
ANALYSIS OF A PDE MODEL FOR 
SANDPILE GROWTH 

P. Cannarsal 
~ e ~ a r t m e n t  of Mathemnlics, Universiy of Rome "Tor Vergata", Rome, Italy 

cannarsa @axp.mat.uniroma2,it 

Abstract In the dynarnical theory of granular matter, the so-called table problem consists 
in studying the evolution of a heap of matter poured continuously onto a bounded 
domain R c R2. The mathematical description of the table problem, at an equi- 
librium configuration, can be reduced to a boundary value problem for a system 
of partial differential equations. The analysis of such a system, also connected 
with other mathematical models such as the Monge-Kantorovich problem, is the 
object of this paper. Our main result is an integral representation formula for the 
solution, in terms of the boundary curvature and of the normal distance to the cut 
locus of n. 
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1. A PDE model for sandpile growth 
In recent years, the attention of many authors has been focussed on the system 

of partial differential equations 

in a given domain R c Rn. 
For n = 2, a typical context of application for (1) is granular matter theory. 

The so-called 'table problem', for instance, consists of describing the evolution 
of a sandpile created by pouring dry matter onto a table. Different approaches 
to this problem have been proposed in the literature, such as: the variational 
model developed by Prigozhin [20]; the ODEIPDE Model introduced in [2] 
and [14] by Evans and co-authors; the BCRE Model initiated by Boutroux and 
de Gennes[3] and elaborated by Hadeler and Kuttler[l7]. In our analysis, we 
shall be concerned with the BCRE model, where the table is represented by a 
bounded domain S2 c R ~ ,  and the matter source by a function f ( t :  x) > 0. 
The physical description of the growing heap is based on the introduction of 
the so-called standing and rolling layers. The former collects the amount of 
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matter that remains at rest, the latter represents matter moving down along the 
surface of the standing layer--eventually falling down when the base of the 
heap touches the boundary of the table. 

As pointed out in [17], system (1) is related to equilibrium configurations 
that may occur in presence of a constant source. To explain this connection, let 
us denote by u(x)  and v(x),  respectively, the heights of the standing and rolling 
layers at a point x E R, for an equilibrium configuration. For physical reasons, 
the slope of the standing layer cannot exceed a given constant (the angle of 
repose)-typical of the matter under consideration-that we normalize to 1. 
Consequently, the standing layer must vanish on the boundary of the table. So, 
IDul 5 1 in R and u = 0 on dR. Also, in the region where v is positive, 
the standing layer has to be 'maximal', for otherwise more matter would roll 
down there to rest. On the other hand, the rolling layer results from transporting 
matter, poured by the source, along the surface of the standing layer at a speed 
that is assumed proportional to the slope D u ,  with constant equal to 1. The 
above considerations lead to the boundary value problem 

Notice that (2) is the same equilibrium system one would obtain fromPrigozhin's 
variational model. 

1.1 Connection with optimal mass transfer 
It is worth noting that system (1) arises in Monge-Kantorovich theory, as 

explained in the monograph [15], and futher analyzed in [I] and [16]. In the 
present context, we will just observe that the connection of the above system 
with optimal mass transfer can be obtained by looking at the so-called 'dual 
problem', which consists in maximizing 

among all Lipschitz continuous functions u : R R, with Lip(u) < 1, 
vanishing on dR. Indeed, as proved in [4], the boundary value problem (2) 
turns out to be the system of necessary conditions satisfied by any maximizer u 
of (3), taking v equal to the associated Lagrange multiplier. Such a framework 
is also related to the optimization problem studied in [12]. 

1.2 Solution of the equilibrium system 
The main purpose of the present work is to provide a full analysis of prob- 

lem (2), including existence, uniqueness, and regularity of the solution. For 
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existence and uniqueness, we shall follow the approach of [5]  for the case of 
n = 2, and of [6]  for the general case n > 2. As for regularity, we shall rely 
on the results of [7]. It is well-known that the eikonal equation 

does not possess global smooth solutions in general, neither does the conserva- 
tion law 

-div(vDu) = f . 

Therefore, we ought to explain what we mean by a solution of (2). 
We say that a pair ( u ,  v )  of continuous functions in R is a solution of problem 

(2) if 

u  = 0 on dR, l lD~l l , ,~  5 1, and u  is a viscosity solution of 

rn v  2 0 in R and, for every test function 4 E C,OO(R): 

For the reader's sake, we now recall the definition of viscosity solution. The 
superdifferential of a function u  : R 7. R at a point x E A is the set 

u ( x  + h )  - u ( x )  - ( p ,  h)  

b 50) , 

while the subdifferential D-u is given by the formula D-u(x)  = - Df ( -u )  ( x ) .  
We say that u  is a viscosity solution of the eikonal equation lDul = 1 in R if, 
for any x E R, we have 

Before describing our main results, we need to introduce some useful geomet- 
ric properties of bounded domains with smooth boundary. This is the purpose 
of the next section. 

2. Distance function 
Let R be a bounded domain with c2 boundary dR.  In what follows we denote 

by d : -+ R the distance function from the boundary of R, that is, 

d(x) = min ly - X I  , 
ycan 



and by C the singular set of d, that is, the set of points x  E R at which d  is not 
differentiable. Since d  is Lipschitz continuous, C has Lebesgue measure zero. 
Introducing the projection II(x) of x  onto dR in the usual way, C is also the 
set of points x  at which H(x)  is not a singleton. So, if n ( x )  = { T )  for some 
x  E R, then d  is differentiable at x  and 

REMARK 1 We recall that the distance function d  is the unique viscosity solu- 
tion of the eikonal equation lDul = 1 in R, with boundary condition u = 0 in 
dR. Equivalently, d is the largest function such that I 1 D ~ l l ~ , ~  < 1  and u = 0 
on dR. 

For any x  E dR and i = 1 ,  . . . , n - 1, the number K ~ ( x )  denotes the i - t h  
principal curvature of dR at the point x,  corresponding to a principal direction 
ei(x)  orthogonal to Dd(x) ,  with the sign convention ~i > 0 if the normal 
section of R along the direction ei is convex. Also, we will label in the same 
way the extension of ~i to a \ C given by 

K ~ ( X ) = K ~ ( I I ( Z ) )  V X E ~ \ \ .  ( 5 )  

Denoting by p  18 q the tensor product of two vectors p, q E Rn, defined as 

( P  @ 4 ) b )  = P (q> 2 )  , v x  E Rn , 
for any x  E n and any y  E II(x) we have 

~ i ( y ) d ( x )  5 1  Vi = 1 , .  . . ,n - 1. 
- - 

If, in addition, x  E R\C, then 
n-l 

n i ( x ) d ( x ) < l  and D ~ ~ ( x ) = - C  ~i ( x )  
1  - K~ ( x )  d ( x )  ei ( x )  @ ei ( x )  

i=l 
..(.I where ei(x)  is the unit eigenvector corresponding to I - t i i ;x )d(z ) .  

We now turn our attention to the closure of C, a set that is also called the cut 
locus of dR in R, and to the function 

rnin { t  > o : x  + t ~ d ( x )  E C) ~x  E E\E, 
T ( X )  = ( 6 )  

o ~ x E ' E .  
Since the map x  H x  + ~ ( x ) D d ( x )  is a natural retraction of onto E, we will 
refer to T ( . )  as the maximal retraction length of R onto C or normal distance to - 
C. The regularity properties of T are described by the following theorem due 
to Li and Nirenberg [I91 (see also [18]). 

THEOREM 2 Let R  be a bounded domain in Rn with boundary of class c211. 
Then the map T dejned in (6) is Lipschitz continuous on dR. 
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3. A representation formula for the solution 
Before stating a precise result for our problem, let us show a formal derivation 

of the representation formula for the solution in the case of n = 2. Suppose 
(u, v )  is a smooth solution of (2). In view of Remark 1, we can take u = d. 
Moreover, suppose that v  vanishes on E-this is reasonable from the point of 
view of the physical model, and can also be justified by a rigorous argument. 
Let us proceed to compute, for a given point x  E R \C and for any t  E (0 ,  T ( x ) ) ,  
the derivative 

(recall that Dd(x + tDd (x ) )  = Dd(x ) ) .  Now, observe that 

since ~ ( x  + tDd (x ) )  = ~ ( x )  and d(x  + tDd (x ) )  = d (x )  + t .  Hence, V ( t )  := 

v ( x  + tDd (x ) )  satisfies the Cauchy problem 

Thus, solving the above problem and noting that v ( x )  = V(O), we conclude 
that, in R \ C, v  must be given by the formula 

REMARK 3 We note that the above formula entails that v vanishes at all points 
x  E R \ C at which the half-line spanned by Dd(x)  fails to intersect the 
support of f before hitting E. This description, which agrees with physical 
evidence, extends to dimension 2 the analogous result obtained in [17] for the 
one-dimensional case. 

4. Existence, uniqueness, regularity 
The following result, proved in [5] for n = 2 and in [6] for n 2 2, ensures 

the existence and uniqueness of the solution of (2), as well as a representation 
formula for such solution. 

THEOREM 4 Let R c Rn be a bounded domain with boundary of class C 2  
and f > 0  be a continuous function in S1. Then, a solution of system ( 2 )  is 



given by the pair (d ,  v f ) ,  where 

0  v x  E C, 
(7) 

where, t ~ ( x )  denotes the i - th principal curvature of dR at the point n ( x ) .  
Moreovel; the above solution is unique in the following sense: if ( u ,  v) is 

another solution of ( 2 ) ,  then v  = v f  in R, and u  = d in {x E R  / v f  > 0) .  

A noteworthy aspect of the above result is that we do construct a continuous 
solution vf, instead of just a measure or a function in L 1 ( R ) .  So, Theorem 4 
could also be viewed as a regularity result. Moreover, formula (7) can be used to 
derive further regularity properties. This will be the object of our next section. 

4.1 Regularity 
A natural question to ask is what kind of regularity one can expect for the 

solution (d l  v f )  of problem (2 ) .  For the first component, this is well understood: 
while d is of class C 2  on a neighborhood of dR,  the maximal regularity of d in the 
whole domain n i s  semiconcavity, a generalization of concavity preserving most 
of the local properties of concave functions (see [8] for a detailed description 
of such a class of functions). 

On the other hand, the situation is different for the second component. In- 
deed, formula (7) suggests that the regularity of v f  should depend on the regu- 
larity of f and T .  Therefore, our original problem leads to the question of the 
global regularity of the normal distance. 

While it is easy to prove that T is continuous on a ,  and locally Lipschitz 
in n \ when dR E C211, the following example shows that r may fail to be 
globally Lipschitz continous on n. 
EXAMPLE 5 (THE PARABOLA CASE) In the cartesian plane consider the set 
R := { ( x ,  y )  E R2 I y > x2), whose boundary is a parabola with vertex (0,O). 
By the symmetry of dR with respect to the vertical axis we deduce that 
must be contained in such an axis. Moreover, C = ( ( 0 ,  y )  1 y 2 1/21 and 
r ( ( s ,  s 2 ) )  = id"-. Then, a straightforward computation shows that, for 
a > 0  sufficiently small, 

for some M > 0. So, T cannot be Lipschitz continuous in the whole set R. 

On the positive side, we present two Holder regularity results in R' recently 
obtained in [7]-the former for T the latter for v f .  
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THEOREM 6 Let R be a bounded simply connected domain in R2 with analytic 
boundary, different from a disk. Then, there exists an integer m > 2 such that 
.r is Holder continuous in R with exponent m. 
In particular, T is at least 213-Holder continuous, and Example 5 describes the 
'worst' possible case. 

THEOREM 7 Assume that f is a Lipschitz continuousfunction and that R is 
a simply connected bounded domain in R~ with analytic boundary, diferent 
from a disk. Then vf is a Holder continuous function with exponent for 
some integer m > 2. 

5. Application to a variational problem 
We conclude this paper with an application to a problem in the calculus of 

variations which may seem quite unrelated to the present context at first glance. 
Let us consider an integral functional of the form 

where f E Lm(R)  is a nonnegative function and h: [0, +a) + [O, +m] is a 
lower semicontinuous function (possibly with non-convex values) satisfying 

h(R)  = 0 ,  h ( s )  >_ max(0, A(s  - R) ) for some constants R,  A > 0. ( 9 )  

In a pioneering work, Cellina [ I l l  proved that, if R is a convex domain (that 
is, an open bounded convex set) in R~ with piecewise smooth (C2) boundary 
and f - 1, then J does attain its minimum in W;"(R),  and a minimizer is 
explicitly given by the function 

provided that the inradius m of R is small enough. (We recall that rn is the 
supremum of the radii of all balls contained in R.) This result has been extended 
to convex domains in Rn and to more general functionals in subsequent works 
(see [9, 10, 13, 21, 221). One common point of all these results is that the set 
R is always a convex subset of Rn. In this paper we will see that, using the 
representation formula (7), the function un defined in (10) is a minimizer of J 
in w ~ " ( o ) ,  even on possibly nonconvex domains. 

We say that a set R is a smooth K-admissible domain, K E R, if it is a 
connected open bounded subset of Rn with C2 boundary, such that the mean 
curvature of is bounded below by K, that is 



We note that every connected bounded open set R C Rn with C2 boundary is 
a K-admissible smooth domain for every K satisfying 

K 5 min H(y) . 
V E ~ R  

The following is a special case of a more general result obtained in [6]. 

THEOREM 8 Let h: [0, m) -+ [0, oo] be a lower semicontinuousfunction sat- 
isfying (9), let R c Rn be a smooth K-admissible domain, and let f be a 
nonnegative Lipschitz continuous function in R. If 

where 

then thefunction un(z) = R d(z) is a minimizer in W;"(R) of thefunctional 
J deJined in (8).  

We will now sketch the proof of Theorem 8 in order to point out the connection of 
this problem with (2). Given f as above denote once again by vf the continuous 
function defined in (7). The first step of the proof, we will comment no further 
on in this context, consists of estimating the integrand in the representation 
formula for v f  as in [6], to show that 

Therefore, in view of assumption ( l l ) ,  we have 

Let u E W;"(R). Since h satisfies (9) and v f  satisfies (14), we have that 

hence 

where 

Since vf is bounded, by a density argument equation (4) holds for every $J E 

W;"(R). Choosing q5 = u - 110, we obtain that A vanishes, so that J(u) 2 
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J ( u n ) .  Since u was an arbitrary function in wJ;'(R), we have proven that 21a 
is a minimizer of J in w;>' (a). 
REMARK 9 We note: 

1) The result of Theorem 8 can be extended to nonsmooth domains, such as 
domains satisfying a uniform exterior sphere condition. See [6] for details. 

2) If R is a convex domain with smooth boundary, then condition 

is certainly satisfied provided that 

Namely, it is enough to observe that a convex domain is a 0-admissible domain, 
and that c(0, r n )  = rn .  Condition (15) was first introduced in [ l l ]  in the case 
o f f  r 1. In [9] it was proven that, if (15) does not hold, then J needs not have 
minimizers in w;;' (a). 

3) Assumption (1 1) of Theorem 8 for the existence of a minimizer of J is 
optimal in the following sense. Let h(s)  = max(0, A(s- R)} for some positive 
constants A and R, let f (x) = 1 and let R = B,(O) c R n .  Then rn = r ,  and 
R is a (l/r)-admissible domain. Since c ( l / r ,  r) = r l n ,  Theorem 8 states that 
the function un(x)  = R d ( x )  is a minimizer of J provided that r 5 nA. This 
condition is optimal: indeed, functional J is not even bounded from below if 
r > nA. Let us define the sequence of functions in W:)'(R) 

A straightforward computation shows that, for k > R,  

where wn is the n-dimensional Lebesgue measure of the unit ball of Rn, A is a 
constant independent of k, and $(p) = pn+l - ( n  + l)Apn. Since $J is strictly 
increasing for p > nA, and r > nA, we have that $(nA) - $(r) < 0, hence 
lim J ( u k )  = -x .  

k - + x  
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