~z)+T{z,s) = 0. (18) 
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Taking into account the structure of (6), the Jacobian has the form 

DB' -I 

with 
Q ••= Q{x,y):=Vi^L{x,y), 

B := B{x):=i\/gi{x),...,V9m{x)), 

D := !?(.):= diag{l^,'(^)}^^^. 
Since system (6) is increasingly ill-conditioned for s ^ 0+ an adapted analysis 
for the Newton system is required to obtain sharp error bounds. In connection 
with log-barrier interior point methods, self-concordance (cf. [8], [9]) forms 
a common tool. We apply a different approach (cf. [4]) that analyzes such 
ill-posed systems directly in the Euclidean norm. 

Let remark that in case of log-barriers we have ^ ( r ) = 1/r which allows to 
rewrite the second part as 

9i{x)yi - s = 0, i e I. 

A similar transformation is possible recommended if ipi is strictly monotone 
in domtpi. This transformation stabilizes the numerical process, but does not 
remove the generic asymptotic singular behavior of the system (17) for s -^ 0-1-. 

In path-following Newton methods for a fixed barrier/penalty-parameter 
Sk > 0, and known z^ e Z, we define the new iterate z^^^ G Z, by only 
one Newton-step, i.e. 

T'{z\ sfe)(z'=+i - z^) + T{z\ Sk) = 0 (19) 

and update the parameter by s^+i = j Sk with some 7 e (0,1). This yields 
the long-step version of a 

Path-Following Algorithm 

Step 1: Select parameters e, c, SQ > 0, and u e (0,1). 
Find a;° s Bgg such that 

l k° -^ ( so ) l i < cso. (20) 

Set k := 0. 

Step 2: Determine ẑ "*"̂  e Z via the linear system 

r{z\sk)d'' = -T{z\sk)) 
^k+l . ^ ^k _|_ ^k 

(21) 
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Step 3: If Sfc < e then stop. Otherwise set s^+i := v Sk and go to Step 2 
with k •.= k + 1. 

T H E O R E M 7 For sufficiently small SQ > 0 and c > 0 there exists some pa­
rameter V s (0,1) such that then the given path-following algorithm is well 
defined and generates iterates z-^ ^ Z that satisfy 

\\z''-z{sk)\\ < csk, & = 0 , 1 , . . . • (22) 

Furthermore, the algorithm terminates after at most k* := [ln(e/so)/ln(i^)] 
steps and the estimate 

\\z^' -z*\\ < {cL + c)e (23) 

holds, where ci denotes the Lipschitz constant from Corollary 3. 

For the proof as well as for further details we refer to [5]. 
To ensure a larger range of convergence the given path-following algorithm 

has to be endowed with an additional step size procedure in step 2, i.e. we apply 

with some a^ > 0 appropriately defined, e.g. by Armijo's rule. 
An additional stabilization can be obtained by the use of the available ap­

proximations of the Lagrangian multipliers. The basic idea rests on 

M—-—)«yi(s)^j/i, I el-

Taking into account gt{x*) = 0, i e IQ the generating function is modified by 

shifts to satisfy 
MO) = y^{s), i e /o. (24) 

Standard IP-methods like log-barrier do not allow this, but shifted methods that 
are also covered by the assumed properties of ipi do. 

Consider shifted log-barrier, i.e. 

,l,(r-\ — / ^/(di-r) , i{r<di, 
"^^^"^^•"1 4-00 , if r>di, 

In this case this leads to the update 

di = l/viis), i€lo, (25) 

with Jo approximately identified via the magnitude of yi(s). 

The case of shifted quadratic loss penalties 

tpi{r) — max{0, di + r} 

leads to 
di = yi{s), i & lo- (26) 

This is directly related to augmented Lagrangian techniques. 
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