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Abstract Non monotone algorithms allow a possible increase of function values at certain 
iterations. This paper gives a suitable control on this increase to preserve the 
convergence properties of its monotone counterpart. A new efficient MultiLineal 
Search is also proposed for minimization algorithms. 
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1. Introduction 
This paper is concerned with algorithms for solving the unconstrained mini- 

mization problem of finding a local minimizer 5 and the local minimum value 
f = f ( 5 )  of a scalar function f (.) E C 1  : S c Rn + R. Armijo's inequality 
(1) has been frequently used by monotone algorithms: given xi, di E En, the 
algorithm must determine a stepsize X i  so that the new iterate xi+l gives a 
sufficient decrease in the function value, 

Under suitable assumptions (Al -A4 below) a (sub)sequence fulfill- 
ing (1) converges to a point Z satisfying the first order necessary optimality 
condition; namely Vf ( 5 )  = O [14]. Additional conditions, mainly in the 
choice of {di)y, are obviously required to ensure a superlinear rate of con- 
vergence. Monotone algorithms force strict decrease of function values, i.e., 
f (x i+l)  < f (xi). This stringent condition may impair the convergence of the 
algorithm. Although the asymptotic rate of convergence is preserved, narrow 
valleys may demand an excessive number of function evaluations, which is 
normally considered a poor performance index when comparing optimization 
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algorithms. Non monotone algorithms (NMAs) climb on the surrounding hills; 
i.e., f (x i+l )  > f ( x i ) ,  and may avoid this undesirable behavior. Moreover, it 
has been shown that NMAs may jump over local minima [20] and become more 
fitted to global optimization [4]. 

A well known non monotone line search strategy was proposed by De Gripo 
et a1 [8, Section 31. An iterate xi+l = xi + Aidi is accepted if 

This strategy has been adopted by many researchers in constrained and un- 
constrained problems with success. Currently many monotone algorithms have 
a non monotone counterpart [6]. The reader may consult additional material in 
[8, 9, 12, 16, 17, 19, 211 and references therein. 

This paper adapts a sufficient decrease condition that does not require the 
computation of derivatives [5, 151. Therefore, it can be used in derivative-free 
optimization and gradient-related algorithms. Furthermore, line search is not 
mandatory and can be replaced by trust region or some other technique. Finally, 
the maximum f (.) value on the previous q iterations is replaced by an upper 
bound pi 2 f ( x i ) ,  which essentially has to be decreased a certain number of 
iterations (assumption A5 below). An iterate xi+l is accepted if 

where $(.) : R +  -+ R + ;  lim +(r) /r  = 0. Note that a monotone algorithm 
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is recovered when pi = f ( x i )  for all i, and the algorithm will behave as 
explained before; on the other hand, if the function upper bound pi is very 
loose, the algorithm would trend to stay more often on the hills, which implies 
extra function evaluations. 

Next section describes and proves formally the convergence of our non 
monotone algorithm. It also includes a new approach that we call MultiLine 
Search (MLS). Section 3 gathers implementation remarks and report prelimi- 
nary results to compare the monotone version with its non monotone counter- 
part. 

Our notation is standard with minor peculiarities: all vectors are in the Euclid- 
ean space Rn, unless otherwise stated. R$ are vectors in R* with non negative 
components; xTy  is the usual inner product C2=l zkyk ,  and M = xyT is an 
n x n matrix with elements mij = x iy j .  Lower case Greek letters are real 
values, capital Latin letters I ;  J, K are subsets of iteration indices. An infinite 
sequence is denoted as { ( . ) i ) Y ,  and a subsequence by { ( . ) i ) i G J .  The notation 
{ ( . ) i ) i G l  5 a means that all elements in the subsequence are real numbers not 
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Table I .  Non Monotone Algorithm (NMA) 

Input: p < l i y , ~ > O  
i = 0, Choose X I ,  7 1  

DO i = i + l  
Update pi 
Choose di : 0  < /Idi 1 1  .< 7;: 

IF f (x i  + di) 5 Pi - $(Ti)  

xi+l = xi + di 
0 < ~ i + l  I ~/ ld i j I  

E L S E  

constants 
Initial values 
next iteration 
satisfying A5 

move 
1 1 d  1 1 may expand 

no move 
line search, trust region 

bigger than a. Throughout the paper the set Di = {dil ,  . . . , d,,) is a set of m 
unit vectors in Rn. The set T D  =- { ~ d  : d  E D ) .  

2. Non monotone algorithms 

Our aim is to propose a non monotone algorithm that generates a converging 
subsequence {x i ) iEJ  + 2 ,  V f ( 2 )  = 0 under suitable conditions. Table 1 de- 
scribes the algorithm as close as possible to a gradient related method, including 
the usual stopping criterium 1 lV f (x)11 < E .  This version tries to satisfy ( 3 )  for 
xi+l = xi + di. Table 2 describes a more practical version where ( 3 )  is tested 
on multiple search directions. Theorem 4 below proves that with a slight modi- 
fication and some usual extra assumptions on f (.) the non monotone algorithm 
exhibits a superlinear rate of convergence. We now list the assumptions and 
prove convergence. 

A l :  f (.) is bounded below, and { x . ~ ) ?  remains in a compact set, 

A2: f (.) is FrCchet differentiable, that is, V f (.) : Rn -+ Rn is everywhere 
defined and f ( x  + d )  = f ( x )  + v f ( ~ ) ~ d  + o(1 Id1 1 )  for all x ,  d  E Rn. 

AS: Let J be the index set of s~iccessfiil iterations. The sequence of reference 
values {pi )?  



a) is an upper bound, f  ( x i )  < p i ,  and 

b) decreases sufficiently every "q" successful iterations, i.e., 

1. V ( i  E J ) l ( j  E J ,  i < j )  : cpj  < cpi - @(l ld i l l ) ,  where 
a(.) : lR+ -+ lR+, and for any index subset K 
[{@( l ld i1 I ) ) i€K O] * [ { l / d i l l ) i ~ ~  -' 01. 

2. Between i and j there are at most "q" successful iterations. 

Assumptions A1-A4 are required by most algorithms that solve smooth prob- 
lems. A5 is easy to comply. The sequence {cp,)? may remain constant except 
at those iterations where it is forced to decrease. It is easy to show that (2) is a 
special case. We now prove that the non monotone algorithm is well defined; 
specifically we have 

L E M M A  1 I f f  ( x j )  > cpi - + ( I  Idi / 1 )  for all i 2 j ,  then V f  ( x j )  = 0. 

Proof: As I ldi+l 1 1  = pl Idi 1 1  we have that {I Idi 1 I)? -3 0.  Besides, for all 
i > j we have that f  ( x j  + d i )  > qi - $ ( I  idi 11); therefore 

V f ( x j l T d i  = f ( x j  + d i )  - f ( x j )  -o ( I Id i I i )  
> cpi - f ( x d  - +(l ldi l l )  - ~ ( I l d i l l )  
2 -0( l ld i I l )  - +(l ldi l l )  

Coupling this inequality with A3 we assert for i E I that 

Since 1 ldi 1 1  -, 0 we deduce that 11Vf ( ~ j )  1 1  = 0 I 

Proof: If the number of successful iterations is finite then by construction 
/ ldi+l I I = pl Idi 1 1  for all i large enough and the lemma is valid. 

If, on the contrary, the number of successful iterations is infinite, let K be 
the index set where the upper bound actually decreases. For any two consec- 
utive indices i ,  j E K we have that f ( x j )  < p j  _< yi - @(l ld i l l ) ;  hence 
{ @ ( I  Idi 1 l ) ) i E K  - 0, otherwise { p i ) i E K  would be unbounded below, which in 
turn forces { f  ( x i ) ) i E K  to be unbounded below contradicting A l .  By A4 we 
deduce that { l ld i l l ) iEK -+ 0; but for any j  @ K; lldjll < y q / l d i l l ,  for some 
i E K. Therefore, we conclude that i d i }?  --+ O m  

As a direct consequence of the previous lemma we can state 

REMARK 3 I f @ ( / l d l j )  = +(j ldl l )  = 0.01 d T d ,  the convergence of a descent 
method that satisfies Al-A4 is ensured, provided / ldi+l I / < y 1 Idi / / at all suc- 
cessful iterations. 
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We now establish the superlinear rate of convergence along the lines given 
in [14, theorem 4.1 A]. 

THEOREM 4 ( S U P E R L I N E A R  RATE)  Assume that for all i large enough: 
The Hessian V 2  f  ( x i )  is uniformly positive definite and B id i  = - V f  ( x i ) ,  
where Bi E lRnxn is a uniformly positive matrix that satisfies the necessary 
condition for superlinear rate of convergence I / (v2 f  ( x i )  - B i ) d i  / / = o(I Idi 1). 

The proposed Non monotone algorithm exhibits a superlinear rate of con- 
vergence if lim 4(i jrl l ) / r 2  = 0. 

TLO 

Proof: We assume that the proof is asymptotic: it happens for all i large 
enough. From lemma 2 we obtain that { d i ) y  -+ 0 and by the assumptions in 
the theorem we also obtain that { V f ( x i ) ) y  -t 0. The algorithm exhibits a 
superlinear rate of convergence if and only if f  ( x i  + d i )  I vi - 4(I Idi 1 1 )  [31. 
Let vi = (V2 f  ( x i )  - B i ) d i .  Note that 

vTdi  = o ( d T d i )  and d T V f ( x i )  = - d T ~ ~ d ~  = vTd i  - d Y V 2  f  ( x i ) d i ;  
therefore 

f  ( x i  + d i )  = f  ( x i )  + d T V f  ( x i )  + ; d T v 2  f  ( x i ) d i  + ~ ( d ' d i )  
= f ( x i )  - ; d T V 2  f  ( x i ) d i  + vTd i  + o(d?di)  

i 1 d T v 2  f  ( x i ) d i  vTd i  + ~ ( d T d i )  
= f  ( x i )  + dTdi -- + 

2 d'di d?di i 
Let X > 0 be a lower bound of the minimum eigenvalue of { V 2  f  ( x i ) )  for 

all i large enough. When 1 Idi 1 1  is small enough we obtain 
(lvTdil + lo (dTdi )  l ) / dTd i  < :A; 

hence, f  ( x i  + d i )  I f ( x i )  - $d?di I pi  - d ( l l d i ( ( ) a  

2.1 Line Search(LS), MultiLine Search(MLS), 
Trust Region(TR) 

A straightforward implementation of the NMA is by line search (LS); that 
is: i f f  ( x i  + d i )  I cpi - 4( l id i l l ) ,  it generates xi+l = x i  + di as its monotone 
counterpart; otherwise, it simply defines di+l = pdi and proceeds with the next 
iteration. The Trust Region (TR) approach is a natural extension of LS. It tries 
to satisfy (3) on a ball of radios ri around x i .  This technique has attracted a lot 
of interest in the optimization community [ I ,  2, 131. Essentially TR replaces 

w 

the true function f  ( x i  + d i )  by a model f  ( x i ,  d )  and finds 

di = arg min f  ( x i ;  d )  . 
l l 4 l l ~ z  

X i + l  = x i  + di is accepted if (3) holds; otherwise, it is rejected. The T value 
?., 

is adjusted depending upon the proximity of the model value f ( x i ,  d i )  to the 
true value f  ( x i  + d i ) .  There are various issues that TR must face, mainly 



Table 2. Multiple Linesearch NonMonotone Algorithm 

(MLSNMA) 

PSEUDOCODE REMARKS 
T = 2; E = 6: x E Rn Remark 7 
f z  = f (z), cp = m a x ( f z / 2 ,  2 f z )  + 10 
success= 0 
DO Generate d Remark 8 

I F  lldll > 5 0 0 6  min(0.01, T )  

Contract d : i ldli = 5 0 0 6  min(0.01, T )  

ELSEIF (I ldj l  < rn in (10-~ ,  T )  T )  Remark 9 
Expand d : \ (d l  1 = rnin(10T4, T )  T 

7- = l ldll Keep lldll 
Generate D = { d l ,  . . . : d,) Remark 10 
k = 0;  done= FALSE 

WHILE (NOT DONE) AND (k 5 n) 
LINESEARCH ( dk )  Remark 11 
k = k + l  Next direction 

IF (NOT DONE) x is blocked 
7- = 0 . 2 ~  

UNTIL ( T  < E )  Remark 12 

a To define an appropriate model, and 
a to solve subproblem 4 

Current research offers several options that greatly affect the TR perfor- 
mance. See [I,  11, 181 and references therein to be aware of the difficulties en- 
countered in TR methods. We propose here another technique, which is, compu- 
tationally, between LS and TR. Instead of solving subproblem (4), we carry out 
a multiline search (MLS). Specifically, given the iterate xi E IRn, pi 2 f ( x i ) ,  
a set of m unit directions Di = {d i l ,  . . . , dim) and a parameter ri > 0, we 
declare that xi is blocked if 

where 4 ( . )  : IR+ -+ IR+ and lirnTLo d(r) / r  = 0. To try to unblock xi 
the algorithm imposes a reduction on the norm of the next search directions; 
namely diil E ~ T ~ D ~ + ~ ,  p  < 1. The iteration will be considered successful 
if xi+l = xi + d  satisfies ( 3 )  for some d  E q D i .  It is obvious that under 
assumption A6 below the algorithm ensures convergence. 

A6: Di = i d i l ,  . . . , dim) is afinite set of m unit directions and 3d E Di that 
satisfies A3. 
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This assumption cannot be verified on some practical problems, where no 
derivative information is at hand; however the following theorem is very useful 
when Di positively spans R n ,  that is, 

V ( x  E IRn)3(a1 > 0 , .  . . , a ,  > 0 )  : x = aldil + . . .  + amdim. 

THEOREM 5 If { D i ) y  -) D = {dl  , . . . , dm) positively span R n ,  and f (.) 
is strictly differentiable at limit points of {xi)?, then 

Proof: These are known facts. The proof can be found in [4, 51 
Based on the previous theorem, we propose the following MLS strategy: 

Generate di, let ri = / Idi/ 1 ,  and generate a set Di of unit directions that satisfies 
A6, with (d i / r i )  E Di. If ( 3 )  holds for xi+l = xi + d, for some d E riDi the 
iteration has been successful and we proceed with the next iteration; otherwise, 
we declare that xi is blocked and go to the next iteration forcing I ldi+l 1 1  = pri. 
We now outline the convergence proof of the algorithm described in table 2 and 
remark 11, which contains this MLS strategy. 

THEOREM 6 Let f (.) be strictly differentiable. Under assumptions Al,A2, 
A4,A5,A6 the algorithm shown in table 2 generates a subsequence that 
converges to a point 3 satisfying a necessary optimality condition. 

Proof: If the number of blocked points is infinite we use theorem 5, or lemma 
1; otherwise, we use lemma 2 

3. Implementation and numerical results 
This section shows up a number of remarks that complement the description 

of the algorithm given in table 2. 

REMARK 7 The starting point x, the stopping value E ,  r ,  p, and the number 
of iterations q where p is constant may be input parameters. 

REMARK 8 d may be randomly generated when no derivative information is 
available. Depending upon the amount of information at hand d could even be 
the Newton direction. 



REMARK 9 This safeguard prevents a premature stop due for instance to sin- 
gularities when d = - BV f ( x ) .  

REMARK 10 The choice of D seems to have a tremendous impact on the 
performance of derivative free optimization algorithms [5]. When derivative 
information is available we suggest the orthogonal directions 
dk = - s i gn (uk )  (el, - 2uku) ,  where u = -V f ( x i ) / l  JV f ( x i )  1 1 ,  ek is the 
k - t h  column of the identity matrix, and s i g n ( a )  = 1 i f a  2 0 ,  s i g n ( a )  = 0 
otherwise. Note that d l u  = !uk  1 > 0, k = 1 ; . . . , n; hence we assert that 
3d E D : dTu 2 1 1 6 ,  n because otherwise 

a contradiction. 

REMARK 11 This procedure assumes !dl 1 = 1 and evaluates f ( x  + rd ) .  It 
returns T R U E  if the iteration is successful. It also updates x and 9. We use the 
updating on cp suggested above. 

LINESEARCH (d) 
z = x + r d ;  f, = f ( z )  
done= F A L S E  

I F  (f, < p - r rn in(10-~ ,  7')) 

x = z ;  fx = fi Accept z 
success= success+ 1 
IF (success= q) 

cp = f,; success = 0 Update cp 
done= T R U E  

end of linesearch 

REMARK 12 We have chosen this termination criterium because it is also 
valid for derivative free optimization. 

We carried out preliminary numerical tests with functions from the MorC, 
Garbow and Hillstrom collection. The MatLab code was taken from [lo] 
and run on a Pentium 4 desk computer. We used the quasi Newton direction 
d = - s ign(V f ( X ) ~ B V  f ( X ) ) B V  f ( x ) ,  and B was updated with the symmet- 
ricformulaB = B+(s-B~)(s-B~)~/(s-B~)~~, wheres = X i + l - X i > P  = 

B f - V f ( x i ) .  Table 3 shows the number of function evaluations needed 
for functions S I N G X ,  R O S E N X ,  which have an adjustable number of variables. 
For q E { 1 , 5 , 1 0 , 2 0 )  it was observed that the algorithm's performance gen- 
erally improves for q > 1. It was also observed in tests not reported here that 
LS was superior to MLS on the steepest descent method. These results are by 
no way conclusive, and a more complete numerical test must be carried out in 
future research. 
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Table 3. # of Function evaluations 

I singx I I rosenx 
cp constant (q) p constant (q) 

variables / 1 5 10 20 / ( 1 5 10 20 
8 / 321 283 159 154 / / 533 362 343 343 
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