
SOLUTION OF MDPS USING SIMULATION-
BASED VALUE ITERATION

Mohammed Shahid Abdulla and Shalabh Bhatnagar
Department of Computer Science and Automation, Indian Institute of Science, Bangalore
560 012, India.

Abstract: This article proposes a three-timescale simulation based algorithm for solution
of infinite horizon Markov Decision Processes (MDPs). We assume a finite
state space and discounted cost criterion and adopt the value iteration approach.
An approximation of the Dynamic Programming operator T is applied to the
value function iterates. This 'approximate' operator is implemented using three
timescales, the slowest of which updates the value function iterates. On the
middle timescale we perform a gradient search over the feasible action set of
each state using Simultaneous Perturbation Stochastic Approximation (SPSA)
gradient estimates, thus finding the minimizing action in T. On the fastest
timescale, the 'critic' estimates, over which the gradient search is performed,
are obtained. A sketch of convergence explaining the dynamics of the
algorithm using associated ODEs is also presented. Numerical experiments on
rate based flow control on a bottleneck node using a continuous-time queueing
model are performed using the proposed algorithm. The results obtained are
verified against classical value iteration where the feasible set is suitably
discretized. Over such a discretized setting, a variant of the algorithm of [12]
is compared and the proposed algorithm is found to converge faster.

FRAMEWORK AND INTRODUCTION

We consider an MDP {X^,/'= 0,1,...} where decisions are made at
instants ^ = 0,1,... using an associated control-valued process {Z^} .
Suppose S = {1,2,...^} is the (finite) state space and C is the control space.
Suppose also that U{i) c C is the set of all feasible controls in state / .
Let p(i,u,j)J,jeS,ueU(i) be the transition probabilities associated
with this MDP. An admissible policy ju = {ju^ ,ju\jU^,...} with

766 Mohammed Shahid Abdulla and Shalabh Bhatnagar

jj! :S -^C,t>0, is such that /// e U(i) . An admissible poUcy // is
stationary if//' =y,\/t. Suppose KQ^.u^J^^^) denotes the one-step

transition cost when the current state is i^, the action chosen is u^ e U(i^)
and the next state is /^^j. The aim here is to find a stationary admissible
policy TT that minimizes for each state / G S the associated infinite horizon
discounted cost V^ (/), where

K(i) = E{Y,-_yK(Jn^,, ,L^) I '̂o = 0 (1)

and 0 < or < 1 is the discount factor. For any state i e S , the minimum
infinite-horizon discounted-cost V. satisfies the Bellman equation

K = ̂ ^^ueuio E{K{i,u,ri{i,u)) + o^Fj(.,,)} (2)

the random variable ?](i,u)eS being the state to which the system
transits upon application of control u in state /. The expectation above is
over r/(i,u). To compute V* = (V^ , V/ e SY we may apply the Dynamic
Programming algorithm recursively:

V.in + \) = min„^^(.) E{K(Uu,7](Uu)) + aV^^^^^(n)} (3)

Note that here V(n) = (V.(n),\/i e SY dire iterates unlike defined
quantities V^ in (1). It is known that asf7 -> oo, the iterates V.(n) converge
to V. exponentially. We may rewrite (3) as V^{n-\-l) = T.(V(n)) where
7:9?" -^5H* such that T = (T.,Vi e SY is the Dynamic Programming
(DP) operator and the vector V* is the unique fixed point of T . This
method of continually applying T is termed as successive approximation or
value iteration (cf sec. 8.2 of [2]). The optimal policy TT (where V * -V)
can be inferred from (2), in general, provided the system transition
probabilities p{i, n. ,•) are known, which is not true in most real-life
applications. When p{i,n.,^ are available but not obtainable via a closed
form expression, storing these values when \S\ is large is difficult. Even so,
such a possibility is ruled out in the case where [/(/) are compact or
countably infinite. Denote n^{n) as the 'greedy' policies w.r.t. the iterates
V{n) of (3), i.e.

n.{n-^V) = arg min ̂ ^ (̂.) E{K(i,u,ri(i,u)) + aV^^.^^(n)} (4)

then we may infer that TT- (n) -^ TT* although tight bounds of the form
V. (n) + c. (n) < V* < V^ (n) + c^ (n) , where c. (n) < c. (n) , available in
value iteration hold for 7r.(n) if 7r.(n) belong to a space with a well-

Solution ofMDPs using Simulation-based Value Iteration 767

defined metric topology, e.g. 7r.{n) e y{\\/n > 0 .Therefore, we assume a
compact action set U{i) eVl^' ,\/i e S.

Simulation based approaches to value iteration in the literature go under
the rubric critic-only algorithms. See, for example, sec. 1 of [9], where the
drawbacks of such schemes are also identified. In a typical simulation based
implementation of T. , first the estimation of
E{K{i,u,ri{i,u))-\-aV^^^^^{n)} is performed, for each action ueU(i).
This procedure is not feasible when U(i) is a compact or even a countably
infinite set. This is followed by finding the minimum of such terms over
U(i) , we call this minimum V^(n-\-V) , and (possibly) storing the
minimizing u as iterate 7r.(n + l) . Note that this minimization step has
computational complexity 0(y] \U(i)\) . An example of critic-only value
iteration are the algorithms in sec. 6.2 and 6.3 of [12], that employ online
TD(0) learning, both without and with exploration of U{i) , respectively.
However, these algorithms use value function approximation whereas we
target the look-up table case. An important difference in approach is that in
[12], the system is simulated using a single endless trajectory to enable
learning of the coefficients involved in value function approximation. As we
shall show in sec. 4, this reduces to simulating single transitions out of each
state / € S repeatedly. Further, the setting there is also somewhat different
in that one does not have to use a simulator in order to estimate the
minimizing ^. (^ +1). As a result, it is easy to find the resultant greedy
policy 7r^{n + l) once the value function iterate V^(n) is identified. This
property of such systems is what makes value iteration attractive to
implement. Two examples of other systems where this property holds are to
be found in [11] and [10].

In contrast, we use the actor-critic approach to approximate T.. Gradient
search is performed using a slower timescale recursion for finding the
minimizing control in (3). Thus, given value function estimates V{n), the
iterates 7r{n +1) represent an approximation to 7r(n +1) of (4). To perform
gradient descent we employ SPSA estimates of the true gradient
V^E{K(i,u,r/(i,u)) + ccV^^^^ „^{n)} in a stochastic approximation recursion,
similar to the policy gradient approach of [4] and [1]. Note that the difficulty
here arises since it is not only the expectation £"{•} that needs to be
evaluated but also the value function itself, before the gradient is estimated.
Clearly, the objective function here does not possess any analytically
obtainable expression and hence needs to be estimated. In particular, to
obtain control 7U.{n-v\) we evaluate E{K(i,u\7]{i,u''))-\-aV (n)} ,
r ~ 1,2 at two 'perturbed' actions, u^ and u^ that will be made precise later.
A faster time-scale recursion estimates the two E{^ terms required above

768 Mohammed Shahid Abdulla and Shalabh Bhatnagar

by independently simulating M transitions from state / using actions u^
and u^, respectively, thus permitting two 'parallel' simulations. Note that in
the normal course, given a control u e U{i) , one would wait for
convergence of iterates towards the £{] terms required above. Instead we
only perform a fixed M steps of averaging the random variables
£{7^(/,^^^77;(/>O) + ^ ^ , ; , , , .) W } , 0 < m < M - l , r = l , 2 , where 7^
now stands for the two parallel M -element random processes having the
law p{i,u\'). Note that in the above, the convergence analysis permits us
to fix M ail - although better performance was obtained when a larger M
was used. Convergence in the proposed algorithm is achieved because of the
different step size schedules or timescales as with [1], [3], [4], [5], [8], and
[9]. While in critic-only methods the resultant optimal policies are not
explicitly computed, a highlight of the proposed algorithm is that due to its
actor-critic structure, the convergence criteria can now be designed based on
both the policy iterates TT and the value-function iterates V. This helps to
accommodate problem-specific sensitivity to these quantities. Such a feature
is achieved due to both these quantities being estimated in the algorithm.

ALGORITHMS

Suppose U(i)JeS are of the form f/(0 =]~J/J^,^?^,^] ? where
a/ ,b/ e 91 . We make the assumption that \/i,jeS,ueU(i) , both
K{i,uJ) and p(i,u,j) are continuously differentiable in u.

Let P/ (y) = mm(b/ ,m3x(a.\y)),y e 5? be the projection of y onto
the interval [a / 6/],1 <j< N^. Further, for y = (j^p Ĵ 2 v,;^;^ Y ^ 9^^',
l^t PXy) = (P;(y,\P'(y2).^.P^'''(yN^)f • Then P,(y) denotes the
projection of y e 91 ' to the set U{i),i e S. Also define an operator P(-)
as Pix) = (Pi (jci), P2 (^2)v"» Ps (Xs)f where Xj e 9?^^ ,\<j<s , and

The recursion that tracks (3) is the following: For all / € 5' and n>0:

V^ (^ +1) = V, in) + a{nW, (/7 +1) - V, {ri)) (5)

where P̂ (f? +1) = (F S ((^ + 1)M) + F ' / (in + l)M))/2 is an
approximation to T. {Virif) and a{n) is a diminishing step size. Here, M is
the number of instants over which additional averaging in recursion (7) is
performed. The iterate V will be made precise below in the description of
(7). Recursion (6) updates ^(•):

Solution ofMDPs using Simulation-based Value Iteration 769

TT^ (^ +1) = P. (TT. (n) + b(n) -^^ ' ' / , '—^) (6)
2dA.(n)

Here, A.(^) are deterministic normalized Hadamard-matrix based
perturbations generated according to the method in sec. 2.2.1 of [3] (see also
[5] where Hadamard matrix based perturbations were firs^ introduced)
whereas S ^ 0 is a small constant. To produce the iterates V. ((n + 1)M)
and V. ((w + l)M) consider perturbed policies
7rl(n) = P.(7r.ln)-SA.{n)) and 7rf(n) = P.(7r,(n) + SA,(n)) . Now
perform the following iterations for r = 1,2 and m = 0,1,..., M - 1 :

V' {nM •\-m + \) = V' (nM -\-m) + c(n)\ + aV', ,_,, JnM-\-m)

Here, we run two simulations corresponding to r = 1 and r -2 m
parallel. Note that in the above, 77̂ and 77̂ represent two stochastic
processes with elements of the form ri[{i^u)^k>0 which are »S-valued
random variables, independently generated using p(i,u^') . The
requirements on the step-sizes a(n), b(n) and c(n) used in (5), (6) and (7),
respectively, are as follows: d(n)>0, V d(n) = co , V d^(n)<co
where ^(T?) represents all three sequences a(n)^b{n) and c(n), alongwith:

a{n) = o{b{n)\ b{n) = o(c(n)). (8)

Thus a(n) -> 0 is the fastest and c{n) -^ 0 is the slowest among the
three step-size schedules. As a result, the timescale corresponding to {ü(n)}
is the slowest while that corresponding to {c(n)} is the fastest. This is
because beyond some finite NQ > 0 (i.e., for n> NQ), the increments in the
recursion governed by {a(n)} are uniformly the smallest while those in
recursion governed by {c(n)} are uniformly the largest among the three.
Hence recursions governed by {c(n)} converge the fastest (even though
they exhibit higher variability in their iterates) amongst the three recursions.
Note that we could replace (5) with the direct-assignment
recursion V. (n + l) = V. (n +1) . However, using stochastic averaging with
step-size a{n) results in graceful convergence properties in our experiments.
Such a choice between the averaging of (5) and direct-assignment is an
example of the bias-variance dilemma.

770 Mohammed Shahid Abdulla and Shalabh Bhatnagar

OUTLINE OF PROOF

We explain briefly the intuition behind the algorithm, using the Ordinary
Differential Equation (ODE) approach for easy illustration and only supply
pointers to related proofs already in the literature.

Suppose we define the 5Rjj valued function V^QV.u) (for any W e^l'
and ueU(i)) as follows: V^(W,u) = E{K(i,u,7j(i,u))-{-aWjj^^^>^} .It is
easy to see that, for a_ given stationary admissible policy TT , the vector
function V(W,7r) = (V,(W,7r,lV^(W,7r^l...,V^(W,7rjf is in fact the
appropriate constrained DP operator T^ . Also, (3) may be written as
V,(n + l) = TXV{n)) = mm^^^^^^{VXV(n),u)}. Recall that the fixed point
of the operator T^, V^ = T^iV^) is the solution of the Poisson Equation:
V^ (/) = E{K(i, TV.,77(/, 71.)) + aV^ (r/(i, TT.))} , where V^ (k) represents the
A: - th element of the vector V^.

Using a proof technique resembling that of Corollary 4.2 of [4], for any
^ > 0 the asymptotically stable ODE that the faster recursion (7) tracks is,
for ^ > 0

V,'(t) = V(V{t)X(t))-V:(t) (9)

Note that the terms 7Tl'(t) and V(t) are quasi-static at the time scale
corresponding to (7) as recursions (6) and (5) proceed on slower timescales
(cf (8)). Hence we may replace 7r^(t) with TT^ and V(t) with V ,
respectively. The asymptotically stable equilibrium point of (9) would be
v.' = Viy.Tvl) . By virtue of (8) again, (7} would be seen by (6) (and (5))
as having converged. Using the iterates V^{{n-\-\)M), a better estimate
7c{n +1) to the policy 7i:{n +1) of (4) will be produced via the SPSA
update rule of (6).

For the time being, we assume that the SPSA based estimate in (6)
performs correct gradient descent towards TT^ (n +1) (the proof technique
for such a claim resembles that of Lemma 4.10 of [4]). This implies that (6)
tracks the asymptotically stable (projected) ODE:

^ , (0 = ^(-V„^(F,M)) , (10)

whose equilibrium point is the desired minimum. Here,
^ = (P/ ,l<j<Nf and P/ (v(y)) = lim^^o (P/ (y + rjv(y)) - y)h
for any bounded, continuous and real-valued function v. Further, (5) views
recursions (6) and (7) as having converged and so considers an estimate to

Solution ofMDPs using Simulation-based Value Iteration 111

V. {n + \) = T. (V(n)) as available at its _(/? +1) - th update. Note that
recursion (5) has no direct use for the V.''((n + \)M) terms of (7) and
instead requh'es an approximation to T. (V(n)). However, we can employ
the iterates F /̂ in (5), as we describe below. The novelty is that this role of
iterates V is in addition to the role played as 'critic' for recursion (6).

Note that iterate ^(n +1) does approximate 7r(n +1) (by virtue of (10)),
and we may use V(V(n), 7ü{n +1)) as V^ {n +1) in (5). However, we would
need additional simulation to^estimate the former term. This we can avoid by
considering ^he quantities V. (V(n), TT^ (/?)) , for r = 1,2 , approximated by
the iterates V.' ((n + 1)M). Using Taylor series expansion (as in the proof of
Lemma 4.10 of [4]), we see that V^,^^^(i) + V.^, (i) = 2V,^„^(i) + 0(S)
and use this fact in (5). Note that no properties or the £erturbations A. are
used in the above equality. Further, it is an estimate of V^ (V(n), TT. (n)) that
is available to us and not the more recent V^(V(ri),7r^(n + i)) . This
represents the loss in accuracy due to not estimating V^ {V(n), 7r{n +1)) by
simulation.

NUMERICAL RESULTS

We consider a continuous time queuing model for flow control in
communication networks as in [4]. A single bottleneck node is fed with two
arrival streams, one an uncontrolled Poisson stream and the other a
controlled Poisson process. Service times are assumed i.i.d., with
exponential distribution. We assume that the node has a buffer size B <co .
Given a constant T > 0, we assume that the continuous-time queue length
process {q^jy 0} at the node is observed every T instants and on the basis
of this information the controlled source tunes the rate at which it sends
packets so as to minimize a certain cost. Suppose q^ denotes the queue
length observed at time nT,n > 0. The controlled source thus sends packets
according to a Poisson process with rate /i^C^«) during the time interval
[nT,{n^-\)T'\. The rate is then changed to\{q^_^^) at instant {n^-\)T
upon observation of state q^^^ - we assume for the present that there is no
feedback delay. The aim then is to find a stationary optimal rate allocation
policy that minimizes the associated infinite horizon discounted cost. We
choose 5 = 50 and take the compact action set U{i) (where
X^{i) e U{i),\/i e 5') to be the interval [0.05,4.5]. The discount factor a
is 0.9.

The uncontrolled traffic rate Ä^ is chosen as 0.2 and the service rate //
for incoming packets is set to 2.0. For a system operating under a stationary

772 Mohammed Shahid Abdulla and Shalabh Bhatnagar

policy TT, we use the cost function K(q^,7r^ ^^n+i)-\^fi+\ " ^ / 2 | Note
that while the source rate chosen, yic(q„) = TT^ ,"does not directly enter into
the cost function above, it has an impact on the queue length q^^^ observed
T seconds later, which in turn affects the cost. A cost function of this type is
useful in cases where the goal is to simultaneously maximize throughput and
minimize the delay in the system.

The value of S needed in (6) is set to 0.1. We arbitrarily set the initial
value function iterate J^(0) = 0,V/e 5* and policy iterate as
^.(0) = 2.275, Vz e S for the proposed algorithm. The value of M needed
in (7) is taken to be 100. As a metric to characterize the convergence of all
algorithms, we measured a quantity erVy (n) at value function update n in
the following manner: erry {n) = max .̂ ^ I<̂ <5Q {\V^ (n) -V^{n- Ä:)|} .
Similarly, convergence in terms of policy is obtained using
err- (n) ~ max .̂ ^ j<̂ <50 {TT. (n) - n. {n-K)) The step-size sequences
{a(/7)}, {b{n)) and {c{n)) needed in (5), (6) and (7), respectively, were
chosen as a(0) = ^(0) = c(0) = 1 , a{n) = n-\b{n) = n'^\c(n) = z?"^''
respectively.

Convergence of the form erry{n) < 0.1 and err^(n) < 0.1 is achieved
within 150 and 300 updates of (5), respectively. In Figure la, we plot the
converged source rates for 7 = 5,10 and 15 respectively. Similarly,
converged value functions (using the erry criterion) are shown in Figure lb.
We observe that for given T, the source rates are inversely related to the
queue length values since the cost function imposes a high penalty for states
away from B/2. Further, the difference between the highest and lowest rates
decreases as T increases since for lower values of T, the controller has
better control over the system dynamics than when T is large.

Convergence for the classical value iteration algorithm (3) for
erry{n) < 0.1, is achieved within 100 V{n) updates for all T. The value
functions obtained therein are shown in Figure 2a, which match the
corresponding results of the proposed algorithm shown in Figure lb. We
made some modifications to U{i) in order to compute the transition
probabilities p(i,u^'),\/i,j e S,u eU(i) needed in the RHS of the
Poisson Equation ^ \ p(i,u, j)(K(i,u, j) + aVj(n)). The discrete action
set [/(/), Vz E iS, consists of actions spaced at roughly 0.005 within the
compact interval [0.05,4.5], thus making for |f/(z)| = 225,Vz e 5*. The
transition probabilities were computed in a method similar to that in [3]. On
a Pentium 4 computer, classical value iteration (for the above discretized set)
took 2 seconds whereas the proposed algorithm took 12 seconds (over the

Solution ofMDPs using Simulation-based Value Iteration 113

compact action set). This is due to the time required for simulating
transitions, and a faster simulator will bring such a comparison closer.

For purposes of comparison, we propose a variant of the algorithm in sec.
6.2 and 6.3 of [12] for the current situation of a look-up table. We first
present the algorithm and then its proposed variant to suit our framework.
The algorithm proposed in [12] simulates a single endless trajectory, i.e.
/̂7+i ~ Vn ̂ K 5 '^n (K)) ^^d updates a coefficient vector that helps approximate

the value function for each state i e S. This coefficient vector is r(n) e 5H^
where K « s , and the approximate value function is given by
V.{n) = (Or{n))(i),\/i e S . Here, the sxK matrix O consists of the
feature vectors ^(/), V/ e S as the rows and is of full rank. The / - th
element of the sx\ vector Or(n) is indicated by (Or(w))(/). Below is the
algorithm of sec. 6.2 of [12]:

^K(i„, u„ O;), /;,!) + a{Or(n))(i„^,)^

-(Or(nm„)
where the decision u^(i^) is the 'greedy' decision, i.e..

r{n +1) = r(n) + a(n)(/>(i^) (11)

^. 0 J = arg min ̂ ^^(^.)£{^(/;,w,//(/;, I/))+ a(Or(f7))^ (12)

Now, consider the value function iterates V(n) in place of the coefficient
vector r{n) in (11). Also make the feature vector ^(i),\/i e S equal to the
unit vector e. e ?l^, then the algorithm (11) reduces to:

V(n + l) = V(n) + a(n)\
X {^('̂' ̂ n (0. ̂ (h u^ (0)) + ^^;;(/,.„ (/)) {n))e,
/ = 1

where recall that u^ (/) is just the ;r. {n +1) in (4). Note that whereas (13)
requires u^{i) for all i^S , (11) uses only u^{i^ . Using the fact that
O'^O is the identity matrix, one can see that (13) is a variant for the more
recent algorithm for approximate fixed point computation given in [6] as
well, which employs a Kaiman filter approach. In most simulation based
settings, the term u^ (/) can only be identified by simulating transitions out
of / using all u G l]{i), possibly averaging over multiple transitions for the
same action u e [/(/) . Note that (13) corresponds to a stochastic
approximation implementation of the operator T, using the diminishing
stepsize a{n). In [12], sec. 6.3 suggests that a greedy selecfion like (12)
does not work in practice and exploration of f/(/) is employed. Further, [7]
theoretically formalizes this using a T^ operator which employs a
Boltzmann distribution to select u^(i^) from C/(/„) . We implement the

774 Mohammed Shahid Abdulla and Shalabh Bhatnagar

variant of the algorithm of [12], using the exploration suggested in [7], and
discretizing each U{i) into 45 equally spaced actions. The algorithm uses
a{n) = n~ and requires roughly 4000 updates and almost 800 seconds
in all cases of T for the V{n) vector to converge to erry{n) < 0.1. Figure
2b plots the value function iterates obtained after convergence.

Coma^d PoliciaE Corivvrgad Value Fuholbns

V..̂
- A ^

• ' • • \ , .

T= lOs
T==155 ^

X
\
^

— • -

^ ,

.̂
\

K,
' • ^ ^

K
\

<"'•>••..

\ ^

LNJ
^••>

V
^H"'-:.
-..̂

if 50
s

^ >

/ V'

^ .
^

v^-A
. y .

T = 1 0 B — —
T = l 6 s . . - • • •

A,

••vs

. • ' . / \ .

' " ^ ^ • ^

""J"'"

' v -

• • • - . . . • • • ' ' '* ' \..-T%."->^'-

- - ' " '%--^. .A

^A..

/ : ;

•' •«>- - .

,̂
• > / /

/

35 *> « 0 5 l6 . 15

Figure 1: Plots of (a) converged policies and (b) value functions

\

T=5s

T = I 5 E •

.Goh«rg«dVialu« Funclbip:Exao> Value teiaitoh

• ' • "

. . .^
/

....'-'/

130:

120

110

100

:..s
i 90

% 80

70

eo

so

^ T ^ J » ^

T = l 6 &

Gonye(gad.Value Functions

^«••••i.>„

..--...-̂ ~"~

..........

; — : - : . - 7 -

y^

25. 30 35

Figure 2: V iterates obtained using a) classical VI b) algorithm in [12]

ACKNOWLEDGEMENTS

This work was supported in part by Grant No.
SR/83/EE/43/2002-Engg from Department Of Science and
Technology, Government of India.

Solution ofMDPs using Simulation-based Value Iteration 115

REFERENCES

[1] Abdulla, M.S., and Bhatnagar, S. Reinforcement Learning Based Algorithms for Average
Cost Markov Decision Processes. Submitted.

[2] Bertsekas, D.P. Dynamic Programming and Stochastic Control, 1976 New York:
Academic Press.

[3] Bhatnagar, S., and Abdulla, M.S. Reinforcement Learning Based Algorithms for Finite
Horizon Markov Decision Processes. Submitted.

[4] Bhatnagar, S., and Kumar, S. A Simultaneous Perturbation Stochastic Approximation-
Based Actor-Critic Algorithm for Markov Decision Processes. IEEE Trans, on Automatic
Control, 2004, 49(4):592~598.

[5] Bhatnagar, S., et al., Two-timescale simultaneous perturbation stochastic approximation
using deterministic perturbation sequences. ACM Trans, on Modeling and Computer
Simulation, 2003, 13(4): 180-209.

[6] Choi, D. S., and Van Roy, B. A Generalized Kaiman Filter for Fixed Point Approximation
and Efficient Temporal-Difference Learning, Submitted to Discrete Event Dynamic
Systems.

[7] De Farias, D.P., and Van Roy, B. On the Existence of Fixed Points for Approximate Value
Iteration and Temporal-Difference Learning. Journal of Optimization Theory and
Applications, June 2000, 105(3).

[8] Konda, V.R., and Borkar, V.S. Actor-Critic Type Learning Algorithms for Markov
Decision Processes. SIAM J. Control Optim., 1999, 38(1): 94-123.

[9] Konda, V.R., and Tsitsiklis, J.N. Actor-Critic Algorithms. SIAM J. Control Optim., 2003,
42(4): 1143-1166.

[10] Singh, S., and Bertsekas, D. Reinforcement Learning for Dynamic Channel Allocation in
Cellular Telephone Systems. Advances in Neural Information Processing Systems (NIPS),
1997,9:974-980.

[11] Tsitsiklis, J. N., and Van Roy, B. Optimal Stopping of Markov Processes: Hilbert Space
Theory, Approximation Algorithms, and an Application to Pricing High-Dimensional
Financial Derivatives. IEEE Trans, on Automatic Control, 1999, 44(10): 1840-1851.

[12] Van Roy, B., et. al., A Neuro-Dynamic Programming Approach to Retailer Inventory
Management, 1997, Proc. of the IEEE Conf on Decision and Control..

