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Abstract A new active set algorithm (ASA) for large-scale box constrained optimization is 
introduced. The algorithm consists of a nonmonotone gradient projection step, 
an unconstrained optimization step, and a set of rules for switching between 
the two steps. Numerical experiments and comparisons are presented using box 
constrained problems in the CUTEr and MINPACK test problem libraries. 
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1. Introduction 
We present a new active set algorithm for solving the box constrained opti- 

mization problem 
min{ f (x )  : x ~ t 3 } ,  (1) 

where f is a real-valued, continuously differentiable function defined on the 
box 

~ = { x ~ R ~ : l ~ x ~ u ) .  (2) 

Here 1 < u ;  possibly, li = -m or ui = oo. The following notation is used 
throughout the paper: / /  . / /  is the Euclidean norm of a vector, the subscript 
k is used for the iteration number, while zi,i stands for the i-th component of 
the iterate xi,. The gradient V f (x)  is a row vector while g(x) = v f ( x ) ~  
is a column vector and denotes transpose. The gradient at the iterate xi, is 
gi, = g(xk) ,  the Hessian of f at x is V2 f (x), and the ball with center x and 
radius p is B,(x). 

"This paper is based upon work supported by the Nat~onal Science Foundation under Grant No. 0203270. 

Please use the following format when citing this chapter: 
Author(s) [insert Last name, First-name initial(s)]; 2006, in IFIP International Federation for Inform- 
ation Processing. Volume 199, System Modeling and Optimization. eds. Ceragioli F., Dontchev A,. 
Furuta H.; Marti K., Pandolfi L., (Boston: Springer), pp. [insert page numbers]. 



Gradient Projection Method (NGPA) 

Unconstrained Optimization Algorithm (UA) 

Figure I. Structure of ASA. 

The problem (1) may result from the discretization of a variational inequality 
such as the obstacle problem [42,49]: 

min ~~~~u(x)11~+2f(x)z~(x)dx 

subject to u(x) 2 $(x) a.e. 

It may come from the discretization of a control problem such as 

min f (x, u) 

subject to x = Ax + Bu, x(0) = xo, u > 0 a.e., 

where A and B are operators and the dot denotes time derivative. It also 
appears as the subproblem in augmented Lagrangian or penalty methods [18, 
4, 26, 27, 30, 32,471. For example, in an augmented Lagrangian approach to 
the nonlinear optimization 

min f (x) subject to h(x) = 0, x 2 0, 

we might solve the box constrained subproblem 

min f (x) + ~ ~ h ( x )  + pllh(x) 1 1 2  subject to x > 0, 

where p is the penalty parameter and X is an approximation to a Lagrange mul- 
tiplier for the equality constraint. Thus efficient algorithms for large-scale box 
constrained optimization problems are important, both in theory and practice. 

2. Gradient projection methods 
Our active set algorithm (ASA) has two phases as indicated in Figure 1 

a gradient projection phase and an unconstrained optimization phase. For the 
unconstrained optimization phase, we exploit the box structure of the constraints 
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Figure 2. The gradient projection step 

in (I) ,  while the gradient projection phase can be applied to any problem with a 
closed, convex feasible set. Hence, in this section, we consider a more general 
problem in which the box B is replaced by a nonempty, closed convex set R: 

min { f ( x )  : x E R) 

Let P denote the projection onto R. The gradient projection step at iteration 
k is depicted in Figure 2. Starting from the current iterate x k ,  we take a positive 
step E k  along the negative gradient arriving at 5ik = x k  - & g k .  If 5ik is outside 
R, then we apply the projection P to obtain a point P(xk )  on the boundary of 
R. The search direction d l ,  is along the line segment [xk,  P ( % k ) ] .  The new 
iterate x k + l  is obtained by a line search along the search direction. 

A more precise statement of the gradient projection algorithm follows: 

Nonmonotone Gradient Projection Algorithm (NGPA) 

Initialize k = 0, xo = starting guess, and f T l  = f (xo)  

While /lP(xk - g k )  - x k / /  > E 

1. Choose ~ i ,  E [amin, a,,,] and set d k  = P ( x k  - E k g k )  - x k .  

2. Choose f i  SO that f ( x k )  I fi I m a ~ { f i - ~ ,  frax) and fi;' L: frax infinitely often. 



3. 

4. 

5. 

End 

Let f~ be either f i  or min{fpax, fi). If f (xk + dk) < f R  + 
bgLdk, then ar, = 1. 

If f (xk + dk) > f~ + 6g;dk, then ar, = 17j where j > 0 is the 
smallest integer such that 

f (xk + $dk) I f~ + rljkjrdk. (4) 

Set xk+l = xk + akdk and k = k + 1. 

The statement of NGPA involves the following parameters: 

E E [O, m) - convergence tolerance ( P ( x k  - g k )  = x k  if and only if xk 
is a stationary point) 

[ a t n i n ,  am,,] C (0, m) - bound on the stepsize in Step I 

fknax - max{f (xk-,) : 0 5 i < min(k, A4 - 1)) (local maximum 
of function values near xk, M > 0) 

6, rl E (O,1) - parameters entering the Armijo line search in Step 4 

In Step 2, the requirement that " f i  5 fFaX infinitely often" is needed for global 
convergence. This is a rather weak condition which can be satisfied by many 
strategies. For example, every L iteration, we could simply set fi = fpax. 
Another strategy, closer in spirit to the one used in the numerical experiments, is 
to choose a decrease parameter A > 0 and an integer L > 0 and set f i  = fpax 
if 

f ( X L - L )  - f (xk) 5 

Thus we set f i  = frax when the function values decrease "too slowly." 
For our numerical experiments, the initial step air, in Step 1 is generated by 

a cyclic Barzilai-Borwein method developed in [20]. The traditional Barzilai 
and Borwein stepsize [3] is 

where sr, = xk+l- xk and yk = gk+l- gr,. If the same BB stepsize is repeated 
for several iterations, then even faster convergence can be achieved (see [20]). 
These schemes in which the same BB stepsize are repeated for several iterations 
are called cyclic BB schemes (CBB). The CBB update formula is 
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where m is the cycle length, and k is a multiple of m. The cycle length can be 
chosen in a adaptive way, as explained in [20]. 

Our line search along the search direction dk is an Arrnijo type line search 
[I], which may be viewed as a relaxed version of the Grippo, Lampariello, 
and Lucidi nonmonotone line search [34] (denoted GLL). For NGPA, the GLL 
scheme corresponds to fi = fraX for each k .  In practice, we have obtained 
faster convergence results by allowing the reference function value f{ to decay 
more slowly on average than fFax. 

Our statement of the gradient projection algorithm employs a direction op- 
erator da(x) given by 

where a is a scalar. Some properties of da are summarized below (see [37] for 
further details concerning these properties and other results presented in this 
paper): 

PROPOSITION 1 P and da have the following properties: 

PI. IjP(x) - P(y) / (  < /jx - y / /  for all x and y E Rn. 

P2. For any x E Q and cr > 0, da (x) = 0 if and only if x is a stationary 
point for (3). 

P3. Suppose x* is a stationary point for (3). If for some x E P, there exist 
positive scalars X and y such that 

P4. Suppose that f is twice-continuously differentiable near a stationary 
point x* of ( 1 )  satisfying the strong second-order suficient optimality 
condition; that is, there exists y > 0 such that 

for all d E %n with the property that di = 0 when xi = 0 and gi (x*) > 0. 
Then there exists p > 0 with the following property: 



whenever x  E Bp(x*) ,  where X is any Lipschitz constant for Vf on 

BP (x* ). 

In P3 we assume a convexity/monotonicity type condition at x;  for any x 
which satisfies ( 6 )  and the Lipschitz condition (7), we can estimate the error 
in x in accordance with (8). In P4, we make a convexity type assumption at 
x* (the strong second-order sufficient optimality condition), and we have the 
error estimate (10) in a neighborhood of x*. Based on P3 and P4, the Lipschitz 
continuity of dl (.) implied by PI,  and the fact P2 that dl ( x )  = 0 if and only if 
x is a stationary point, the function d l ( x )  can be used to measure the error in 
any iterate xk. In particular the convergence condition 1 1  P ( xk  - gk)  - xk 1 1  f E 

in NGPA is equivalent to ((dl  ( x k )  ( 1  6. 

Sufficient conditions for the global convergence of NGPA are given below. 

THEOREM 1 Let C be the level set defined by 

Assume the following conditions hold: 

GI. f is bounded from below on C and dm,, = supklldk/I < co. 

G2. If2 is the collection of x  E R whose distance to C is at most d,,,, then 
V f is Lipschitz continuous on 2. 

Then NGPA with E = 0 either terminates in a finite number of iterations at a 
stationary point, or we have 

lim inf I(dl(xk)  I /  = 0.  
k + w  

When f is a strongly convex function, Theorem 1 can be strengthened as 
follows: 

COROLLARY 2 Suppose f is strongly convex and twice continuously differen- 
tiable on R, and there is a positive integer L with the property that for each k ,  
there exists j E [ k ,  k + L) such that fr < f max. Then the iterates xk of NGPA 

3 . 7  2 
with E = 0 converge to the global minlmzzer x*. 

3. Active Set Algorithm 
In this section, we focus on the active set algorithm. Unlike the gradient 

projection algorithm where the feasible set can be any closed, convex set, we 
now restrict ourselves to box constraints. Moreover, to simplify the discussion, 
we consider (without loss of generality) the special case 1 = 0 and u = a. In 
other words, the constraint is x > 0. 
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Although the gradient projection scheme NGPA has an attractive global con- 
vergence theory, the convergence rate can be slow in a neighborhood of a local 
minimizer. We accelerate the convergence by exploiting a superlinearly conver- 
gent algorithm for unconstrained minimization. For the numerical experiments, 
we utilize the conjugate gradient code CGDESCENT [35, 38, 36, 391 for the 
unconstrained algorithm (UA). In general, any UA satisfying the following 
conditions can be employed: 

Unconstrained Algorithm (UA) Requirements 

U2. A(xk) C A(xlc+l) for each k where A ( x )  = {i E [ I ,  n] : xi = 0 )  

U3. If xji > 0 for j > k, then lim inf (g i (x j )  / = 0. 
3 2 k  

U4. Whenever the unconstrained algorithmis started, compute xk+l = P(xk  - 
a k g I ( x k ) ) ,  where ak is obtained from a Wolfe line search. That is, ak 
is chosen to satisfy 

where $(a)  = f (P (xk  - a g I ( x k ) ) ) ,  0 < b < a < 1, and g ~ ( x )  is the 
part of the gradient associated with inactive constraints: 

Conditions U1-U3 are sufficient for global convergence, while U1-U4 are 
sufficient for the local convergence results summarized below. U4 could be 
replaced by another descent condition for the initial line search, however, the 
local analysis in [37] has been carried out under U4. 

The active set algorithm is based on a set of rules which determine when we 
switch between NGPA and UA. These rules correspond to the double arrows in 
Figure 1. Before presenting the switching rules, we give some motivation. A 
fundamental set embedded in our switching rules is the "undecided index set" 
U : 

where a  E ( 0 , l )  and p E ( 1 , 2 )  are fixed constants. In the numerical experi- 
ments, we take a  = 112 and P = 312. Observe that at a local minimizer x*, 
the only components of the gradient which do not vanish are associated with 
components of x* at the boundary of the feasible set. The undecided index set 



consists of indices of large gradient components with large x components (in 
the sense of (12)). 

We show [37] that if f is twice continuously differentiable, then for any 
algorithm converging to a stationary point where each iterate is generated by 
either NGPA or a UA satisfying Ul-U4, the s e tU(xk )  is empty for k sufficiently 
large. This result does not depend on the rules used to switch between NGPA 
and UA. When U ( x k )  becomes empty while performing NGPA, we feel that 
the strictly active constraints at a stationary point are almost identified and we 
may switch to UA to exploit its faster convergence. 

Another quantity which enters into our switching rules is the ratio between 
the norm of the inactive gradient components / I g I ( x )  1 1  and the error estimator 
/Id1 ( x )  1 1 .  By U3, g I ( x k )  tends to zero as iterates are generated by the UA. By 
U2, UA does not free constraints; hence, any limit, say y*, of iterates typically 
does not solve the original problem (1). In other words, d l  (y*) may not be 0.  
We stop the UA and switch to the NGPA when IlgI(xk)ll is sufficiently small 
relative to ! l d l ( x k )  1 1 .  More precisely, we introduce a parameter p  > 0 and we 
branch from UA to NGPA when 

Unlike UA where bound components are fixed by U2, NGPA allows bound 
components of x k  to move into the interior of the feasible set. Hence, by 
switching from UA to NGPA, the iterates are able to move to a new face of the 
feasible set. In NGPA we may decrease p, in which case the accuracy with 
which we solve subproblems in UA increases. 

Assuming f is twice continuously differentiable, we show in [37] that for 
a local minimizer x* satisfying the strong second-order sufficient optimality 
condition (9) and for any sequence of iterates generated by either NGPA or a 
UA satisfying U1-U4, there exists a scalar p* > 0 such that 

for k sufficiently large. As a result, when p becomes sufficiently small, condi- 
tion (13) is never satisfied; hence, if the switch from UA to NGPA is dictated 
by (13), we conclude that the iterates will never leave the UA. In other words, 
we eventually solve (1) using the unconstrained optimization algorithm. 

With these insights, we now state ASA, or equivalently, we give the switching 
rules: 

Active Set Algorithm (ASA) 

1. While j / d l ( x k )  1 1  > 6 execute NGPA and check the following: 

a. If U ( x k )  = 8, then 
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If l lg~(~k) l l  < ~ / / d ' ( ~ k ) / / ,  then P = PP. 
Otherwise, goto Step 2. 

b. Else if A(xk) = A(xkP1) = . . . = A ( X ~ - ~ ~ ) ,  then 

If 1(g1 (xk) I /  > pjldl (xk) 1 1 ,  then goto Step 2. 

End 

2. While / /d l (xk)  1 1  > E execute UA and check the following: 

a. If IlgI(xk)/l < p/ld1(xk)1/, then restart NGPA (Step 1). 

b. If (A(xk-l) I < IA(xk) 1, then 

If U(xk) = 0 or lA(xk) I > I A ( X ~ - ~ )  / + nn, restart UA at xk. 
Else restart NGPA. 

End 

End 

In addition to the convergence tolerance E introduced previously, ASA utilizes 
the following four parameters: 

/. (031) - / / g l  ( x k )  1 1  < p/ldl (xk) / I  implies the UA subproblem solved 
with sufficient accuracy 

P E (O,1) - decay factor used to decrease p in NGPA 
nl,  nz E [I, n) - integers connected with active set repetitions or change 

A strong convergence theory can be developed for this algorithm. The fol- 
lowing global convergence property holds: 

THEOREM 3 Let C be the level set defined by 

Assume the following conditions hold: 

A l ,  f is bounded from below on L and dm,, = supr, lIdi, 1 1  < m. 

A2. Ifz is the collection of x E t3 whose distance to L is at most dm,,, then 
V f is Lipschitz continuous on 2. 

Then ASA with E = 0 either terminates in a finite number of iterations at a 
stationary point, or we have 

liminf l/d1(xic)ll = 0. 
lc-00 



For strongly convex objective functions, the global convergence result can 
be strengthened as follows. 

THEOREM 4 Iff is strongly convex and twice continuously differentiable on 
a, and assumptions A2 and A3 of Theorem 3 are satisfied, then the iterates xk 
of ASA with E = 0 converge to the global minimum. 

Under the hypotheses of the following theorem, ASA eventually reduces to 
the unconstrained algorithm with a fixed active constraint set. In other words, 
the constrained problem is eventually solved by the unconstrained algorithm. 

THEOREM 5 I f f  is twice-continuously differentiable and the iterates xk gen- 
erated by ASA with E = 0 converge to a stationary point satisfying the strong 
second-order suficient optimality condition, then after a finite number of iter- 
ations, ASA performs only the UA without restarts. 

When f is a strongly convex quadratic function, the iterates xk converge 
to the global minimizer x* by Theorem 4. Thus, if the UA is based on the 
conjugate gradient method, it follows from Theorem 5 that ASA converges in 
a finite number of iterations, since the conjugate gradient method has finite 
convergence when applied to a convex quadratic. 

In our analysis, summarized above, we never claim that the active indices at a 
stationary point x* can be identified in a finite number of iterations. In fact, there 
is a fundamental difference between the gradient projection algorithm presented 
in this paper, and algorithms based on a "piecewise projected gradient" [11- 
131. For our gradient projection algorithm, we perform a single projection, 
and then we back track towards the starting point. We are unable to show 
that the active constraints are identified in a finite number of iterations. In 
the piecewise projected gradient approach, where a series of projections may 
be performed, the active constraints can be identified in a finite number of 
iterations. Even though we do not identify the active constraints, we show in 
[37] that the components of xk corresponding to the strictly active constraints are 
on the order of llxk - x*1I2. Moreover, in our experience, the single-projection 
approach is more efficient in practice. 

4. Numerical Experiments 
In this section, we compare the CPU time performance of ASA to the per- 

formance of other algorithms for box constrained optimization. We begin with 
a brief overview of algorithm development for box constrained optimization. 

One important line of research focused on the development of conjugate gra- 
dient methods for box constrained problems with a quadratic objective function. 
Polyak's 1969 seminal work [50] considers a convex, quadratic cost function. 
The conjugate gradient method is used to explore a face of the feasible set, and 
the negative gradient is used to leave a face. Since Polyak's algorithm only 



Bound constrained optimization 77 

added or dropped one constraint in each iteration, Dembo and Tulowitzki pro- 
posed [21] an algorithm CGP which could add and drop many constraints in an 
iteration. Later, Yang and Tolle [55] further developed this algorithm so as to 
obtain finite termination, even when the problem was degenerate at a local rnin- 
imizer x*. That is, for some i, 25 = 0 and g,(x*) = 0. Another variation of the 
CGP algorithm, for which there is a rigorous convergence theory, is developed 
by Wright [53]. MorC and Toraldo [49] point out that when the CGP scheme 
starts far from the solution, many iterations may be required to identify a suit- 
able worlung face. Hence, they propose using the gradient projection method to 
identify a worlung face, followed by the conjugate gradient method to explore 
the face. Their algorithm, called GPCG, has finite termination for nondegener- 
ate quadratic problems. Recently, adaptive conjugate gradient algorithms have 
been developed by DostQl et nl. [24, 25, 271 which have finite termination for 
a strictly convex quadratic cost function, even when the problem is degenerate. 

For general nonlinear functions, some of the earlier research [4, 14, 33, 44, 
481 focused on gradient projection methods. To accelerate the convergence, 
more recent research has developed Newton and trust region methods. In [I ,  13, 
18,291 superlinear and quadratic convergence is established for nondegenerate 
problems, while [31, 32,43,46] establish analogous convergence results, even 
for degenerate problems. Although computing a Newton step can be expen- 
sive computationally, approximation techniques, such as a sparse, incomplete 
Cholesky factorization [45], could be used to reduce the computational expense. 
Nonetheless, for large-dimensional problems or for problems where the initial 
guess is far from the solution, the Newtonltrust region approach can be inef- 
ficient. In cases where the Newton step is unacceptable, a gradient projection 
step is preferred. 

The affine-scaling interior point method of Coleman and Li [ lo ,  15-17] is 
a different approach to (I), related to the trust region algorithm. More re- 
cent research on this strategy includes [22, 40, 41, 52, 561. These methods 
are based on a reformulation of the necessary optimality conditions obtained 
by multiplication with a scaling matrix. The resulting system is often solved 
by Newton-type methods. Without assuming strict complementarity (i. e. for 
degenerate problems), the affine-scaling interior-point method converges su- 
perlinearly or quadratically, for a suitable choice of the scaling matrix, when 
the strong second-order sufficient optimality condition [51] holds. When the 
dimension is large, forming and solving the system of equations at each itera- 
tion can be time consuming, unless the problem has special structure. Recently, 
Zhang [56] proposes an interior-point gradient approach for solving the system 
at each iteration. Convergence results for other interior-point methods applied 
to more general constrained optimization appear in [28, 541. 

We compare the performance of ASA to the following four codes: 



Figure 3. Performance profiles, 50 CUTEr test problems (left), 42 sparsest CUTEr problems, 
23 MINPACK-2 problems (right) 

rn L-BFGS-B [57]: The limited memory quasi-Newton method of Zhu, 
Byrd, Nocedal (ACM Algorithm 778). 

SPG2 Version 2.1 [7, 81: The nonmonotone spectral projected gradient 
method of Birgin, Martinez, and Raydan (ACM Algorithm 813). 

rn GENCAN 161: The monotone active set method with spectral projected 
gradients developed by Birgin and Martinez. 

rn TRON Version 1.2 1461: A Newton trust region method with incomplete 
Cholesky preconditioning developed by Lin and MorC. 

These codes are all carefully written, high quality codes that reflect the different 
approaches to box constrained optimization summarized above. All codes are 
written in Fortran and compiled with f77 (default compiler settings) on a Sun 
workstation. The stopping condition was 

where I /  . 11, denotes the sup-norm of a vector. In running any of these codes, 
default values were used for all parameters. Our test problem set consisted 
of all 50 box constrained problems in the CUTEr library [9] with dimensions 
between 50 and 15,625, and all 23 box constrained problems in the MINPACK- 
2 library [2] with dimension 2500. The performance of the algorithms, relative 
to CPU time, was evaluated using the performance profiles of Dolan and MorC 
1231. That is, for each method, we plot the fraction P of problems for which the 
method is within a factor r of the best time. 

TRON is somewhat different from the other codes since it employs Hessian 
information and an incomplete Cholesky preconditioner, while the other codes 
only utilize gradient information. In Figure 3, left, we compare the performance 
of the four gradient based codes ASA, L-BFGS-B, SPG2, and GENCAN using 
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Figure 4. Performance comparison for P-ASA and ASA, E = (left), for E = 
l ~ - ~ l / d ~ ( x ~ ) / l ~  (right) 

the 50 CUTEr test problems. In a performance profile, the top curve corresponds 
to the method which solved the largest fraction of problems in a time witbin a 
factor r of the best time. According to Figure 3, left, ASA achieves better CPU 
time performance than the other methods for this test set. 

In order to compare ASA to the Hessian-based code TRON, we incorporated 
preconditioning in the conjugate gradient iteration. The preconditioner was the 
inverse of the incomplete Cholesky factorization of the Hessian at the current 
iterate. That is, we extracted the incomplete Cholesky factorization from TRON 
and used it in our code; hence, the two codes were using precisely the same 
approximation to the Hessian at each iterate. We let P-ASA denote this pre- 
conditioned version of ASA. Since TRON is targeted to large-sparse problems, 
such as the MINPACK problems, we compare P-ASA to TRON using the 23 
MINPACK-2 problems and the 42 sparsest CUTEr problems (the number of 
nonzeros in the Hessian at most 115 the total number of entries in the Hessian). 
In Figure 3, right, we see that P-ASA has better CPU time performance than 
TRON in this test set. 

In Figure 4, left, we compare the performance of P-ASA to that of ASA using 
the 42 sparsest CUTEr problems and the 23 MINPACK-2 problems. Clearly, 
the preconditioning was effective for this problem set and the convergence 
tolerance E = In Figure 4, right, the convergence tolerance is relaxed 
to E = /Id1 (xo) /Im. With this relaxed convergence tolerance, there is not 
much difference between the preconditioned and the unconditioned codes. 
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