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Abstract: Due to the shortage of rough impHcation in [4] ~ [6], rough set and rough 
implication operators are redefined by using interval structure in [7], the 
shortages have been e improved. We have investigated the characteristics of 
the rough implication, and also point out that the good logic property of the 
rough implication in [7]. In this paper, we will study the algebraic properties 
of the rough implication in depth. 
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1. INTRODUCTION 

Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s ^̂ "̂ ^ 
is a new mathematical tool to deal with many problems such as vagueness, 
uncertainty, incomplete data and reasoning. Now there are lots of papers 
about rough logic idea and its abroad application ^̂ ~̂ ,̂ but some rough 
implication operators exist defects, for instance, B^ ^> A'' = A^> B doesn't 
hold in [4], A -^ A is not Theorem in [5,6], etc.. In order to eliminate those 
defects we redefine rough set system, and new rough operators such as 
intersection, union, complement and implication are expressed by using 
interval structure in [7]. The characteristics of this implication were 
investigated, and logic properties of rough implication were pointed out in 
[7], Further, we will study the algebraic properties of the rough implication 
in this paper. 
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2. ROUGH SET THEORY 

Definition2.1 Let C/be the universe set and R be an equivalent relation 
on U. A pair 

([/, R) is called an approximate space. If XQU is an arbitrary set, then 
two approximations are formally defined as follows: 

X = {x\xe U,[x]j^ ^X}, 'X = {x\xe U,[x]j^ nX^(f>} . 
Where [x]j^ is an_ equivalent class containing x. X_ is called lower 

approximation of X, X is called upper approximation of X The approximate 
set X lies between its lower and upper approximations: Z c X c X . 

We get -X^-X<^-X_, where, Z^U and -Z is the complement of Z 
i n ^ . _ 

Fo£ each A' c ^ , a rough set is a pair {X_,X). We denote the empty set cj) 
by<^,^) = (^,^), the universe set U by {U_,U) = {U,U) and the power set of 
U hy'^{u). 

Definition 2.2 Let ^ , 5 e '^{U)_^ the_inclusion relation of two rough sets is 
defined hy Ac: B if and only if ^ c 5 oxidA c ^ ; 

The equivalent relation oftwo rough sets is defined by 
A = B if and only if A = B and^ = ^ . 
Definition 2,3 The intersection of two rough sets A and B_is a rough set 

in approximate space, and is defined by AnB = {AnB, A nB), 
The union oftwo rough__set^is a rough set in approximate space, and is 

defined by AUB = (AKJB,'2U'B), 

The complement of 4̂ is a rough set in approximate space, and is defined 
by A'- = {-A-A), 

The pseudo complement of v4 is a rough set in approximate space, and is 
defined by A* = (-A,-A), 

W h e r e X ^ U , ~X is the complement ofXin U. 
Theorem 2.4 Suppose A,B e ^(U), then 
AnB = Ar\B, AnB^AnB; 
AUB-^AKJB, AUB = AUB . 

Proof Theorem 2.4 follows from [1] -- [3] and [8] -̂  [9]. 
Theorem 2.5 If y4̂  is the complement of 4̂ in U, ^* is the pseudo 

complement of y4 in U, then 
il)A' cA*; _(2)^**c^^*; {3)A'uA* = A\A'nA* = A'; 
(4) A'*' = A'"* = {-A-A); (5) A''* = A''* = .4*** = A^^' = A*'' = A*; 
(6)A''' =A'; (7)A'*'*=A'\ 
Proof Theorem 2.5 can be proved easily from Definition 2.3. 
Theorem 2,6 Let A, Be "^(U), then, 
(AnBY =A' uB'; (AuB)' =A' nB'; 
(AnB)* =A* ^B*; {AuB)* = A* r\B*. 
Proof Theorem 2.6 is easy to be proved by Definition 2.3. 
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3. ALGEBRAIC PROPERTIES OF ROUGH 
IMPLICATION 

We redefine the implication operator in [7], which to improve the 
shortage of 

rough implication in [4]~[6]. In this section, we will directly cite the 
definition implication operator -^ , and will investigate its algebraic 
properties. 

Definition 3.1 Let mng {cp) = <4,7) , mng{y/) = (B,^) , mng(ß) = {Q,C) , 
and mng is a bijection, for any p,y/, ßfi,\ e P , we have 

mng{(pAi//) = {AnB,AnB); mng{(pvi//) = (AKJB,AuB); 
mng((p') = (-A,-^); mng((p*) = (-A,-A)j, mng{0) = <<zJ,̂ ); 
mng{(p'') = {A, A); mng{(p''') = (-A-A); mng{l) = {U,U). 
(cpVxpY ̂ cp' Ay/' \ {(pAy/Y =(p' wy/"^ \ (cpvy/)* =(p* Ay/*; 

/ \ * * * C*C C** CCC C 

{(pAy/) =(p vy/ \ (p''=(p' ; ^ccc^^c^ 
cp'*'* = cp'*; cp''* = cp*'* = (p*** = ^**' = (p*'_^ =p\ 
mng{(p -^y/) = mng{(p'' vy/v{(p* A y/'*)) = (-A u ^ u (5 n -A), -A u B) 

(I) 
Theorem 3.2 ( P , V , A / ,0,1) is a boundary lattice. 
Proof Theorems.2 is easy to prove from definition 3.1 and [7]. 
Theorem 3.3 Le t^ ,^ e ^(U), the following are equivalent: 
(1) A ^ B = (-lu B_u (B n-Al-Au^)_; 
(2) A-^ B = ({-A u 5) n (-A u B)-A u B). 
Proof. Theorem 3.3 is easy to be proved from (I). 
Proposition 3.4 Suppose (P,V,A,^ ,0,1) is called a boundary lattice which 

is inverse ordered involution, and -^ is rough implication operator, the 
following are satisfied: 

(lA.l) <p-^(y/->ß) = y/->(p-^ß) (IA.2) ^ - > ^ = 1 
(IA.3) (p-^y/ ^y/"" ^(p"" (IA.4) ii (p -^y/ =y/ -^(p ^\, then 

(p=y/ 
(IA.5) 

(pwy/-^ß = {(p-^ß)A{y/^ß) (IA.6) (pAy/^ß = {(p-^ß)\/{y/-^ß) 
Proof. The formulas can be proved by Theorem 3.3 and (I). 
Proof of {IAÄ) 
^ -^ (y/ ̂  ß) = cp' V(y/ -^ ß)v((p* A(y/ -^ ßY*) 
= (p'v(y/'vßv(y/* Aß'*))v((p* A(y/'vßv(y/* Aß'*)y*) 
= (p'vy/'vßv(y/* Aß'*)v((p* A(y/* vß'* v(y/* Aß'*))) 
= (p' vy/' Vßv(y/* Aß'*)v((p* Ay/*)v((p* Aß'*)v{(p* Ay/* Aß'*) 
y,-^(cp-^ß) = y/'v((p-^ß)v(y/*A{(p-^ßr) 

= y/' V {(p' V ß V ((p* A ß'*))v (y/* Ai(p' V ß V ((p* A ß'*)y*) 
= y/'v(p'wßv{(p*Aß'*)v(y/*A((p*vß'*v((p*Aß'*))) 
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= y/^ w (p^ w ß w {(p* A ß^* )v(y/* A(p*)v(y/* Aß^*)'^(y/* A(p* Aß^*) 
= (p^ vy/^ Vßv{y/* Aß^*)v(cp* Ay/*)v((p* Aß^*)v((p* Alf/* Aß^*) 

Hence, cp -^ {y/ -^ ß) = y/ -^ {cp ^ ß) 
Proof of (IA2) Obviously, cp ^cp = \ 
Proofof(LA3) 

(p^ -^y/^ = (p^^ wy/^ ^((P^* ̂ ¥^^*) = ¥^ v^v(^^* A ^ ^ * ) 
y/ -^ (p-y/^ w (pw {y/* Acp^*) 
Hence, cp -^ y/ ~ y/^ -^ cp^. 
ProofofilAA) 
Because of A_-^_B = ((-J_uB)n(-AuB)-AuB) ^A-^B = U iff 

A-^B = ((-AuB)n(-AuB),-AuB> = (UU) iff - A u B = U,-AuB = U-AuB = U 
iff A^B and A^B iff Ac: B . 
Analogously we have B -^ A = U iffBcA. 
Hence, (IA.4) is proved. 
Proofof{lA,5) 
(cp~^ß)A(y/-^ß) = (cp'vßv((p*Aß'*))A(y/'vßv(y/*Aß'*)) 

=^i(p' Ay/'')v((p' Aß)v{(p' Ay/* Aß'*)v(ßAy/')vßv{ßAy/* Aß'*) 
V(^* Ay/' Aß'*)v(ßA(p* Aß'*)v((p* Al//* Aß'*) 

= (cp^ Ay/^)w ß\/{(p* Ay/* Aß^*) 
((p Vy/) -^ß = ((pvy/f Vßv(((pvy/y Aß''*) = (<p'' Ay/'')vßv((p* Ay/* Aß""*) 

Hence,cp wy/ ^ ß = {cp ^ ß) Aiij/ ^ ß). 
ProofofilA.e) 
{(pAy/)-^ß=((pAy/yvßv{{(pAy/)*Aß'*)=((p'vy/)vßv{(^*vy/*)Aß'*) 
= ((p'vy/')vßv(^*Aß'*)v(y/*Aß'*) 

i(p-^ß)v(y/-^ß) = {<p'vßvicp*Aßn)v{y/'vßv{y/*Aß'*)) 
= ((p' vy/')vßv(cp* Aß'*)v(y/* Aß'*) 
Hence,^ Ay/ ^ ß = (cp ^ ß)v(y/ ^ ß). 
The poor is complete. 
Proposition 3.5 Suppose (P,V,A,' ' ,0,1) is called a boundary lattice which 

is inverse ordered involution, and -> is rough implication operator which is 
expressed by interval structure, then ((p ^^y/)-^y/ ^{y/ ^(p)-^(p 

Proof 
{(p->y/)-^y/= ((p^ vy/\/((p* Ay/^*)f \/y/\/{{qf vy/v{(p* Ay/^*))* Ay/^*) 

= {(pAy/^ A{(p*^ Vy/^*^))vy/v{(cp^* Ay/* A{cp** vy/^**))Ay/^*) 
={(pAy/ A(p*'')v((pAy/ Ay/*'')vy/v(fff* Ay/ Acp* Ay/*)v(gf* Ay/ Ay/** Ay/*) 

= (y/^ A (p*^ )v((pA y/^*^) V ^ V (ij/* A (p** A y/^*) 
Analogously,{y/-^(p)^>(p = {(p^ Ay/*^)w{y/Aqf*^)\/(p\/((p* Ay/** Aqf*) 
Hence, {cp -^y/)^y/ ^{y/ -^(p)-^(p (except for^ = ̂  )• 
Remark If (P,V,A,'^ ,0,1) is lattice implicative algebra f̂ ~̂̂^̂, then it is 

satisfied Proposition 3.4 (lA.l) - (IA.6) dinA{x-^ y)-^ y = {y ^ x)-^ x . 
Since the equivalence of lattice implicative algebra is normal F/-algebra^^^' 
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^'^\ the operator -> is not satisfied (x^ y)-^ y = (y-^ x)-> x . Hence, 
(P,V,A/ ,0,1) is not lattice implicative algebra, but it is F/-algebra^'^' ^'^\ 

4. CONCLUSION 

The study of rough implication operators is the emphasis and difficulty in 
the field of rough logic. Due to definition the shortages of the rough 
implication operator in [4] ~ [6], we can not imply B^ -^A^ =A-^B in [4], 
i.e. the inversely negative proposition and original proposition are not 
equivalent, and A->A isn't Theorem in [5, 6], etc... We redefine the rough 
intersection, rough union, rough complement and rough implication operator 
from the view of interval structure, which their relations and properties have 
been investigated in [7]. In this paper, we_study the algebraic properties of 
the rough implication in a deep way, and also point out that (P,V,A,^ ,0,1) is 
not lattice implicative algebra, but it is F/-algebra, because the formula 
(x^ y)-^ y = (y -^ x)-^ X doesn't hold. 
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