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Abstract: Due to the shortage of rough implication in [4] ~ [6], rough set and rough
implication operators are redefined by using interval structure in [7], the
shortages have been ¢ improved. We have investigated the characteristics of
the rough implication, and also point out that the good logic property of the
rough implication in [7]. In this paper, we will study the algebraic properties
of the rough implication in depth.
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1. INTRODUCTION

Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s !,
is a new mathematical tool to deal with many problems such as vagueness,
uncertainty, incomplete data and reasoning. Now there are lots of papers
about rough logic idea and its abroad application "%, but some rough
implication operators exist defects, for instance, B - 4° = 4 — B doesn’t
hold in [4], A > A is not Theorem in [5,6], etc.. In order to eliminate those
defects we redefine rough set system, and new rough operators such as
intersection, union, complement and implication are expressed by using
interval structure in [7]. The characteristics of this implication were
investigated, and logic properties of rough implication were pointed out in
[7]. Further, we will study the algebraic properties of the rough implication
in this paper.
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2. ROUGH SET THEORY

Definition2.1 Let U be the universe set and R be an equivalent relation
on U. A pair

(U, R) is called an approximate space. If X c U is an arbitrary set, then
two approximations are formally defined as follows:

={x|xeU,[x]z € X}, X ={x|xeU,xlg X =4}.

Where [x]; is an equivalent class containing x. X is called lower
approximation of X, X is called upper approximation of X. The approximate
set X lies between its lower and upper approximations: Xc X c X.

We get —-X c—-Xc—-X, where, Zc U and —Z is the complement of Z
inU .

For each X c U, a rough set is a pair (X, X) . We denote the empty set ¢
by (¢, #> = (¢,¢) , the universe set U by , Uy =(U,U) and the power set of
U by®R(U).

Definition 2.2 Let 4, B € R(U) , the inclusion relation of two rough sets is
definedby 4& B ifandonlyif Ac B and4c B;

The equivalent relation of two rough sets is deﬁned by

A=B ifandonlyif 4 =B and4=B.

Definition 2.3 The intersection of two rough sets A and B is a rough set
in approximate space, and is definedby ANB=(4"B,ANB),

The union of two rough sets is a rough set in approximate space, and is
definedby AUB=(4UB, AUB),

The complement of 4 is a rough set in approximate space, and is defined
by A =(-A-4),

The pseudo complement of 4 is a rough set in approximate space, and is
defined by 4" =(-4,-4),

Where X c U, ~X is the complement of X' in U.

Theorem 2.4 Suppose 4, B € R(U), then

ANB=ANB, AnBC ANB;

AUB>AUB, AUB=AUB.

Proof. Theorem 2.4 follows from [1] ~ [3] and [8] ~ [9].

Theorem 2.5 If A° is the complement of 4 in U, 4" is the pseudo
complement of 4 in U, then

(N A c A, (4™ c A7 B)A° U =A" A A" = A,
(4)Ac*c AL** _( A A> ; (S)Acc* - A*c* — A*** - A**c - A*cc - A*;
(6)Accc c; (7)Ac*c* = 4°* . !

Proof. Theorem 2.5 can be proved easily from Definition 2.3.
Theorem 2.6 Let 4,B € R(U), then,

(AN B) = A° UB*, (AU B)‘ = A° N B°,;

(ANB) =4"UB"; (AuB)' =4"NnB".

Proof. Theorem 2.6 is easy to be proved by Definition 2.3.
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3. ALGEBRAIC PROPERTIES OF ROUGH
IMPLICATION

We redefine the implication operator in [7], which to improve the
shortage of

rough implication in [4]~[6]. In this section, we will directly cite the
definition implication operator — , and will investigate its algebraic
properties.

Definition 3.1 Let mng (¢) = (4, 4) , mng(w) ={(B,B) , mng(B)=(C,C) ,
and mng is a bijection, for any ¢,y, 5,0,1 € P, we have

mng(p Ay) = (Ar\B ANB)Y; mng(¢7\/l//) (A4UB,4UB)Y;
mng(p)=(-4,-4); mng(p’)=(-4,-4); mng(0) = {¢,4);
mng(p") = (4, A4); mng(p*) = (-A,-Ay;  mng(l)=U,U).
(pvv) =0 AySs  (pAp)S —(p'vu/ s (ovy) =9 Ay’

(pry) =p vy’ (/J ¢”*; P =9°;
(oc*c* Z(DC*; (DCC = ¢ - ok — ke — *ee — ¢* .

mng(p —> )= mng(¢ vy v (@' Ap) =(~AUBU(BN-4),-4UB)
)

Theorem 3.2 (P,v,A,°,0,1) is a boundary lattice.

Proof. Theorem3.2 is easy to prove from definition 3.1 and [7].

Theorem 3.3 Let 4, B € R(U) , the following are equivalent:

(1) 4> B= (—AuBu(Bm A),-AV B);

2)A> B={(-AVB)Nn(—AUB), —AUB).

Proof. Theorem 3.3 is easy to be proved from (I).

Proposition 3.4 Suppose (P,v,A,°,0,]) is called a boundary lattice which
is inverse ordered involution, and —» is rough implication operator, the
following are satisfied:

dA1) o> W > P =y—>(@—>p (IA2) ¢—p=1

(IA3) o>y=y° >o° (JA4) if o sy =y >¢=1, then
p=y

(IA.5)

vy > =(@->Pnly =) (A6) oAy > B=(p—> V(Y —>B)
Proof. The formulas can be proved by Theorem 3.3 and (I).
Proof of (1A.1)
P> P =0 vy > BV Ay - p)T)
=@ v VBV ABTNVI(R AWV BV AL
=0 VYU VBV ABTIVQ AWV BTV ALY
=@ vy v BV ABTIVQT AUV ABTYIV(Q AT A BT
v (- B=vivip-> v rle- BT)
=y V(@ VY@ ALV ARV BV (9T A BT
=y vtV BV(@ ABTIVIW AV BT V(0" ABTY))
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=y vtV BV ABIVW ARV ABT)VW AT A BT
= vtV BV ABTIV@ AP V(0T ABTIV(P AT ABT)
Hence, ¢ > —» f)=v = (@ - f)

Proof of (1A.2) Obviously, ¢ ¢ =1

Proofof (1A.3)

P Dy =0 vyt V(T Ay )=y vov iy ApT)

yo o=y vovy ApT)

Hence,p >y =y ¢ - ¢°.

Proofof (1A.4)

Because of A—>B={((-AUB)N(-AUB)-AUB) A—B=U iff
A —B={(-AUB)N(~AUB),~AUB)=(U,U) iff —~AUB=U,~AUB=U,~AUB=U

iff AcB and AcB iff AEB.

Analogously we have B—»> A=U iff B& 4.

Hence, (IA.4) is proved.

Proof of (IA.5)

(9= B)Aly = B =9 VBV (@ ABNAWE Y BV ABT))
=@ AYIWV(@ AB)YV(P AY ABIVBAYINV BV (BAY AST)

V(@ A ABTIV(BAQ ABTIV(Q AW ABT)

= (@AY V(P Ay ABT)

@vy) > f=(pvy) VvBv{evy) A7) = (¢ Ay*)V BV (9" Ay ABY)

Hence,p vy = =@ > Iry = ).

Proof of (1A.6)

@A) B=@AWF VBV (@AWY A= VWV BV (P VI A BT

=@ VYOIV BV(Q ABIVY ALT)

(o> BV > B =@ VBV@ AB NV VBV ABTY)

=@ VYOIV BV(@ ABTYIVWT ALY

Hence,p ny = =@ > B)viy — B).

The poor is complete.

Proposition 3.5 Suppose (P,v,A,°,0,1) is called a boundary lattice which
is inverse ordered involution, and — is rough implication operator which is
expressed by interval structure, then (¢ s w) >y =2y > 9)>@

Proof.
(@) >y =@ vuv(@ Ay vv(@ v v(e AT Ay

=@ Ay AP VYDV V(0T AT AT V) AT

=AY AP WA AN WYV(ET AY AQT AW A AP AW
=W AP WV eAY )V AP ApT)

Analogously, (¥ = ) > ¢ = (" Ay )V AT )vov (e  ay™ ApT)

Hence, (¢ s y) > w = > @) > ¢ (except forp =y ).

Remark If (P,v,A,°,0,]) is lattice implicative algebra (M-131" then it is
satisfied Proposition 3.4 (IA.1) ~ (IA6) and (x > y) > y=(y > x)—>x .
Since the equivalence of lattice implicative algebra is normal Fl-algebra "
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'l the operator — is not satisfied (x - y) - y=(y = x) > x . Hence,

S(P,v,A,0,1) is not lattice implicative algebra, but it is Fl-algebra " 4.

4. CONCLUSION

The study of rough implication operators is the emphasis and difficulty in
the field of rough logic. Due to definition the shortages of the rough
implication operator in [4] ~ [6], we can not imply B® — 4° =4 — B in [4],
i.e. the inversely negative proposition and original proposition are not
equivalent, and A—A isn’t Theorem in [5, 6], etc... We redefine the rough
intersection, rough union, rough complement and rough implication operator
from the view of interval structure, which their relations and properties have
been investigated in [7]. In this paper, we_study the algebraic properties of
the rough implication in a deep way, and also point out that (P,v,A,°,0,]) is
not lattice implicative algebra, but it is Fl-algebra, because the formula
(x> y)—> y=(y = x)—x doesn’t hold.
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