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Abstract: Median filter is well known for removing impulsive noise and preserving 
edges. Repeatedly filtering of any one-dimensional signal with a median filter 
will produce a root signal. Any impulses in the input signal will be removed by 
sufficient number of passes of median filter, where any root like features in the 
input signal will be preserved. A signal of finite length will be filtered to a root 
signal after a finite number of passes of a median filter of a fixed window, 
results in the convergence of the signal. In this paper, root signal and its 
properties are analyzed for One-dimensional signal. Adaptive length median 
filter, weighted median filter, FIR hybrid median filter and Linear combination 
of weighted median filter have been taken and their root signals are obtained. 
Their performances are analyzed by determining Power spectrum density, 
Mean square error and Signal to noise ratio. 
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1. INTRODUCTION 

Impulse noise occurs frequently in image processing [11]. It may be 
caused by transmission channel error (e.g., binary symmetric channel noise), 
sensor faults, edge sharpening procedures, engine sparks, ac power 
interference and atmospheric electrical emissions. Due to the strong 
amplitude of impulse noise, human visual perception is very sensitive to it 
and the removal of such noise is a important issue in image processing. 

Linear filters have poor performance in the presence of noise that is not 
Additive. If a signal with sharp edges is corrupted by high frequency noise, 
however, as in some noisy image data, then linear filters designed to remove 
the noise also smooth out signal edges. In addition, impulse noise cannot be 
reduced sufficiently by linear filters. 

A nonlinear scheme called 'median filtering' has been used with success 
in these situations. Some interesting results and analyses for median filters 
have been obtained recently [11]. 

The success of median filters is based on two intrinsic properties: 
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1. Edge preservation. 
2. Efficient noise attenuation with robustness against impulsive noise. 
A median filter maps a class of input signal into an associated set of root 

sequences. 

2. ROOT SIGNAL AND ITS PROPERTIES 

Repeated application of the median filter on a defined signal of finite 
length ultimately results in a sequence, termed a root signal, which is 
invariant to additional passes of the median filter [12]. 

The characteristics of root signals are based on the local signal structures, 
summarized for a median filter with window size W=2N+1, as follows: 

> A Constant neighborhood is a region of at least N+ 1 consecutive 
identically valued sample. 

> A Edge is a monotonically rising or falling set of samples surround 
on both sides by constant neighborhood of different values. 

> An Impulse is a set of at most N samples whose values are different 
from the surrounding regions and whose surrounding are identically 
valued constant neighborhoods. 

> An Oscillation is any signal structure which is not a part of constant 
neighborhood, an edge or an impulse 

> A root is an appended signal which is invariant under filtering by 
particular median filter. 

A filter is said to be idem potent if its output signal converge to a root in 
only one pass of the filtering process for any input signal. The root signal 
retains the spatial characteristics of the input signal, such as edges, while at 
the same time; it deletes redundant impulses and oscillations (which are 
defined above). 

Since the output of the median filter is always one of its input samples, it 
is conceivable that certain signal could pass through the median filter 
unaltered. A filter is said to be 'idem potent' if its output signal converge to a 
root in only one pass of the filtering process for any input signal. The root 
signal retains the spatial characteristics of the input signal, such as edges, 
while at the same time; it deletes redundant impulses and oscillations (which 
are defined above). 

The analysis of the root signal can be explained by taking binary signals 
and the theory can be extended to multilevel signals and two-dimensional 
image. For a window of width 2N+1, any signal of length L will converge to 
a root i /. -" 2 

2{K -t- 2) 

It is obtained by considering binary signals first, then extending it to 
multi-level signals via the threshold decomposition (Peter 1986). For N>1, 
this bound is much lower than the 
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The inverse dependence on the window width that appears in this 
convergence bound allows limiting operations to be performed. Slow 
convergence of binary signal into a root signal. 
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Figure 1. Slow convergence of a binary signal 

3. PRINCIPLES OF SEVERAL TYPES OF 
MEDIAN FILTERS 

In this section the principles of several types of median filters are 
discussed. The root signal for the filters discussed is analyzed in the next 
section. Their performances are analyzed by determining Power spectrum 
density, Mean square error and Signal to noise ratio. 

Weighted median filter 
The weighted median filter is a extension of median filter which gives 

more weights to some values within the window. For a discrete time 
continuous valued input vector X = [Xj, X2, X3... X N ] , the output Y of the W M 
filter of span X associated with the integer weights W= [Wi, W2, W3... W N ] ] 
is given by, 

Y = MED[W, 0 Xi, W2 0 X2, W N 0 X N ] 
Where M E D {,} denotes the median operation and 0 denotes duplication, 

i.e., 
K times 

K O X = ( X, , X . ) 
FIR Hybrid median filter 
A new class of generalized median filters, which contain linear 

substructures. The root signals types as well as the noise attenuation 
properties of these FIR median hybrids (FMH) filters are similar to those of 
the standard median filters. The F M H filters require, however less 
computations than the standard median filters [10]. 

The simplest F M H filter is the averaging FMH filter consisting of two 
identical averaging filters. 

k k 
Y(n) - M E D [(1/k) S x (n - l ) , s(n) , ( l /k)E x(n+l ) ] 
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i=l i= l 
Linear combination of weighted medians 
A class of linear combination of weighted median (LCWM) filters that 

can offer various frequency characteristics including LP, BP and HP 
responses. The scheme is modeled on the structure and design procedure of 
the linear-phase FIR HP filter. 

Design procedure for the LCWM filter: 
Design an N-tap prototype FIR filter h using frequency specifications. 
Choose a weight vector w of the M-tap SM sub filter (smoother)(M<N). 
Using the row-searching algorithm, find BN,M and convert it into Bp. 
Using SSP's and 1/Ms, transform Bp into B. 
Using alpha = h*B'̂  
Adaptive median filter 
Median filters employing adaptive length algorithms, based on noise 

detection, exhibit improved performance for impulse noise removal. The 
detection algorithm is fundamentally different from other commonly used 
adaptive or threshold algorithms, which are based on statistical parameters 
and /or edge detection, and which seen les suitable for impulse noise 
smoothing. Impulse noise generally has a lower probability of occurrence 
and a considerably higher probability for large amplitude. A smooth region 
with impulse noise, and an edge with smaller amplitude, is difficult to 
recognize from some simple statistical parameters. To detect impulse noise 
deterministically thus seems a more proper procedure. The algorithm is 
insensitive to specific threshold values, and its realization is feasible and 
efficient. One dimensional median filters can be used to remove either 
positive or negative impulse noise of low density. Such filters can achieve 
quite good performance with very efficient realizations [1]. 

4. ALGORITHM FOR THE PERFORMANCE 
ANALYSIS OF THE FILTERS 

1. A signal is generated which contains proper edges, constant regions and 
randomly variably noise. Such a signal is termed as 'test signal'. 

2. The generated test signal is allowed to pass through the designed filters 
like Adaptive median filter. Weighted median filter, FIR hybrid median 
filter and Linear combination of weighted medians . 

3. The time domain and frequency domain model of the signal is plotted. 
4. The output signal of the respective filters are repeatedly passed through 

the same filter. Root signal is determined for each type of filter. 
5. Frequency domain model of the root signal is plotted for each output. 
6. Next, the mean square error, power spectrum and signal to noise ratio 

are calculated, by varying the intensity of the noise. 
7. The performance is analyzed from the values obtained above. 
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5. ROOT ANALYSIS OF SEVERAL TYPES OF 
FILTERS 

The signal that is invariant to subsequent passes is said to be root signal. 
The performance analysis is done by determining the root signal for each 
type of filter. A common test signal is generated and the signal is allowed to 
pass through several types of filters repeatedly to get the root signal. The 
root properties for Adaptive median length, Weighted median filter, FIR 
Hybrid median filter and Linear Combination of weighted median are 
analyzed below. 

From the spectrum of the outputs of the test signal, the shape of the root 
signal is same. It is seen from the results in table 1, table 2 the information 
carried by the original Signal retained Adaptive length median compared to 
the weighted medians. 
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Figure 3. Figure(c),Figure(d) 
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Results of the test signal: (a) Model test signal, (b) Spectrum of original 
signal, (C). Spectrum for root of Adaptive median, (d) Spectrum for root of 
Weighted median 

Results of the Sinusoidal signal: (a) Spectrum of original signal . (b) 
Spectrum of corrupted signal. (C). Specturm for root of Adaptive median, (d) 
Spectrum for root of Weighted median Similarly the analysis is carried for a 
test signal. The root signal is determined for the test signal. The analysis is 
extended to two dimensional image. The root signal is determined for 
Adaptive median filter. The results are not satisfactory, blurring of the image 
is seen. This can be improved by new class or some recent modification in 
the Adaptive median filter. 

The signal is not converged to a root for the case of a LCWM and FMH 
filter. The reasons are discussed below. The FMH filter discussed here is a 
averaging type filter. Hence the impulses are not completely removed but 
they are reduced to a average value. Repeated filtering with a FMH filter 
does not removes the oscillations, but averages the oscillations. The LCWM 
filter discussed here is a band pass filter with a frequency range of 0.32 to 
0.7. Repeated filtering of the filter continuously eliminates the frequency 
range other than the prescribed. So the signal does not converge to a root. 

Table L Results of test signal for Adaptive length Median filter. 

NOISE 

POWER 

0 

1 

2 

3 

4 

ITERATION I ] 

MSE 
0.28330 

0.1774 

0.1158 

0.0983 

0.0612 

PSNR 
8.4932 

9.2981 

9.3622 

10.0755 

15.0448 

TERATION 

MSE 
0.2981 

0.1776 

0.1529 

0.1017 

0.0804 

[ II 

PSNR 
8.2719 

9.2932 

8.1526 

9.99255 

13.8580 

Table 2. Results of test signal for Adaptive length Median filter 

NOISE 

POWER 

0 

1 

2 

3 

4 

ITERATION I 

MSE 

0.2850 

0.1738 

0.1454 

0.1131 

0.0808 

PSNR 

8.4680 

9.3876 

8.3745 

9.4636 

13.8770 
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Figure 4. Figure(a),Figure(b) 
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CONCLUSION 

In this project the root analysis for several types of filters like adaptive 
length median filter, fir hybrid median filter, weighted median filter and 
linear combination of weighted medians is performed. The root signals are 
obtained for one-dimensional signal of adaptive median filter and weighted 
median filter. For the case of FIR Hybrid median and Linear combination 
of weighted median, the input signal is not converged to root signal, the 
reasons were discussed. The root performance are compared from the 
results of mean square error, signal to noise ratio and power spectrum 
density. 
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