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Abstract A review of the papers written by Camillo Possio on Flight Dynamics and Hy- 
drodynamics is presented. The scope of the note is to underline how the versatile 
young researcher succeeded in delivering interesting contributions to the engi- 
neering sciences that go beyond the renown equation that bears his name. 
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1. Introduction 
The works of Camillo Possio on unsteady aerodynamics [I]-[7] have deeply 

influenced the studies in the field of aeroelasticity up to the present days, as 
demonstrated by some recent works that exploited his derivations [8]-[lo]. For 
this reason the related papers are considered as his most important contributions 
to the engineering disciplines. As a matter of fact his scientific production was 
extremely prolific and diverse in spite of his untimely death under the last 
bombing that hit his native city, Turin, at the end of the Second World War, on 
April j th ,  1945. 

Beyond his seminal contribution to unsteady aerodynamics, Possio's works 
ranged from the analysis of fluid motion [ l l ,  121 to studies on physical prop- 
erties of fluids [13], from flight mechanics [14]-[16] and experimental fluid 
dynamics [17] to free surface effects on the flow field generated by distribu- 
tions of singularities [18]-[20]. These works deserve consideration not only 
because they reveal the versatility of his mind in applying a rigorous mathe- 
matical approach for describing physical phenomena, always preserving a deep 
practical understanding of the underlying physical system, but also because 
they are undoubtedly as interesting as the most renown ones. The present 
note will focus on five papers that represent the legacy of Possio to the fields 
of flight dynamics ([14] and [ l j ] )  and hydrodynamics ([18]-[20]), discussing 
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their significance in the framework of the current studies of the time on the two 
subjects. 

In Refs. [14] and [15], both written in 1938, Possio exploited his experience 
in managing basic models of oscillating lifting surfaces in order to derive some 
analytical results aimed at evaluating aircraft stability derivatives, that is the 
expressions of the perturbation terms of aerodynamic forces and moments that 
are required in the linearization of rigid aircraft equations of motion. The last 
part of his scientific activity was focused on the analysis of free-surface effects. 
In particular, between 1941 and 1943 he wrote a sequence of three papers that 
were devoted to the analysis of steady motion of heavy fluids under the influence 
of adistribution of singularities [IS], the interaction of a vortex in steady motion 
with a free-surface [19], and to the estimate of marine propeller efficiency as a 
function of its depth [20], pushing further the analysis of the problem that had 
been given approximate solutions by other scientists of the time. 

Without neglecting the originality and potential importance of the works 
that will not be discussed in the present note, the legacy of Camillo Possio to 
flight dynamics and hydrodynamics represents the major contribution (beyond 
Possio equation) that the young scientist could develop into a complete research, 
obtaining results that represented an advance in engineering knowledge at the 
time the papers were written, while preserving also nowadays a significant 
interest for the aerospace community. 

2. Possio and aircraft stability derivatives 
On January 1938 Camillo Possio published on the Commentationes Pontficia 

Academia Scientiarum (Proceedings of the Pontifical Academy of Sciencies) 
a work titled "On the Determination of Aerodynamic Coefficients for Aircraft 
Stability Analysis" [14]. The importance of this work can be easily understood 
when one considers that the formulation of rigid aircraft equations of motion 
had already reached full maturity for a long time in 1938, the seminal book by 
Bryan [21] dating back to 1911, but the evaluation of the so called dynamic 
stability derivatives was still an open problem. 

The approach proposed by Bryan for the analysis of aircraft stability is based 
on the derivation of the equations of motion from first principles, the determina- 
tion of aircraft equilibria (trimmed flight) and the linearization of the equations 
of motion in the neighborhood of the considered trim condition. In Bryan's 
theory, aerodynamic forces and moments are expanded in linear form as a func- 
tion of aircraft state and control variables, under some reasonable simplifying 
assumptions. 

After writing the linear model, the main problem for a meaningful aircraft 
stability analysis is to provide reasonable estimates of aircraft stability deriva- 
tives, that is, the partial derivatives of aerodynamic forces and moments with 
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respect to state and control variables, divided by a mass parameter (the mass 
for force equations or the relevant moment of inertia for each one of the three 
attitude equations). Stability derivatives may change significantly, depending 
on the considered trim condition and aircraft configuration. The determination 
of the so called static stability derivatives (that is, stability derivatives made 
with respect to aerodynamic angles or velocity components) can be performed 
with different degrees of accuracy, but a reasonable estimate is not too a difficult 
task. On the converse, the evaluation of rotary and dynamic derivatives, that is 
stability derivatives with respect to angular velocity components and time deriv- 
atives of aerodynamic angles, is never trivial. In his earliest work on aircraft 
stability (that was written with W.E. Williams in 1903 before Wright brothers' 
first powered flight, and published on January 1904 only three weeks after the 
Flyer took-off!), Bryan simply neglected the terms depending on the rate of 
change of incidence and sideslip angles [22]. Flight experience and more ac- 
curate mathematical derivations rapidly demonstrated that unsteady downwash 
effects on the horizontal tail were sizable and cannot be neglected. 

Unfortunately, dynamic derivatives escape also direct experimental evalua- 
tion, not only because of scale and wind-tunnel effects (the latter analyzed by 
Possio in [17]) but also because forced oscillation experiments cannot deter- 
mine separately the contributions of angular velocity and rate of variation of 
aerodynamic angles to force and moment components. 

As for evaluation of dynamic stability derivatives from theoretical aerody- 
namic results, Possio himself underlined how the effects of small amplitude 
oscillations on lift distribution cannot be described by a two-dimensional rep- 
resentation, that, together with other limitations, would make it impossible 
to evaluate stability derivatives with respect to roll angular velocity, nor by a 
simple strip theory, even under the assumption of a low frequency parameter 
w = Rb/(2Vo), R being the frequency of the oscillation, b the wing span and 
Vo the trim velocity [14]. Exploiting his analysis of the behavior of oscillat- 
ing lifting surfaces, Possio derived a rigorous description of the vorticity and 
pressure distributions over a lifting surface in a harmonic oscillation, under the 
assumptions of small incidence and oscillation amplitude and large wing aspect 
ratio A. 

His derivation for a wing like that shown in Fig. 1 was based on Prandtl's 
acceleration potential approach [23]. The total derivative of the velocity V can 
be expressed as 

where the acceleration potential cp satisfies Laplace equation v~~ = 0. Writing 
Eq. (1) in linear, nondimensional form (that is assuming small perturbation of 
a uniform flow V o  of unity modulus), the vertical component v of the velocity 



Figure 1. Elliptic wing in a uniform current [14] 

field must satisfy the equation 

Taking into account that v + 0 for x + -m, it is possible to integrate Eq. (2), 

The restriction of v over the surface C of the oscillating wing must satisfy 
the flow tangency condition on C, that is v(x, z) = dq ld t  - a, where q is 
the vertical displacement of the point (x,  z )  E C and a the wing incidence. 
For a harmonic oscillation all the terms can be expressed in complex form as 
cp = q e i w t  and v = ue iWt ,  where i is the imaginary unit and cp and ?j are complex 

functions of x, y,  and z. The restriction of f j  over C can thus be written as 

Noting that for incompressible fluids no time derivatives of cp are present in 
the Laplace equation governing acceleration potential, it is possible to state 
that cp is the acceleration potential of a steady flow field Cp with asymptotic 
velocity Vo around a lifting surface with the same shape of C. Indicating 
the horizontal and vertical velocity components of the steady flow field Cp 
with 1 + u' and w, respectively, and applying Bernouilli's theorem for small 
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perturbations u', w << 1, it is cp = u'. It is also dpldy = dwldx, because C, 
is irrotational. By substituting w in Eq. (3 )  and integrating by parts, one gets 

The flow field C, can be generated by a (steady) complex vorticity distribu- 
tion y(x, z )  over C, that Possio determined following Prandtl theory for steady 
motion of finite wings, expressing 7 in terms of Glaurt's trigonometric series. 
The details of the procedure are here omitted for the sake of brevity, but can 
be found on Possio's paper [14]. It must be observed that, as explicitly under- 
lined by Possio himself, the flow field Cp and its vertical component w bear 
no physical meaning. In particular, although w(x, z )  can be decomposed into 
the sum of two contributions wl and w2 related to the circulation distribution 
in Cp on the wing and downstream of it, respectively, the two corresponding 
terms fjl and 'U2 obtained by substituting wl and wn in Eq. (4 )  are not related to 
the unsteady distribution of vorticity over and downstream of the wing in the 
actual unsteady flow field. 

In the final part of the paper Possio derived some simplified relations for the 
particular case of an elliptic wing. He also demonstrated that the approximation 
of his prediction for the unsteady case has the same accuracy of Prandtl's model 
for the steady case and developed a simple example for an isolated wing which 
undergoes a vertical harmonic oscillation. He anticipated that a complete set 
of results on aerodynamic forces and moments generated by roll, pitch, yaw 
and heave oscillations of a complete aircraft configuration would have been 
discussed in a subsequent note. On December 1938 this note was published by 
the italian journal L'Aerotecnica under the title "Determination of Aerodynamic 
Actions Due to Small Aircraft Oscillations" [15]. Figure 2 shows some of 
Possio's original plots, namely Figs. 3 through 9 taken from Ref. [15]. 

It should be noted that Possio presented his results adopting the italian nota- 
tion in use at his time, where C, represents the lift coefficient, from the word 
portanza, and C,, is the roll moment coefficient, where mr stands for mo- 
mento di rollio. In the paper, C, indicates the drag coefficient (resistenza), Cd 
the side-force coefficient (deriva) while Cmb and Cmi indicate the pitch and 
yaw moments (beccheggio and imbardata), respectively. 

In the last paragraph of the paper Possio carried out a numerical example for 
evaluating the differences with respect to what he called "the usual approximate 
methods" that neglect part of the unsteady aerodynamic effects, rigorously taken 
into account by his approach. While the terms in phase with the variation of 
the angle of attack where shown to be predicted well even by the approximate 
methods, the terms in quadrature with a were demonstrated to be significantly 
different, with variations that ranged from 28% for the pitch moment stability 
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Figure 2. Lift coefficient C, in plunge (Figs. 3 and 4) and pitch motion (Figs. 5 and 6), and 
roll coefficient C,, for roll oscillations (Figs. 7 and 8) from Ref. [I51 
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derivative with respect to di up to 200% for the lift derivative with respect to a: 
~ 5 1 .  

3. Possio's analysis of free-surface effects 
In 1941 Possio published his first work on free surface effects on theAnnali di 

Matematica Pura e Applicata (Annals of Pure and Applied Mathematics) [18], 
analyzing the steady velocity field created by a distribution of singularities on 
the free surface of a heavy fluid. 

Lamb and Havelock demonstrated that under the usual hypotheses of perfect 
fluid and infinitesimal perturbation an infinite set of solutions is analytically 
plausible for this problem [24],[25]. Indicating with V  and Vo the local and 
the asymptotic velocity, respectively, Rayleigh proposed a method to define a 
well-posed problem by assuming that an elementary viscous-like force per unit 
mass in the form -p (V  - Vo) acts on the fluid, where p  is a positive parameter. 
The flow field for a perfect fluid was thus obtained in the limit as p -+ 0. 

Possio provided an alternative formulation based on a more rigorous model. 
While retaining the assumption of perfect fluid, he considered the stationary 
motion as the limit of an unsteady one, started with the fluid at rest when a 
perturbation created by the singularities is suddenly applied at t = 0. The gen- 
eral solution can be expressed in terms of velocity potential as @ ( x ,  y, z ,  t )  = 
Gi(x ,  y ,  z )  + @,(x, y,  z ,  t ) ,  where Qi is the potential determined by the singu- 
larities distribution and its value is suddenly assumed at t  = 0, while a, is an 
additive potential satisfying the Laplace equation V2@, = 0, with continuous 
first derivatives in the half-space z  > 0 and vanishing at infinity except in the 
downstream direction. The formulation of the unsteady problem is well posed 
and it admits a unique solution. If the perturbation is created by a distribution 
of sources or doublets, the solution is given by 

@ i ( z , y , z )  = [ T d O L C Y F ( m ; ~ ) e m k z + i m k d  dm. (5) 

@,(r, Y ,  z ,  t )  = d0 Lm f (m, 0 ,  t)emkr+imku d m  (6) 

with k = g/Vo2 and w = x  cos(0) + y  sin(0). F ( m ,  0 )  is a continuous bounded 
function, with continuous bounded first derivatives in the set m >_ 0 and -n 5 
0  5 n, such that F + 0 as e-mkz if m -+ m. Finally, f is an arbitrary function 
such that the integral is defined in z > 0 and differentiation under the integral 
sign is also defined. 

Possio demonstrated that the stationary additional potential @: obtained as 
limt,, @,(x,  yl z ,  t )  coincides with the expression obtained by Rayleigh, and 
satisfies the limit condition imposed on the potential and its first derivatives at 
infinity. He also extended his approach to a more general situation where the 



perturbation is given by a pressure discontinuity, so as to include the flow field 
generated by a propeller or an airfoil. 

This investigation was naturally developed into the study of the potential that 
describe the velocity field generated by a vortex with circuitation r in uniform 
motion at a depth h from a free surface [19]. In this case the potential can be 
expressed as 

where a, is the additional potential required to satisfy the boundary condition 
at the free surface, that is, pressure p in the fluid at the surface is equal to 
the external pressure pa in the space over the surface. As usual, the potential 
function +, must satisfy the Laplace equation v2@, = 0 in the half-space 
occupied by the fluid, the first derivatives vanishing upstream of the vortex, so 
that a well-posed problem is obtained. 

Possio found the expression of @ ,  and investigated its numerical computa- 
tion. The theory was then applied to the problem of the uniform motion of an 
airfoil of chord ! for small values of the ratio E = ! /h .  The resulting lift and 
drag coefficients were expressed as 

with p = g h / ~ $  The aerodynamic coefficients were similar to those obtained 
by Prandtl for the small E case, expressed in terms of a virtual aspect ratio 
X = 2e2P/,/3~. Possio determined X for arbitrary values of E ,  although his 
analysis was limited to the flat plate. In this case the virtual aspect ratio is given 
by 

= 2 ~ 2 ~ 2 / ( ~ F ' )  

7.r { J02 [1 / (2F2) l  + J12 [1/(2F2)1) 
(9) 

where Jo( ) and J1( ) are Bessel functions and F = V o / a  is the Froud 
number. The diagram of Fig. 3 represent the behaviour of 1/X as function of 
F for different values of E .  

In Ref. [20] Possio investigated free surface effects on propeller efficiency. 
This problem had been already addressed by Dickmann [26], under the as- 
sumption that the field external to the wake created by the propeller can be 
represented by a distribution of sinks over the propeller disc, thus exploiting 
the results of Havelock on wave resistance generated by a given singularities 
distribution [25]. 

Possio provided a more accurate computation of wave resistance and ex- 
tended the investigation to the case of more than one propeller. Letting h be 
the depth of the propeller disc center, measured along the z axis oriented down- 
ward, and E = r / h  the ratio between the disc radius and the depth, Possio 



Beyond Possio Equation 

F 

Figure 3. Reciprocal of virtual aspect ratio as a function of Froud number. 

represented the wave resistance generated by a uniform distribution of sinks on 
the propeller disc a as 

where ,B = g h / ~ 2  and 

Dickmann results refers to the case of a sink distribution concentrated in the 
disc center with E = 0, that is just the first term in the series expansion of Eq. 10. 
On the converse, Possio computed f for different values of the ratio E and of 
the Froud number. 

He also evaluated propeller efficiency loss due to wave motion induced on the 
free surface. Denoting with u& the average velocity increment at the propeller, 
with P and T the propeller power consumption and thrust, respectively, the 
actual propeller efficiency is q, = TVo/P,  while the efficiency in an infinite 
fluid is 7 = T(Vo + u&)/P .  By talung into account that u&/Vo << 1, it is 
possible to write 

where ud denotes the velocity increment at the propeller disc. 



4. Conclusions 
Camillo Possio demonstrated with his extremely diverse scientific activity an 

unusual capability of handling complex mathematical models while preserving 
a deep physical insight on the underlying engineering problem. This note was 
aimed at presenting his works on flight dynamics and hydrodynamics subjects, 
the only fields where fate allowed the young scientist to deliver an articulate 
contribution beyond the state of the art of his time and beyond the seminal 
equation that bears his name. 
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