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Leukemia inhibitory factor (LIF) is a cytokine that exerts pleiotropic activities. LIF
is a member of the interleukin-6 family of cytokines which share a similar receptor
complex and signal through the gp 130 receptor subunit. Several neoplastic cells
originating from various tissues express either LIF, its receptor, or both and respond
to this cytokine. Data accumulated thus far provide a complex picture of LIF
activities with LIF being stimulatory, inhibitory or having no effect, depending on the
system in which it is studied. LIF appears to play an important role in stimulating the
growth of certain tumours, and in affecting the surrounding tissue and the target
organ of tumour metastases, particularly bone and skeletal tissue. Overproduction of
LIF is likely to have significant constitutional effects. Studies using animal models
have shown that LIF induces cachexia, metastatic-type bone calcifications,
thrombocytosis, and an abnormal immune response. It is therefore possible that
suppression of LIF activity might have a beneficial effect in some cancer patients.

1. INTRODUCTION
Leukemia inhibitory factor (LIF) is a

pluripotent cytokine with pleiotropic
activities. LIF is a member of a family of
cytokines that includes the ciliary
neurotrophic factor (CNTF), interleukin
(IL)-6, IL-11, oncostatin-M (OSM), and
cardiotropin-1 (1,2). These cytokines are
grouped as a family because of their
shared helical bundle structure (3-7),
shared subunits of their receptor
complexes, and in some cases,
overlapping functions (8,9). As other
members of this family, LIF can either

induce proliferation, inhibit proliferation
or cause apoptosis, depending on the
system in which this cytokine is studied.
Several studies have shown that LIF’s
divergent physiological effects have been
adopted by a variety of neoplastic cells
and that LIF takes part in the
pathophysiology of cancer. In many
neoplasms LIF, produced by either normal
tissue or tumour cells, provides the
cancerous process with growth and
survival advantage.

LIF was initially characterized by its
ability to induce differentiation of the
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murine myeloid leukemia cell line M1
(10-15) and was cloned from a murine T-
cell library (12,16). Independently, a
human molecule in the supernatant of T-
cell clones was identified and termed
human interleukin for DA cells (HILDA)
(17-20). Once cloned, this molecule was
found to be homologous to its murine
counterpart (21-23). Subsequently,
additional characteristics of LIF were
described, and it was given several other
names, including differentiation factor (D-
factor) (24-25), differentiation-inducing
factor (DIF) (26), differentiation
inhibitory activity (DIA) (27),
differentiation-retarding factor (DRF)
(27,28), hepatocyte-stimulating factor III
(HSF III) (29), melanoma-derived
lipoprotein lipase inhibitor I (MLPLI)
(34), cholinergic neural differentiation
factor (31), and osteoclast-activating
factor (OAF) (26,32) (Table 1). However,
because LIF exerts a broad spectrum of
activities and despite its diverse and
sometimes opposing effects on different
leukemia cell lines (21,26,27,29,32,33-
35), LIF has become the official name of
this cytokine (1).

The effects of LIF on various tissues
provide several clues to its possible role in
cancer. For example, LIF stimulates
embryonic stem cell proliferation (36-40).
It affects blastocyst implantation (36-41)
and influences the development of
peripheral nerves from their precursors in
the embryonic neural crest (32,42), which
implies that LIF can stimulate immature
cells and probably tumour cells with
immature cell characteristics. In addition,
LIF was shown to induce a catabolic state

and cachexia in nude mice and in primates
(43-45). It stimulated the release of acute-
phase proteins from hepatocytes, (45-47)
and affected bone metabolism by inducing
both osteoblastic and osteoclastic
activities (48-52). These effects are
characteristic clinical features of patients
with neoplastic diseases likely to be
induced by various cytokines including
LIF.

In this chapter we describe the
physiological characteristics and the
pathophysiological role of LIF in cancer
and cancer metastasis.

Abbreviations: LIF, leukemia inhibitory factor; LIFR, LIF receptor; TNF, tumour necrosis factor;
AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; OSM, oncostatin M; IFN,
intrerferon; IL, interleukin; IFN, interferon, CNTF, ciliary neurotrophic factor; CFU, colony
forming unit; MM, multiple myeloma; TGF, transforming growth factor; G-CSF, granulocyte
colony-stimulating factor; HSF, hepatocyte stimulating factor; SP, neuropeptide substance P; CNS,
central nervous system
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2.2 Structure and Genetics
Naturally occurring LIF appears as a

monomeric glycoprotein with a molecular
weight is between 40 and 70 kDa despite a
polypeptidic core of 22 kDa (3,21,58).
This is due to the presence of several
putative sites of N-glycosylation in the
primary structure of the molecule
allowing extensive post-translational
modifications (29).

2. MOLECULAR AND CELLULAR
CHARACTERISTICS

2.1 LIF Distribution in Cells
LIF is expressed in cells of different

tissues, including osteoblasts,
keratinocytes, thymic epithelium, T cells,
monocytes, skin fibroblasts, embryonic
stem cells, bone marrow stroma cells,
central nervous system cells, hepatocytes,
and a number of tumour cell lines that
have become a source for this cytokine
(1,20,21,26,37,53-57) (Table 2).
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LIF is encoded by genes localized at
chromosome 11A1 in mice and
chromosome 22ql2 in humans (59,60).
Although the location of the human gene
and the high incidence of a translocation
involving t(11;22)(q24q12) in Ewing’s
sarcoma stimulated considerable interest,
further analysis using somatic cell hybrids
and pulse-field gel electrophoresis has
shown that the gene is located distal to the
breakpoint and is not involved in this
translocation (61).

The sequences of cloned LIF genes
from four mammalian species are highly
conserved in the coding regions (62,63).
Murine and human LIF have the complete
nucleotide sequence of 8.7 and 7.6
kilobase pairs, respectively (12,14,16,
64,65). Both genes consist of three exons,
two introns, and an unusually large 3’-
untranslated region that is 3.2 kilobase
pairs (65). The LIF transcript is 4.2
kilobases in length and predicts a
sequence with 179 residues for the mature
protein and a 79% homology between the
murine and human products (12,14,64).
This is the primary and biologically active
form of LIF. The promoter region of the
LIF gene contains four highly conserved
TATA elements, with two identified start
sites of transcription (62). Three regions
within the 5’ flanking region have been
identified as important to the function of
the LIF promoter (21,62).

The structure of LIF has been
determined (66). The main chain fold
comprises four α-helices linked by two
loops. There are two regions of the LIF
molecule involved in receptor interaction
and biological function. The first is
located within the D helix and comprises
residues 161-180, and the second is
located between residues 150 and 160 at
the C-terminus of the CD loop.

2.3 Biological Forms of LIF
Two forms of LIF were detected: the

“diffusible” (D) LIF glycoprotein and an
“immobilized” (M) form incorporated into
the extracellular matrix (67). Both D- and
M-LIF forms are produced by the
expression of alternative transcripts that
diverge throughout the first exon and use
different promoters. The two LIF forms
are encoded by mRNAs that are spliced
differently at the exon 1/exon 2 boundary.
The transcript D encodes the diffusible
form and the transcript M encodes the
matrix-associated form. Splicing a 5’ exon
to exons 2 and 3 of the LIF transcription
unit produces the latter. The two
transcripts co-migrate on agarose gel and
therefore can be distinguished by
ribonuclease protection analysis but not
by Northern blot analysis. The molecular
organization of the gene for LIF can
explain the different localization of its two
forms. Exons 2 and 3 produce the core
hydrophobic secretory sequences, whereas
the extracellular localization is determined
by the first exon. Therefore, changes in
the amino terminal of the translocation
product direct the formation of a mature,
functional LIF with extracellular matrix
localization (reviewed in 1 and 2).

Although the reported molecular
weight of LIF ranges from 38 to 67 kDa,
this heterogeneity can be explained by
variable glycosylation of the protein
(35,64). Recombinant forms of LIF
displaying varying patterns of
glycosylation (yeast-derived and
Escherichia coli-derived) are active
(12,64).

2.4 LIF Receptors and Their Signaling
The IL-6 cytokine family members

share common signaling components i.e.
the LIF receptor (LIFR) and the receptor

4



1. LIF and cancer metastasis

subunit gp130 (68). The LIFR was first
isolated and found to be structurally
related to the gp130 component of the IL-
6 receptor and the granulocyte colony-
stimulating factor (G-CSF) (69). This
receptor is now termed LIFR It binds
with low affinity to gp130, whereas LIF
binds with high affinity to the
LIFRß/gp130 complex, initiating its signal
trasduction (70). Other components of
this receptor complex, used by other
members of the IL-6 cytokine family,
have been identified. For example, the
receptor component CTNFR is utilized
by CTNF(71,72).

LIF binds to a variety of cells from
different tissues (24,33,56,73,74).
Following receptor binding, signaling
pathways involving both protein tyrosine
and serine/threonine kinases are activated.
Both the Janus-kinase-signal transducer
and activator of transcription (JAK-
STAT) and mitogen-activated protein
kinase (MAPK) pathways are activated
(39,72,75) (Figure 1). Activated STAT
molecules dimerize and translocate to the
nucleus. Although there are at least six
STAT proteins, STAT3 tends to be the
protein that is activated by LIF (76). The
LIFRß is essential for motor neuron
development as demonstrated in studies
with the LIFRß knockout mouse model
(77) (see below).

mediator of the trophoblast development
(36,74).

In the LIF knockout mouse model,
homozygous and heterozygous null mice
for a functional LIF gene enabled
investigating the role of LIF in the
reproductive system (80). Male -/- LIF
mice were fertile, but female mice,
although able to produce viable
blastocytes, failed to implant and were
therefore sterile. However, the injection
of LIF into homozygous -/- female
restored blastocyte implantation (81).
Male mice engrafted with a LIF-
producing cell line showed complete
absence of spermatogenesis, whereas
female mice had reduction or complete
absence of corporae luteae (47). Recent
data confirm the crucial role of LIF during
implantation and pregnancy in primates
such as monkeys (82) and western spotted
skunk (83). In addition, it has been
demonstrated that LIF has a crucial role in
the maintenance of pregnancy in humans
(84,85).

3. BIOLOGICAL EFFECTS OF LIF

3.1 Effects on the Reproductive System
and Embryogenesis

The mammalian embryo develops
from a quasi-stem cell system controlled
by regulatory factors, one of which is LIF
(13,32,78,79). LIF is expressed in both
embryonic and maternal tissue. LIF
transcripts were also detected in mouse
blastocysts, implying its role as a
regulator of embryonic stem cells and a

3.2 Effects on Bone Metabolism
Several studies have clearly

demonstrated the role of LIF in bone
remodeling (86). Both osteoclast and
osteoblast activities are either stimulated
or suppressed by LIF depending on the
developmental stage of the respective
cells. When the local effect of LIF was
studied in mice by injecting the cytokine
over one hemicalvaria, two major effects
were observed: 1) increased osteoclastic
activity and bone resorption in the injected
right hemicalvaria and 2) increased total
mineralization, including the periosteal
area in the non-injected left hemicalvaria
(87). Additional studies using an array of
laboratory assays showed that LIF
inhibited osteogenic calcification (88),
affected osteoclast migration (89),
increased osteoclast differentiation (90),
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inhibited bone module formation (91), and
reduced bone calcification (92).
Engraftment of mice with LIF-producing
cells yielded results similar to those
described above (87). The engrafted mice
had increased calcifications in both
skeletal and extra-skeletal tissues such as
the myocard (47).

In vitro stimulation of bone resorption
by LIF was accompanied by the release of
calcium from prelabelled mouse calvaria.
This effect, caused by an increase in the
number of osteoclasts, could be inhibited
by indomethacin, indicating that it is
mediated through the activation of
prostaglandins. The prostaglandin-
dependent bone-resorptive effect of LIF is
similar to that of other cytokines such as
IL-1, tumour necrosis factor (TNF), and
transforrming growth factor (TGF)-ß
(93,94).

3.3 Effects on Lipid Metabolism
LIF, like TNF, IL-1, and interferon

(IFN)- can inhibit the enzyme
lipoprotein lipase, which is a key enzyme
in triglyceride metabolism (95,96). High
levels of LIF induced a fatal catabolic
state with cachexia in mice and monkeys
(12,33,43-45,97). It is likely that this
effect of LIF is mediated by its ability to
suppress adipogenic processes through its
enzyme inhibitory effect. Thus, the
inhibition of lipoprotein lipase is likely to
reduce the intake of fatty acids by
adipocytes and lead to cachexia.

3.4 Role of LIF in Inflammation and
Tissue Injury

A number of studies demonstrated
the role of LIF in inflammation. LIF was
found to have both a pro- and an anti-
inflammatory role in a variety of
inflammatory disorders (98). LIF mRNA
increased in various mouse tissues during
systemic inflammation triggered by the

injection of either endotoxin or
lipopolysaccharide (LPS) (99).
Interestingly, passive immunisation
against LIF prior to LPS injection
protected the mice from the lethal effect
of high-dose LPS (100), indicating that
LIF is one of the agents associated with
the lethality of septic shock. Surprisingly,
LIF injection prior to a challenge with
high dose LPS protected against the lethal
dose of LIF (101,102). This dual effect of
LIF was found in different diseases in
humans, such as rheumatoid arthritis
(103,104). LIF is highly elevated in the
synovial tissue and fluids of patients with
rheumatoid arthritis. In addition, human
articular chondrocytes and synovial tissue
produce LIF that in turn may upregulate
proinflammatory cytokines (105-109).
Injection of LIF-binding proteins into a
goat joint atenuates the inflammatory
reaction caused by a prior injection with
LIF (110). LIF has also been detected in
the pleural effusion of patients with
tuberculosis (111) and in the broncho-
alveolar lavage fluid of patients with acute
respiratory distress syndrome (112).

Local inflammatory processes have
been shown to be mediated by LIF (113-
115). On the other hand, the response to
injection of complete Freud’s adjuvant is
significantly augmented in adult LIF
knock-out mice (116). Some of the
differences among these studies could be
explained by dissimilar experimental
designs, dose of LIF, and species and age
of the studied animals. However,
divergent effects of LIF on the thymus
and on T and B lymphocytes (see below)
may also contribute to dissimilar results in
various experimental models.

LIF also plays a role in tissue repair in
cases such as stab wound injury and injury
to the central and peripheral nervous
systems (117-120). LIF mRNA was
shown to be upregulated after muscle
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3.5 Effects on Hepatic Function
The hepatocyte-stimulating factor

(HSF) III initially detected in cultured
keratinocytes and squamous carcinoma
cell lines was found to be identical to LIF
(29,125). The liver secretes acute-phase
proteins into the circulation upon various
stimuli including those induced by several
cytokines including LIF (126). Injection
of LIF into rhesus monkeys strongly
increased the levels of acute-phase
proteins (127). This molecule is able to
induce the production of a number of
acute-phase proteins by the hepatocytes,
an ability that it shares with other
cytokines including IL-6 and TNF. Thus
hepatocytes produce LIF which is capable
of inducing the production of acute-phase
proteins by the liver, suggesting an
autocrine role for LIF.

3.7 Effects on the Hematopoietic System
LIF has been characterized by its

ability to induce differentiation and
suppress the growth of M1 myeloid
leukemia cells (12-15,48,132). However,
in subsequent studies, LIF stimulated,
inhibited or had no effect on leukemia
cells, depending on the cell line or the
system in which LIF’s activity was
investigated (133-137). Similarly, LIF
induces a divergent effect on normal
hematopoietic progenitors. Exposure to
LIF reduces the proliferative capability
and survival of normal hematopoietic
progenitors (138). Although LIF had no
effect on CD34+ human bone marrow
cells, it enhanced the stimulating effect of
IL-3 (139). In another study, LIF
stimulated the growth of colony-forming
units granulocyte-erythroid-macrophage-
megakaryocyte (CFU-GEMM) and CFU-
eosinophil (CFU-Eo), and burst-forming
units-erithroid (BFU-E) colony-forming
cells (140). Similar results were obtained
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crash injury (121) consistent with LIF’s
role as a stimulator of human muscle
precursor-cell proliferation (122,123). In
LIF knock-out mice, infiltration by
neutrophils, macrophages, and mast cells
is delayed in lesions of both the central
and peripheral nervous systems (124),
suggesting that LIF could be chemotactic
for inflammatory cells.

3.6 Effects on the Nervous System
Cholinergic neuronal differentiation

factor, a protein acting on sympathetic
neurons to induce acetylcholine synthesis
and cholinergic function, is now known to
be identical to LIF (32). LIF affects the
development of peripheral neurons from
their precursors in the embryonic neural
crest (42). LIF also participates in the
regulation of the neuropeptide substance P
(SP) in sympathetic neurons, increasing
SP in both neuronal cell cultures and
cultures containing a mixture of neuronal
and non-neuronal cells (126). LIF acts as
a survival factor on mature sensory

neurons (127). Neuronal differentiation of
spinal-cord precursors is dependent on a
functioning LIFRß (128). In the LIFRß
knock-out mouse model, mice
die shortly after birth, and they reveal a
profound loss of astrocytes in the brain
stem and spinal cord, and neurons with
pycnotic nuclei and cytoplasmic vacuoles
(77,129). These findings and the
distribution of the LIFR mRNA in the
brain and spinal cord suggests that LIF
affects neuronal cells in the adult as well
as during development (128). LIF can
prevent the death of axotomised sensory
and motor neurons (129,130). In the
Wobbler mouse model, the animals
develop lower-motor neuropathy.
Injection of LIF has a sparing effect,
improving the neuropathy (131), further
demonstrating the complex effects of LIF
in the nervous system.
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with CD34+ cells stimulated with IL-3
and IL-6. LIF augmented the effect of
megakaryocyte colony-forming cell
stimulators and enhanced a
chemoattractant effect on human and
mouse eosinophils (19,20,73).

Bone marrow stroma cells constitu-
tively express LIF mRNA (53). Exposure
of hematopoietic stroma to either

, or increased the
level of LIF mRNA (53,141). Stroma
obtained from marrow cells of patients
with chronic myelogenous leukemia who
had high levels of expressed high
levels of LIF (53,142).

The first clue of the role LIF plays in
normal hematopoiesis in vivo came from
experiments carried out in mice (47,48).
Mice tranfected with LIF-producing cells
exhibited thymic atrophy and
extramedullary hematopoiesis (47). Daily
injection of LIF caused granulocytosis and
an increase in megakaryocytes and
platelets (46). Transgenic mice constitu-
tively expressing diffusible LIF displayed
B-cell hyperplasia, profound dis-
organization of the thymus, and loss of
cortical CD4+ and CD8+ lymphocytes.
Transplantation of transgenic bone
marrow into wild-type mice recipients
transferred the thymic and lymph node
defects (143).

Knock-out of the LIF gene
significantly impaired the hematopoietic
system (80). Both early and mature
hematopoietic progenitors were
dramatically reduced and a dose effect
was seen because heterozygotes were less
affected. However, mature hematopoietic
elements in the marrow, spleen, and
peripheral blood were normal, indicating
that the defect was in the stem cell pool
rather than in differentiation as found in
other studies (144-149). Homozygous
null mice for gp130 die mainly of cardiac
defects due to the elimination of

4. ROLE OF LIF IN CANCER
Several tumour cell lines and

neoplastic cells from various tissues
produce LIF and express LIF receptors.
However, the functional significance of
either LIF or LIFR in human neoplasia is
not fully understood. LIF can stimulate
growth, induce differentiation, or trigger
apoptotic cell death of various tumour
cells (1,141,150,151) and data on the
mechanisms controlling this diverse array
of effects are scanty.

Results of in vivo animal trials shed
light on some of the possible roles of LIF
in cancer and cancer metastasis. Cachexia
(43,44), subcutaneous and abdominal fat
loss, and elevated leukocyte and platelet
counts often found in patients with
metastatic cancer were induced by LIF in
both mice and monkeys (46-48). In
addition, at a high dose, LIF induced
myelosclerosis whereas a low dose
induced megakaryocytosis, reduced
marrow cellularity and caused
lymphopenia (48) suggesting a possible
role for LIF in the pathogenesis of
myeloproliferative disorders such as
myelofibrosis and in marrow sclerosis.
Furthermore, mice engrafted with FDS-P1
cells that produce high levels of LIF
developed a fatal syndrome with cachexia,
atrophy of liver and kidney, and excess
bone formation with increased
osteoblastic activity that resulted in
metastatic-type calcifications (47)
implying a role for LIF in bone tumours
and neoplasms metastasizing to bone.
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cardiotrophin-1 signaling (3). In this
mutant, the number of mononuclear cells
in fetal liver was drastically reduced, as
were the numbers of both early and
mature CFUs. The thymuses were 50
percent smaller, consistent with other
studies showing LIF’s role in
hematopoiesis.
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4.1 Hematological Malignancies
LIF was originally characterized by

virtue of its ability to induce
differentiation in the murine myeloid
leukemia cell line Ml, a property that it
shares with IL-6 (13-15). However, LIF
had no effect on the murine leukemia
WEHI 3BD+ cell line that differentiates in
response to IL-6 (150,192) whereas it
stimulated the growth of the murine IL-3-
dependent DA-1 myeloid leukemia cell
line (19,152). When injected into mice
that had been implanted with T-22 cells, a
subclone of the M1 cell line, it prolonged
the animals’ survival by inducing
differentiation (157). LIF is also
produced by the THP-1 human monocytic
leukemia cell line (58).

LIF was found to be expressed in acute
myeloid leukemia (AML) and
myelodysplastic syndrome (MDS)
cultured bone marrow stroma cells (155)
and in human leukemia cell lines
(140,154). Although LIF stimulated
human normal marrow hematopoietic
progenitor cell growth (139,140,193) and
stroma-derived macrophage proliferation
(194), it inhibited human leukemia cell
growth (156,157).

LIF also affects cells of the lymphoid
lineage. T-cell clone (alloreactive) from
lymphocytes rejecting kidney allografts
and thymic epithelial cells (55) were
found to produce LIF (reviewed in 1 & 2).
Whereas normal human T lymphocytes
did not bind radio-iodinated LIF (164),
cells infected with human T-cell leukemia

virus (HTLV)-I and –II expressed LIF
(159) and proliferated in response to this
cytokine (160). Similarly, various
lymphoma cell lines were found to
produce LIF (158), and LIF production
was upregulated by IL-1 (66).

Similar to IL-6, LIF plays a role in
multiple myeloma (MM) cell
proliferation. Human MM cell lines (161)
and myeloma and plasmacytoma cells
express LIF (162), LIFR, and the gp130
receptor subunit (163) and proliferate
when exposed to LIF (163,164). Thus,
similarly to IL-6 LIF may act as an
autocrine growth factor for MM cells.
The capability of LIF to induce both lytic
and osteogenic effects in skeletal tissue,
suggest that the osseous abnormalities
typically found in MM are induced,
among other factors, by LIF-producing
myeloma cells.

4.2 Bone Tumours
The effects of LIF on bone remodeling

with LIF inducing both osteoclastic and
osteoblastic activities suggest that LIF-
producing tumour cells may significantly
alter bone and skeletal tissue. Because the
LIF gene was found to be mapped to
chromosome 22q11-q12.2 (60), a question
arose whether this site might be affected
by chromosomal translocations that are
related to tumours of neural-crest origin
such as Ewing’s sarcoma and peripheral
neuroepithelioma cytogenetically charac-
terized by t(11;22)(q24;q12). It was
found that the LIF gene is located far
away from the Ewing’s sarcoma
translocation (61,195).

Nevertheless, bone tumours were found
to produce high levels of LIF. Marusic et
al. tested various rodent and human
immortalized malignant bone tumour cell
lines and found that LIF is constitutively
expressed in several cell lines and is
cytokine-inducible in others (165). LIF

Several in vitro studies were performed
to delineate the effects of LIF on various
tumours from different tissues. Though
studies of cell lines often yielded
conflicting results, experiments with fresh
tissue confirmed LIF’s role in tumour
growth, disease progression, and tumour
metastasis (Table 3).
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4.3 Breast Cancer
Because LIF affects bone tissue and is

produced by marrow stroma cells
(86,155), several investigators asked
whether LIF has a role in tumours such as
breast cancer which metastasizes to this
site (196). This was further emphasized
by the study of Akatsu et al. who showed
that the mouse mammary cell line
MMT060562 produces LIF and supports
osteoclast formation via a stroma cell-
dependent pathway (197).

Studies in breast cancer cell lines
showed that some of these cells produce
LIF, others express LIFR, and the cells
may or may not respond to LIF. The
diversity of cell lines and cell line clones
that may have different features in
different laboratories present a wide array
of complex biological characteristics. For
example, the estrogen-dependent breast
cancer cell lines MCF-7 and T47-D do not
produce LIF however their growth is
stimulated by this cytokine (169-171).

MCF-7 cells bind LIF and, like several
other breast cancer cell lines (172),
express the gp130 subunit (169). In
contrast, MDA-231 cells that express
neither estrogen nor progesterone
receptors produce LIF but their growth is
not affected by this cytokine (170).
Interestingly, progesterone treatment of
MDA-231 cells co-transfected with both
estrogen and progesterone induced the
expression of LIF’s promoter (198). LIF
also stimulated the estrogen-dependent T-
47D and the estrogen-independent SK-
BR3 and BT20 cell lines; inhibited,
according to one study, MCF-7 cells
(172), but had not effect on normal
mammary epithelial cell growth
(169,171). Interestingly, the SV40-
transformed mammary epithelium cell line
HBL 100 was found to produce LIF (58).

Breast cancer cells from 6 of 6 tumour
samples expressed LIF transcripts (174)
and widespread LIFR mRNA expression
was found in primary breast tumours
(172). Immunostaining of tumour
samples obtained from 50 breast cancer
patients detected LIF in 78% and LIFR in
80% of the samples. The presence of LIF
correlated with a low S-phase fraction of
the cell cycle and diploidy, whereas the
presence of LIFR correlated with dipoidy,
low S-phase fraction, and of estrogen
receptor positivity. LIF and LIFR were
also expressed in normal breast epithelium
in 87% and 77% of the specimens,
respectively (173). LIF stimulated colony
formation of breast cancer cells obtained
from five different patients in a dose-
dependent fashion (169) and the growth
stimulation correlated with the presence of
LIFR in these specimens (173).

Taken together the data suggest a
complex role of LIF and LIFR in breast
cancer growth regulation. Because the
bone marrow stroma produces LIF (155)
and other cytokines such as stem cell

and LIFR were found in the cytoplasm of
multinucleated giant tumour cells.
Furthermore, LIF-stimulated giant tumour
cells displayed osteoclast immuno-
cytochemical features and resorbed large
amounts of dentin (167,168). Additional
indirect evidence for the role of LIF in
bone tumours was provided by Gouin et
al. who detected LIF in 34.7% of urine
samples obtained from patients with a
variety of bone tumours. They also found
high LIF protein levels in supernatants of
both neoplastic and benign bone tumour
cells (166).

Although LIF provides various bone
tumours with a proliferation advantage
and modulates their effects on bone tissue
in either an autocrine or paracrine fashion,
several studies showed that tumour cells
that metastasize to bone may utilize
similar mechanisms.
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4.4 Kidney Cancer
Renal carcinoma, like breast cancer,

frequently metastasizes to bone. In
addition, systemic symptoms, such as
weight loss and fever, are common in
kidney cancer and likely to result from
overproduction of inflammatory
cytokines. Moreover, the process of
mouse nephrogenesis involves at least two
distinct stages that can be blocked by LIF
(199), and rat and human mesangial cells
produce LIF and respond to this cytokine
by transiently expressing the immediate-
early genes c-fos, jun-B, and Egr-1 (200).
These data suggest that LIF affects renal
cell proliferation.

Studies with cell lines have shown that
both the primary kidney cancer line A-498
and the ACHN cell line established from
pleural effusion of metastatic renal
carcinoma produce LIF. Anti-LIF
antibodies suppressed the cells’ growth
and the inhibitory effect was reversed by
exogenous LIF. These data suggest that
the endogenously produced LIF
stimulated kidney cancer cell line
proliferation (170).

4.6 Malignant Melanoma
In 1989, Mori et al. found that a factor

produced by the melanoma cell line SEKI
induced cachexia in tumour-bearing nude
mice and inhibited lipoprotein lipase.
This factor designated melanoma-derived
lipoprotein lipase inhibitor was found to
be identical to LIF (34,176). Subsequent
studies found that LIF mRNA is expressed
in various melanoma cell lines of which
several produce the protein (58,177).
Interestingly, oncostatin-M, another
member of the IL-6 cytokine family,
significantly increased LIF production by
melanoma cells (205).

LIF was detected in more than 60% of
human melanoma samples and was found
to enhance the expression of the
intracellular adhesion molecule (ICAM)-1
in melanoma cells (177). Shedding of the
soluble form of ICAM-1 from tumour
cells impairs immune recognition and
leads to tumour escape. Therefore, LIF
may provide melanoma cells with a
survival advantage. Furthermore,
melanoma cells transfected with LIFR
showed increased tumour growth
suggesting that LIF may directly stimulate
the growth of melanoma cells that express
LIFR and provide them with a survival
and growth advantage.

factor that stimulate breast cell
proliferation (169), cells that express
LIFR and respond to these cytokines may
have a growth advantage in the bone
marrow microenvironment.

4.5 Prostate Cancer
Prostate cancer cells selectively

metastasize to the axial skeleton to
produce osteolytic lesions. Laboratory
data suggest that LIF plays a role in this
disease. Paracrine-mediated growth
factors may play a role in prostate cancer
growth and development (201). In
addition, IL-6, often expressed in parallel
with LIF (202), was found to be expressed
in prostate tissue (175) and might
stimulate prostate cancer growth during

disease progression (203). The hormone-
independent cancer cell lines TSU, PC-3
(204), and DU 145 (170) produce LIF and
express gp130 (204). DU 145 cells did
not proliferate in response to this cytokine
(170,204) however, anti-LIF antibodies
inhibited the cells’ growth (170). Thus,
although only a few studies investigated
the effect of LIF on prostate cancer cells
and no data on binding of LIF to cellular
LIFR are available, results from the
above-described studies suggest that LIF
plays a role in prostate cancer.
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4.8 Gastrointestinal Malignancies
The mRNA of LIF, LIFRß, and gp130

was detected in six stomach cancer, two
colon cancer, one esophageal cancer, one
gall bladder cancer, and seven pancreatic
cancer cell lines (179). LIF induced
apoptosis in the AZ-521 gastric and the
GBK-1 gall bladder cancer cell lines and
was detected in the MIA PACA pancreatic
carcinoma cells (58). LIF did not affect
the growth of either stomach or cancer
cell lines; however, it stimulated the
proliferation of two of seven pancreatic
cancer cell lines (171). LIF is produced
by the colon carcinoma cell lines SW948
and HRT18 (58). It has been shown to
enhance human colon carcinoma HT24
cell proliferation suggesting that LIF
facilitates the transition from ulcerative
colitis to colon cancer (182).

Because the results of cell line studies
are inconsistent and since patient tumour
tissue has not been studied yet, the
biological significance of the cell line
studies remains to be determined.

4.10  Other Neoplasms
Several groups have reported LIF’s

expression, production, and function in a
variety of tumour cell lines. These studies
implicate LIF’s role in the proliferation of
neoplastic cells from several
malignancies.

Little is known about the role of LIF
in tumours of the lung and the oral cavity.
LIF is localized in the human airway
mainly in fibroblasts, and IL-1ß can
upregulate the expression of LIF’s mRNA
and the release of LIF protein (207). LIF
stimulated the growth of the metastatic
human lung giant cell carcinoma PG cell
line (187) and was found to be produced
by the lung adenocarcinoma NCI-H23
cells (58) and the oral cavity carcinoma
cell line OCC-1C (188).

Because of LIF’s crucial role in the
reproductive system, its effects on
neoplasms originating from this system
are of special interest. To our surprise, we
were able to find only a limited number of
studies addressing this issue. Bamberger
et al. reported that LIF’s transcription is
upregulated upon exposure of the SKUT-
1B uterine tumour cell line to a
progesterone agonist (189). A soluble
form of LIFR was detected in the
supernatant of the choriocarcinoma cell
line NJG, which also expressed LIF
cDNA (190). Interestingly, human germ

4.7 Hepatoma
Only a few groups studied the effects

of LIF in hepatoma. It was found that LIF
is expressed in the HuH-7 and Hep-G2
hepatoma cell lines (179). LIF
upregulated the expression of acute-phase
proteins in the rat H-35 hepatoma cells
(180) and activation of LIFR initiated
signaling through the JAK pathway in
Hep-G2 cells (181).

4.9 Central Nervous System Tumours
Considering the variety of effects

induced by LIF in the central nervous
system (CNS), its involvement in CNS
tumour growth is not surprising. LIF,
LIFR, and the gp130 receptor subunit
were detected in medulloblastoma tumour
cells. Twelve of 12 tumour samples
expressed LIF, and more than 90% of the

samples expressed LIFR and gp130.
(185). In addition, LIF antisense inhibited
medulloblastom cell proliferation (186).
Taken together these data suggest that LIF
acts as an autocrine growth factor in
medulloblastoma.

LIF was also studied in other CNS
tumours. It either inhibited (183) or had
no effect (184) on glioma cell lines.
Meningioma cells expressed LIF
transcripts; however, LIF did not affect
the cells’ growth in vitro (206).
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5. CONCLUSION
Similar to its diverse physiological

effects, LIF exerts a broad spectrum of
activities in various neoplastic cells, their
surrounding tissues, and the cancer
patient’s body as a whole. Although the
accumulating data are incomplete and far
from being conclusive, they indicate that
LIF plays a major role in the
pathophysiology of neoplasia. Tumours
of bone, breast, kidney, the CNS, and
other tissues, benefit from the presence of

this cytokine. LIF, produced
endogenously or by the tumours’
surrounding tissue, stimulates the cancer
cells in an autocrine or paracrine fashion.
In addition, LIF-producing tumour
metastases, especially those metastasizing
to bone, cause local distortion by inducing
either blastic or lytic lessions. Moreover,
overproduction of LIF is likely to be
responsible for constitutional reactions
such as an abnormal immune response;
inflammatory and anti-inflammatory
reactions, production of acute-phase
proteins; abnormal responses of the
hematopoietic system, including
thrombocytosis; and neutrophilia and
cachexia.

Several groups worldwide have
investigated the role LIF plays in normal
physiology and in pathophysiology of
cancer. These studies have revealed a
wide array of complex effects that are not
fully understood. Nevertheless, at least in
a limited number of tumours, LIF appears
to accelerate the cancerous process.
Whether inhibition of LIF would be
beneficial as an anticancer therapy
remains to be seen.
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