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Abstract The paper describes a new conjugate gradient algorithm for large scale nonconvex 
problems with box constraints. In order to speed up the convergence the algorithm 
employs a scaling matrix which transforms the space of original variables into 
the space in which Hessian matrices of functionals describing the problems have 
more clustered eigenvalues. This is done efficiently by applying limited memory 
BFGS updating matrices. Once the scaling matrix is calculated, the next few 
iterations of the conjugate gradient algorithms are performed in the transformed 
space. The box constraints are treated by the projection as previously used in [R. 
Pytlak, The efficient algorithm for large-scale problems with simple bounds on the 
variables, SIAM J. on Optimization, Vol. 8, 532-560, 19981. We believe that the 
preconditioned conjugate gradient algorithm gives more flexibility in achieving 
balance between the computing time and the number of function evaluations in 
comparison to a limited memory BFGS algorithm. The numerical results show 
that the proposed method is competitive to L-BFGS-B procedure. 

keywords: bound constrained nonlinear optimization problems, conjugate 
gradient algorithms, quasi-Newton methods. 

1. Introduction 
In this paper we consider algorithms for the problem: 

min f (x) 
xcRn 

s .  t .  15 z 5 u, 

where 1 ,  u E Rn. 
In [9] (see also [4]) a new family of conjugate gradient algorithms has been 

introduced whose direction finding subproblem is given by 
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where N r { a ,  b )  is defined as the point from a line segment spanned by the 
vectors a and b  which has the smallest norm, i.e., 

1 1  . / I  is the Euclidean norm and gr, = V f ( x k ) .  
Notice that if pk = 1 then we have the Wolfe-LemarCchal algorithm ([7], 

[13]). In [9] it was shown that the Wolfe-LemarCchal algorithm is in fact the 
Fletcher-Reeves algorithm when directional minimization is exact. Moreover, 
the sequence { P k )  was constructed in such way that directions generated by 
(3) are equivalent to those provided by the Polak-RibiCre formula (under the 
assumption that directional minimization is exact). This sequence 

has striking resemblance to the Polak-RibiCre formula. 

2. General preconditioned conjugate gradient algorithm 
The idea behind preconditioned conjugate gradient algorithm is to transform 

the decision vector by linear transformation D  such that after the transformation 
the nonlinear problem is easier to solve. If 2  is transformed x: 

2 = D x  

then our minimization problem will become 

rnjn z [ f ( 2 )  = f (D-'i)] 

and for this problem the search direction will be defined as follows 

& = -Nr{Vf (?r , ) ,  -,&&-1) 

Notice that 

of(?) = D - ~ V  f ( 2 )  

therefore we can write 

dl, = - N ~ { D - ~ v  f ( D - ' ? ~ ) ;  - f i k & - l } .  

If we multiply both sides of (10) by D-I we will get 

d k  = - X ~ D - ~ D - ~ V ~ ( Z ~ )  + (1  - x ~ )  pkdr,- l .  

where 0 5 X k  < 1  and either 

pk = 1 
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for the Fletcher-Reeves version, or 

for the Polak-Ribiere version. 
The equation (1 1) can be stated as 

where H = D - ~ D - ~ .  This suggests that D should be chosen in such a way 
that DTD is an approximation to v$, f ( 5 )  where 5  is a solution of problem 
(1). 

Moreover, if D is an upper triangular matrix then at each iteration of the 
algorithm we will have to solve the system of linear equations 

It is worthwhile to notice that the following holds (see [ l l ] ) :  

i f O < X k  < 1. 
If box constraints (2) are present in our problem then we can tackle them by 

using the projection procedure proposed initially in [I] (see also [lo]). 
In the rest of the paper we consider, for the simplicity of presentation, the 

problems with simpler constraints z 2 0. We define the set of indices I: 

where { E I , )  is such that > 0 and 

lim / ( x k  - P[xk - V f ( X I , ) ] /  = 0 lim ~k = 0. 
k € K  kcK (17) 

for any subsequence { x ~ ) ~ , ~ .  Here, by P[.]  we denote the projection operator 
on the set { x  E Rn : 1 5 z 5 u) ([I]). 

The sets I: are used to modify the direction finding subproblem. Instead of 
solving problem (3) we find a new direction according to the rule 

Here d t - l  is defined by 



To complete the description of the main components of our algorithm we 
have to show how to use scaling matrices in its preconditioned version. Having 
the set of indices I: we do not scale variables corresponding to them and we 
apply general scaling to the others. Therefore, we use the scaling matrix of the 
form 

where nk = 1 I: 1 .  
In order to describe the line search procedure notice that the function f ( P [ x k +  

a d k ] )  can be interpreted as a composition of two functions: the first one is Lip- 
schitzian and the second one continuously differentiable. If we define 

and the breakpoints {a;)?  are calculated as follows 

(assuming that if (dk) i  2 0  then a i  = m), then our directional minimization 
rule can be stated as follows. 

R1 find the largest positive number ak from the set { B k  : I, = 0 , 1 ,  . . . , 0  E 
( 0 , l ) )  such that for p E ( 0 , l )  we have 

Notice that in the rule RI we employ dk instead of ik as (15) would imply. 

Since we assume that D ~ D ~  are uniformly bounded from below and above (in 
the sense of condition (26)) there exist constants 0  < cl < cz < +w such 
that cl /Idr, / /  5 i/ik/i 5 c2 /Idk 1 1 .  Thus the use of dk on the left on inequality in 
the rule Rl  is justified (it corresponds to appropriately choosing the coefficient 
1-1). It is worthwhile to observe that our descent direction rule allows for such 
inaccurate directional minimization search. 

Our general algorithm is as follows: 

Algorithm Parameters: p E (0 ,  I ) ,  E > 0 ,  {pk )? ,  
{ D k ) y ,  Dk E Rnxn nonsingular matrix, T E RnXn nonsingular diagonal 
matrix. 
Data: xo 
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1) Set k = 0, compute dk = -gk, go to Step 3). 
2)Compute: wk = xk - P[xk - TV f ( x )  EI, = min(e, Ilwk//): 

If wk = 0 then STOP. 
3) Find a positive number ar, according to the rule R I .  
4) Substitute P[xk + akdk] for xk+l, increase k by one, go to Step 2. 
We can prove the lemma 

LEMMA 1 Assume that xk is a noncritical point, D ~ D ~  is positive definite 
and dk # 0 is calculated in Step 2 of Algorithm. Then there exists a positive 
arc such that the condition stated in the rule RI is 

lim f (P[zk $. adk]) = -m. 
0'00 

(25) 

To investigate the convergence of Algorithm we begin by providing a crucial 
lemma which requires the following assumptions. 

ASSUMPTION 1 There exists L < cx, such that 

IlVf (Y) - Vf (x)l/ 5 Lily - X I \  
for all x, y from a bounded set. 

ASSUMPTION 2 There exist dl, d, such that 0 < dl < d, < +oo and 

LEMMA 2 Suppose that Assumptions 1-2 hold, the direction dl, is determined 
by (22)-(24) and the step-size coeficient ak is calculated according to the rule 
R1. Then, for any bounded subsequence {xk)kEX either 

For the convenience of future notations we assume that variables ( x ) ~  have 
been reordered in such a way that dk can be partitioned into two vectors (d;, di) 
where the first vector d; is represented by 



The same convention applies to other vectors. 

THEOREM 3 Suppose that Assumptions 1-2 are satisfied. Moreovel; assume 
that for any convergent subsequence { x k ) k E K  whose limit is not a critical point 

i )  {pk) is such that 

where y is some positive constant, 

ii) there exists a number v 2  such that u2 1 1  D i T  112 1 1  DkPl  / I 2  E ( 0 , l )  and 

Then limk,, f ( x k )  = -oo, or every accumulation point of the sequence 
{ x k ) p  generated by Algorithm is a critical point. 

Our global convergence result is as follows. 

THEOREM 4 Suppose that Assumptions 1-2 are satisfied. Then Algorithm 
generates { x k )  such that every accumulation point of {x i , )  satisfies necessary 
optimality conditions for problem (1)-(2) provided that: 

i )  pk is given by 

ii) there exists M < oo such that cuk 5 M ,  Vk. 

3. Scaling matrices based on the compact representation 
of BFGS matrices 

In the previous section we showed that for a given nonsingular matrix H-I = 
D T D  the preconditioned conjugate gradient algorithm is globally convergent. 
The use of constant scaling matrix is likely to be inefficient since the function f 
we minimize is nonlinear. Therefore, we are loolung at the sequence of matrices 
{ H k )  such that each H;' is as close as possible to the Hessian v:, f ( x k )  and 
can be easily factorized as ~ f i l ~ f i ~  where Dk is a nonsingular matrix. We 
assume, for the simplicity of presentation, that nk r 0. 

In the paper we present the preconditioned conjugate gradient algorithm 
based on the BFGS updating formula. To this end we recall compact represen- 
tations of quasi-Newton matrices described in [8]. Suppose that the k vector 
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pairs { s i ,  y i ) f z i  satisfy s r y i  > 0 for i = k - m - 1, . . . , k - 1. If we assume 
that Bo = and introduce matrices Mk = [ykSk Yk],  

where si = xi+l - xi and yi = gi+l - gi, then LBFGS approximation to the 
Hessian matrix is 

and W k  E Rmxm is nonsingular ([3]). 
In order to transform the matrix Bk to the form D T D ~  we do the QR factor- 

ization of the matrix 211:: 

where Qk is n x n orthogonal matrix and Rk the n x m matrix which has zero 
elements except the elements constituting the upper m x m submatrix. Taking 
into account that Q ~ Q ~  = I  we can write (33) as 

Notice that the matrix R;WkRk has zero elements except those lying in the 
upper left m x m submatrix. We denote this submatrix by Tk and we can 
easily show that it is a positive definite matrix. If we compute the Cholesky 
decomposition of the matrix ykIk - Tk,  ykIk - Tk = C r C k  then eventually 
we come to the relation 

T T Bk = Qk Fk FkQk (36) 

with 

The desired decomposition of the matrix Bk is thus given by 

T 
Bk = Dk Dk, Dk = FkQk (38) 

where the matrix Dk is nonsingular provided that sTyi > 0 for i = k - m - 1, 
. . . , k - 1. Notice that the matrix Qk does not have to be stored since it can be 
easily evaluated from the Householder vectors which have been used in the QR 
factorization. 

Recall the relation (14) which now can be written as 



4. Scaling matrices - the reduced Hessian approach 

The approach is based on the limited memory reduced Hessian method pro- 
posed by Gill and Leonard ([5],[6], see also [12]) 

Suppose that Gk = span { g o ,  91, . . . , gk)  and let G; denote the orthogonal 
complement of Gk in Rn. If Bk E Rnxrk have columns that define the basis 
of GI, and 

is the QR decomposition of Bk then 

where Qk = ( Z k  W k )  and range(Bk) = range(Zk). (40) follows from the 
theorem which was stated, among others, in [6]: 

THEOREM 5 Suppose that the BFGS method is applied to a general nonlinear 
function. I f  Bo = oIn and 

Bkdk = - g k ,  

then d k  E GI, for all k. Furthermore, i f z  E GI, and wi, E G;, then Bkz E 
and B k w  = nw. 

From (40) we have 

Therefore, it follows that we can take as Dk: 

At every iteration we have to solve equations 

Solving these equations requires multiplication of vectors in Rn by the or- 
thogonal matrix Qk (or &;), and this can be achieved by the sequence of 
m multiplications of the Householder matrices Hi, i = 1,. . . , m such that 
Qk = HlHi . . . Hr. The cost of these multiplications is proportional to n. 
Furthermore, we have to solve the set on n linear equations with the upper 
triangular matrix G k ,  or its transpose. 
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5. Numerical experiments 
In order to verify the effectiveness of our algorithm we have tested it on 

problems from the CUTE collection ([2]). We tried it on problems with vari- 
ous dimension although its application is recommended for solving large scale 
problems. 

Algorithm has been implemented in C on Intel PC under Linux operating 
system. We compared our algorithm with the L-BFGS-B code which is the 
benchmark procedure for problems with box constraints for which evaluating 
the Hessian matrix is too expensive. L-BFGS-B code was used with the para- 
meter m = 5 and we applied m = 5 and we recalculated matrices Dk every five 
iterations in Algorithm. The stopping criterion was I /  V f (x) I /  / max(1, jjz 11) 5 

We used the scaling matrices as described in Section 3. 

10 1 0 1 

JNLBRNGl (15625) 

JNLBRNGZ (15625) 

JNLBRNGA (15625) 

JNLBRNGB (15625) 

OBSTCLAE (15625) 

OBSTCLAL (15625) 

OBSTCLBL (15625) 

1 1 OBSTCLBM (15625) 

OBSTCLBU (15625) 

TORSION1 (14884) 

TORSIONC (14884) 

TORSION0 (14884) 

TORSIONE (148M) 

TORSIONF (14884) 

Fig~lre  1. Performance comparison of Algorithm against the L-BFGS-B code. 



The performance comparison of Algorithm is given in Figure 1. where we 
compare it with the code L-BFGS-B presented in [14]. For each problem the 
bars represent the ratio of the number of iterations (LIT), number of function 
evaluations (IF) and computing time (CPU) needed by the Algorithm divided 
by those from the executions of the L-BFGS-B code. Therefore values above 
one testify in favor of the L-BFGS-B and below one - in favor of our algorithm. 
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