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Abstract The paper describes and analyzes an application of the p-regularity theory to 
nonregular, (irregular, degenerate) nonlinear optimization problems. The p- 
regularity theory, also known as the factor-analysis of nonlinear mappings, has 
been developing successfully for the last twenty years. The p-factor-approach is 
based on  the construction of a p-factor-operator, which allows us to describe and 
analyze nonlinear problems in the degenerate case. 

First, we illustrate how to use the p-factor-approach to solve degenerate op- 
timization problems with equality constraints, in which the Lagrange multiplier 
associated with the objective function might be equal to zero. We then present 
necessary and sufficient optimality conditions for a degenerate optimization prob- 
lem with inequality constraints. The p-factor-approach is also used for solving 
mathematical programs with equilibrium constraints (MPECs). We show that 
the constraints are 2-regular at the solution of the MPEC. This property allows 
us to localize the minimizer independently of the objective function. The same 
idea is applied to some other nonregular nonlinear programming problems and 
allows us to reduce these problems to a regular system of equations without an 
objective function. 
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1. Introduction 
The main goal of this paper is to describe and analyze an application of thep- 

regularity theory to nonregular, (irregulal; degenerate) nonlinear optimization 
problems. In the first part of the paper, we recall some definitions of the p- 
regularity theory [2,3]. In the second part, we illustrate how to use the p-factor- 
approach to solve degenerate optimization problems with equality constraints, 
in which the Lagrange multiplier associated with the objective function might 
be equal to zero. In the third part, we present necessary and sufficient optimality 
conditions for a degenerate optimization problem with inequality constraints. In 
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the last part of the paper we consider mathematical programs with equilibrium 
constraints (MPECs). 

Notation. Let C(X,  Y)  be the space of all continuous linear operators from 
X to Y and for a given linear operator A : X --+ Y, we denote its image by 
ImA = {y E Y / y = Ax for some x E X). Also, A* : Y* + X *  denotes the 
adjoint of A, where X *  and Y* denote the dual spaces of X and Y,  respectively. 
Let p be a natural number and let B : X x X x . . . x X (with p copies of X )  --+ 

Y be a continuous symmetric p-multilinear mapping. The p-form associated to 
B is the map B[.]p : X + Y defined by B[x]p = B ( x ,  x ,  . . . , x) ,  for x E X. 

If F : X -+ Y is a differentiable mapping, its derivative at a point x E X 
will be denoted by F f ( x )  : X + Y. If F : X + Y is of class CP, we let 
F (p )  (x)  be the pth derivative of F at the point x (a symmetric multilinear map 
of p copies of X to Y) and the associated p-form, also called the pth-order 
mapping, is F (p )  (x) [h]p = F(P)  (x)  (h ,  h ,  . . . , h) . 

2. The p-factor-operator and the p-regular mappings 

In this section, we recall some definitions of the p-regularity theory [2, 31. 
Consider a sufficiently smooth mapping F from a Banach space X to a 

Banach space Y.  The mapping F is called regular at some point Z E X if 

We are interested in the case when the mapping F is nonregular (irregulal; 
degenerate) at 2, i.e., when 

We recall the definition of the p-regular mapping and of the p-factor-operator. 
We construct a p-factor-operator under an assumption that the space Y is de- 
composed into a direct sum 

where Yl = cl Irn Ff (Z) ,  Y ,  = cl Sp (lrnpzz ~ ( ~ ' ( 3 )  [.li), i = 2, . . . , p - 1, 
YP = Zp, Zi is a closed complementary subspace for (Yl 8 . . . $ Y,-l)  with 
respect to Y, i = 2, . . . , p ,  and Pzz : Y + Zi is the projection operator onto 
Zi along (Yl $ . . . $ Y,-1) with respect to Y, i = 2, . . . , p. 

Define the mappings [2] 

where Pyj : Y Y is the projection operator onto Y ,  along (Yl $ . . .8 K-1 $ 

Y,+l $ . . . 83 Yp) with respect to Y, i = 1, . . . : p. 



The p-factor-operator plays the central role in the p-regularity theory. The 
number p is chosen as the minimum number for which (2) holds. We give the 
following definition of the p-factor-operator. 

DEFINITION 1 The linear operator Q p ( h )  E C ( X ,  Yl @ . . . @ Yp), defined by 

P p ( h )  = f ;  ( 2 )  + f l ( 2 )  [h] + . . . + f$') (3) [hip-l, h  E X ,  

is called a p-factor-operator of the mapping F ( x )  at the point 2. 

Now we are ready to introduce another very important definition in the p- 
regularity theory. 

DEFINITION 2 We say that the mapping F is p-regular at 5 along an element 
h if ImQp(h) = Y .  

The following definition is a specific form of Definition 1 for the case of 
p = 2 a n d F : R n - + R n .  

DEFINITION 3 A linear operator Q 2 ( h )  : Rn -+ R n ,  

is said to be the 2-factor-operator, where P' is a matrix of the orthoprojector 
onto ( I m  F' (z))' ,  which is an orthogonal complementary subspace to the 
image of the first derivative of F  evaluated at 2. 

The next definition is a specific form of Definition 2. 

DEFINITION 4 The mapping F is called 2-regular at Z along an element h  i f  

3. Degenerate optimization problems with equality 
constraints 

In this section, we consider the nonlinear optimization problem with equality 
constraints: 

minimize f ( x )  subject t o  F  ( x )  = 0 ,  
X E X  

(4) 

where f : X -+ R. We will denote a local solution of (4) by 2: We assume that 
F, f are Cp'l in some neighborhood of 3 and that the mapping F : X -. Y is 
nonregular at 2,  i.e., the condition (1) holds. 

The Lagrangian for problem (4) is defined as 



where (Ao, A) E ( R  x Y*)\{O) is a generalized Lagrange multiplier. 
The classical first-order Euler-Lagrange necessary optimality conditions for 

problem (4) state that there exists a generalized Lagrange multiplier ( X o ,  X )  
such that 

X o  f ' ( 2 )  + ( F 1 ( 2 ) ) *  X = 0 ,  
F ( I )  = 0 ,  
A; + 11x112 = 1. 

In other words, the point ( I ,  X o ,  X )  is a solution of the following system of 
equations: 

We are interested in the case, when the Lagrange multiplier X o  might be equal to 
zero. In this case, the mapping C  and the system (6) are degenerate at ( Z , O ,  X). 
However, if the mapping L: isp-regular at ( I ,  0 ,  X )  with respect to some vector h ,  
then solving system (6) can be reduced to solving a regular system of equations. 
This result is stated in the following Theorem 5 .  

Before we give the theorem, introduce the notation z  = ( x ,  X o ,  A) and the 
functions l i ( z )  associated with the mapping C ( z )  introduced in (6). We define 
functions l i  ( z )  by ( 3 )  with f i  ( x )  = l i ( z )  and F ( x )  = C ( z ) .  We also define 
a, (h)  to be a p-factor-operator of the mapping L ( z )  at the point 2 = ( I ,  0 ,  1). 

THEOREM 5 Let I be a solution of (4) and let (0 ,  X )  be a generalized Lugrange 
multiplier such that (3,O, X) is a solution of (6). Assume that the mapping C ( z ) ,  
defined in (6) is p-regular at the point 2 = (I ,O,  A )  with respect to some vector 
h. Assume also that ~ e r a , ( h )  = ( 0 ) .  Then the following system has a locally 
unique regular solution 2: 

E ( z )  = 11 ( z )  + a;(.) [h] + . . . + ~ ? - ~ ) [ h ] ~ - ~  = 0. (7 )  

Example. Consider the problem 

3 minimize y  subject t o  F ( x ,  y )  = x2 - y  = 0: 
(GY) 

(8) 

This problem has a solution (3,  jj)T = ( 0 ,  o ) ~  and F'(0,O) = (0,O). The 
Lagrangian for (8) is defined as 

L ( x ,  y, X o .  A) = Aoy + ( x 2  - y3)X 



Then the system (6) for problem (8) has the form 

This system has a unique degenerate solution (Z,Q,  X o ,  X) = ( 0 , 0 , 0 , 1 ) .  
Since C ( x ,  y ,  Ao, A )  is 3-regular at (O,0, 0 ,  l)T with respect to the vector 

h = ( 0 , 1 , 0 ,  o ) ~ ,  we get by Theorem 5 that the system (7) is defined as 

This system has a locally unique regular solution (0 ,  0,O, I)~. 

4. Optimality conditions for degenerate optimization 
problems 

In this section, we consider the nonlinear optimization problem with inequal- 
ity constraints 

minimize f ( x )  subject t o  g ( x )  = (gl ( x ) ,  . . . : g , ( ~ ) ) ~  2 0 ,  (9) 
X E X  

where f, gi : X + R' and X is a Banach space. We will denote a local solution 
of (9) by 2. 

For some p 2 2, we say that we have the completely degenerate case if 

Introduce the sets 

Hp(2)  = { h  E X 1 gi ( P I ( % )  [hIp > 0 ,  i E I ( %  

I p  ( 2 ,  h )  = { i  E 1 ( 2 )  I gi ( P )  ( E )  [hIp = 0 ,  h  E Hp ( ? ) I ,  
and 

Ha = { h  E H,(z) / l g i (p ) (2 )  [hIpl 5 a ,  i E I ( % ) ;  llhll = 1) .  

Introduce the definition. 



DEFINITION 6 A mapping g ( x )  is called strongly p-regular at 5  ifthere exists 
cr > 0  such that sup lI{Qp(h)}-'ll < m. 

h~ H, 

Let fix some element h  E X and introduce the p-factor-Lagrangefiinction 

PI: 
m 

L p ( x ,  h ,  X(h))  = f (z) - x & ( h )  g,(P-i) ( x )  [h jppl .  (12) 
i=l 

THEOREM 7 Let 3 be a local solution to problem (9). Assume that there 
exists a vector h, llhli = 1, h  E Hp(5) ,  such that the vectors { g i  ( P I ( % )  [hlp-l, 
i E Ip (Z ,  h ) )  are linearly independent. Then there exist Lagrange multipliers 
X i  ( h )  such that 

g  (3) > 0 X i  ( h )  > 0 ,  X i  ( h )  ( 2 )  = 0 i = 1, . . . , m. 

Furthermore, suppose that the mapping g ( x )  is strongly p-regular at 3. If 
there exist w > 0  and X(h) such that 

for all h E H p ( I ) ,  then 3 is an isolated solution to problem (9). 

5.  Mathematical programs with equilibrium constraints 
(MPECs) 

The MPEC considered in this section is a mathematical program with non- 
linear complementary problem (NCP) constraints: 

minimize f ( x )  subject t o  g ( x )  2 0 ,  x  2 0 ,  ( g ( x ) ,  x )  = 0 ,  (14) 

where f : Rn -t R, g : Rn i Rn are twice continuously differentiable func- 
tions. We are interested in the case when the strict complementarity condition 
does not hold at the solution 5 ,  i.e., when there exists at least one index j such 
that gj (3 )  = 0  and 3, = 0. 

We show that under a certain condition, the problem (14) can be reduced to 
solving a system of nonlinear equations, which is independent of the objective 
function. 



By introducing the slack variables sj and $ ,  we reduce (14) to the problem 
with only equality constraints in the form: 

System (15) is a system of the 3n equations in the 3n unknowns x, s, and y .  
The corresponding Jacobian is given by 

where e l ,  . . . , en denotes the standard basis in Rn. If there exists an index j 
such that yj = 0 and sj = 0 (the strict complementarity condition does not 
hold), then the Jacobian matrix (16) is singular. 

Assume that we can identify the set lo of the weakly active constraint indices, 
that is, I. = {i = l l .  . . , n  1 gi(2) = 0 and li = 0). There are different 
techniques to identify the set lo, for example, ones described in [ l ]  or in [4]. 

Define the vector h = ( h l ,  . . . h,) as 

and a vector h E R~~ as hT = (0:: hT ,  hT) .  
From the explicit form of the Jacobian (16), the orthoprojector P' onto 

(Irn F ( z ,  s, y ) ) l  in R3n is a diagonal matrix pL = diag(pj);zl that is con- 
stant in some neighborhood of (2 ,  S ,  y)  and that is given by 

1 ,  i = 2 n + j ,  a n d j E I o  
P, = 0, otherwise. 
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Construct the mapping 

I I Q(x, s, y) = F(x, s:  y) + P F (x, s: y)h. 
Without loss of generality, we assume that I. = (1,. . . , r). Then 

The Jacobian of (17) is nonsingular at (I, 5, y) .  Consequently the system (17) 
has a locally unique regular solution (I, 5. y). Thus, we have reduced the 
solution of the problem (14) to solving system (17) that is independent of the 
objective function f (x). 
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