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1. INTRODUCTION
As computing resources become decentralized, the development of dis-

tributed applications receives increasing attention from the software engineer-
ing community. These applications are often complex and must satisfy strong
reliability and availability constraints. To avoid stopping an entire distributed
application for maintenance operations (e.g., repair, upgrade, etc.), it is essen-
tial to provide mechanisms allowing distributed applications to be reconfigured
at run-time. Such mechanisms should ensure a proper functioning of the ap-
plication regardless of run-time changes (e.g., creation or deletion of agents,
replacement of agents, migration of agents across execution sites, modification
of communication routes, etc). Moreover, these mechanisms should not induce
heavy penalties on applications during maintenance operations.
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Abstract Dynamic reconfiguration increases the availability of distributed applications by
allowing them to evolve at run-time. This paper deals with the formal speci-
fication and model-checking verification of a dynamic reconfiguration protocol
used in industrial agent-based applications. Starting from a reference implemen-
tation in JAVA, we produced a specification of the protocol using the Formal
Description Technique LOTOS. We also specified a set of temporal logic formu-
las characterizing the correct behaviour of each protocol primitive. Finally, we
studied various finite state configurations of the protocol, on which we verified
these requirements using the CADP protocol engineering tool set.
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Dynamic reconfiguration has been studied and implemented in various mid-
dlewares, such as CONIC [13], ARGUS [2], and POLYLITH [23]. In some
approaches, e.g., POLYLITH, dynamic reconfiguration is part of the appli-
cations developed on top of the middleware, thus transferring to application
developers the responsibility to ensure consistency after reconfiguration. In
other approaches, e.g., CONIC and ARGUS, the middleware is extended with
(application-independent) dynamic reconfiguration features.

This paper studies the protocol for dynamic reconfiguration of agent-based
applications defined in [20], which follows the latter approach. This protocol
has been implemented in the middleware platform AAA (Agents Anytime Any-
where) [1, 21], which allows a flexible, scalable, and reliable development of
distributed applications. The protocol has been experimented on several indus-
trial applications developed in cooperation with BULL, and especially on an
application for managing a set of network firewalls [21]. In this application
(included in BULL’S NETWALL security product), each firewall produces a log
file of audit information; agents are used to manage logged information, to pro-
vide filtering functionalities that can be added and customized lately according
to customer requirements, to correlate and coordinate multiple firewalls, and to
deploy a set of log management applications over the firewalls.

As this dynamic reconfiguration protocol is non-trivial, it was suitable to
ensure its correctness using formal methods, and especially to establish that
reconfiguration preserves the consistency of the application. Starting from the
informal description of the protocol given in [20] and a JAVA implementation
that was already in use, we produced a formal specification of the protocol
using the ISO Formal Description Technique LOTOS [12]. We then identified
a set of safety and liveness properties characterizing the desired behaviour of
each reconfiguration primitive of the protocol. To verify whether these correct-
ness properties hold for the LOTOS specification, we used the model-checking
approach [3]; verification was carried out using CADP [6], a protocol engineer-
ing tool set providing state-of-the-art compilation, simulation, and verification
functionalities.

This article is organized as follows. Section 2 presents the AAA agent-based
middleware and its dynamic reconfiguration protocol. Section 3 describes the
LOTOS specification of the protocol. Section 4 reports about the verification
process performed using CADP. Finally, Section 5 discusses the results and
gives directions for future work.

2. THE DYNAMIC RECONFIGURATION PROTOCOL
In this section, we first introduce the AAA distributed agent model. Then,

we state the dynamic reconfiguration problem and present the principles of the
reconfiguration protocol under study.
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2.1. The AAA distributed agent model
In the AAA model [1], the basic software elements are agents executing

concurrently on several sites. Each agent has only one execution flow (single-
thread). Agents are connected by communication channels, i.e., unidirectional
point-to-point links. Agents can synchronize and communicate only by send-
ing or receiving messages on communication channels, which play the role of
references to other agents.

Agents behave according to an event-reaction scheme: when receiving an
event on a communication channel, an agent executes the appropriate reaction,
i.e., a piece of code that may update the agent state and/or send messages to
other agents (including the agent itself).

The AAA infrastructure ensures that agents and communications satisfy cer-
tain properties [1] listed in the table below. The dynamic reconfiguration proto-
col relies upon some of these properties, and especially the causality property
(also called causal ordering) [24, 16].

2.2. Dynamic reconfiguration
Dynamic reconfiguration of an agent-based application encompasses (at

least) four possible changes in the structure of the application at run-time:
architectural changes (creation or deletion of agents, modification of commu-
nication routes), migration changes (modification of the placement of agents on
execution sites), agent implementation changes, and agent interface changes.
The dynamic reconfiguration protocol under study takes into account only the
first two aspects.
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Figure 1 shows an example of application reconfiguration involving the mi-
gration of an agent across two sites. This example will be used throughout this
section.

Figure 1. Migration of agent from site 2 to site 3

Dynamic reconfiguration must preserve consistency [14]: after reconfigu-
ration, the application should be able to resume its execution from its global
state prior to reconfiguration. Figure 2 shows an inconsistency that may occur
during the reconfiguration depicted on Figure 1: message is lost because
while it was in transit, its destination (agent ) has migrated from site 2 to
site 3.

Figure 2. Inconsistency arising from migration of from site 2 to site 3

To avoid inconsistencies, three issues must be taken into account:

Agent naming: references to migrating agents must be properly updated
(e.g., assuming that agent names include site information, the reference
to agent used by agent when sending message may become
outdated after has moved from site 2 to site 3).

Agent states: after an agent has been reconfigured, it must be able to
resume its actual computation from its former state (e.g., agent must
resume its computation on site 3 from its state on site 2 prior to migration).

Communication channels: messages in transit during a reconfiguration
must be preserved and properly redirected to their destination agents after
reconfiguration (e.g., message should reach after has migrated
to site 3).
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2.3. Principles of the protocol
To ensure consistency in presence of agent migration, different approaches

have been proposed, such as checkpointing [17] (which performs a rollback
of the application to its last consistent state, on which reconfiguration is per-
formed), forwarding techniques [22] (which temporarily replace a migrating
agent by a forwarder responsible for redirecting incoming messages to the new
location of the agent), and transparent protocols for location-independent com-
munication [25] (which avoid reference updates between agents by preserving
agent names).

Checkpointing techniques require the additional cost of maintaining con-
sistent distributed snapshots of the application (i.e., the agent states and the
messages in transit) and of rollbacking. Forwarding techniques induce resid-
ual dependencies that may affect application reliability (e.g., in case of a for-
warder failure). The AAA agent-based middleware does not provide location-
independent communications, but rather reliable communication and agent
management primitives.

For these reasons, the dynamic reconfiguration protocol described in [20]
does not rely on these techniques. It is derived from the protocol used in
CONIC, but improved to take advantage of the properties (event-reaction model,
asynchrony, persistency) guaranteed by the AAA middleware. The protocol
associates to each application a particular agent, named configurator, which
is responsible for handling all reconfiguration commands. The configurator
maintains a view of the application configuration (placement of agents on sites
and communication routes between agents), determines if a reconfiguration
command can be performed, executes the corresponding actions, and updates
the configuration view accordingly. Unlike a forwarder, the configurator can
handle more complex reconfiguration primitives, such as code replacement and
agent deletion.

The communication infrastructure provided by the AAA model can be seen
as a logical bus that carries all messages between application agents and/or
the configurator. Each agent is referenced by an address , where s is
the identifier of the current site of the agent and a is the local identifier of the
agent on site s. When an agent moves across different sites, its address must
be updated appropriately (note that the local identifier may also change when
the agent migrates to another site).

The following reconfiguration primitives are supported by the protocol: ADD
(addition of a new agent to the application), DELETE (removal of an agent
from the application), MOVE (migration of an agent to another site), BIND and
REBIND (creation and modification of a communication channel between two
agents). The implementation of the REBIND, MOVE, and DELETE primitives must
avoid inconsistencies. Intuitively, when an agent is under reconfiguration, its
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execution must be suspended; in the event-reaction model, this can be obtained
by ensuring that the agent receives no more events during its reconfiguration.
The preconditions for a safe execution of the reconfiguration primitives can be
summarized as follows: all communication channels involved must be empty
(i.e., must not contain any message in transit) before reconfiguration can occur.

The dynamic reconfiguration protocol implementing these primitives can be
defined using a notion of abstract state for application agents. At any time, an
agent can be in one of the three abstract states listed in the table below.

During the execution of reconfiguration commands, the configurator forces
certain agents into appropriate abstract states in order to preserve consistency.
Roughly speaking, to reconfigure an agent A or one of its outgoing channels,
the configurator implements the following protocol:

1. Compute the Change Passive Set, noted cps(A), which contains all the
agents having a communication channel directed to A: these agents must be
made passive in order to freeze A. For the REBIND primitive, cps(A) is empty,
but A itself must be made passive.

2. Passivate all agents in cps(A). So doing, all agents with references to
A are becoming passive and all communication channels directed to A are
progressively flushed. When this is complete, agent A is frozen (except in the
case of REBIND, where A is made passive, but not frozen).

3. Send the reconfiguration command to A. The causal ordering property
ensures that this command will only be received when A is frozen (although
the configurator never knows exactly when A is frozen).

4. Activate all agents in cps(A). Agents in cps(A) that have received mes-
sages while they were passive must react to these messages as soon as they are
reactivated. In the case of REBIND, agent A is reactivated when it receives the
REBIND command.

3. FORMAL SPECIFICATION
In this section we give a brief overview of LOTOS and then we detail the

specification of the dynamic reconfiguration protocol.
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3.1. Overview of LOTOS
LOTOS (Language Of Temporal Ordering Specification) [12] is a Formal

Description Technique standardized by Iso for specifying communication pro-
tocols and distributed systems. Its design was motivated by the need for a
language with a high abstraction level and strong mathematical basis, which
could be used for the description and analysis of complex systems. LOTOS
consists of two “orthogonal” sub-languages:

The data part is based on the well-known theory of algebraic abstract data
types, more specifically on the ACTONE specification language [4]. A
data type is described by its sorts and operations, which are specified
using algebraic equations.

The behaviour part is based on process algebras, combining the best features
of CCS [19] and CSP [11]. A concurrent system is usually described as a
collection of parallel processes interacting by rendezvous. Each process
behaviour is specified using an algebra of operators (see the table below).
Processes can manipulate data values and exchange them at interaction
points called gates.

3.2. Architecture of the protocol
The architecture of the LOTOS specification (see Figure 3) consists of a

configurator agent and n application agents. All agents are modelled as LOTOS

processes, which execute concurrently and communicate through a software bus
(an abstraction of the AAA infrastructure), which is also modeled by a LOTOS
process. Agents can send and receive messages (events) via the gates SEND
and RECV, respectively. The Bus process acts as an unbounded buffer (initially
empty) accepting messages on gate SEND  and delivering them on gate RECV.
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Figure 3. Architecture of the dynamic reconfiguration protocol

Dynamic agent creation is modelled in a finite manner by considering a fixed
set of Agent processes that initially are all “dead” (an auxiliary abstract state,
noted DEAD, meaning that the agent is not part of the application) and will be
progressively added to the application.

3.3. Configurator agent
The configurator agent is responsible for keeping track of the application

configuration and for executing the reconfiguration commands coming from
some external user. Since we seek to study a general behaviour of the protocol,
we do not specify a particular user, letting the configurator behave as if it would
receive an infinite sequence of arbitrary reconfiguration commands.

The Configurator process has two parameters: the application configura-
tion C (initially empty) and the address set R of agents currently in the DEAD
state. The configuration C is modelled as a list of tuples where

is the address of an agent present in the application and A is the set
of agent addresses towards which the agent has a reference (output channels).
The Configurator process has a cyclic behaviour: it chooses a reconfigura-
tion command non-deterministically, executes the appropriate operations, and
calls itself recursively with an updated configuration. In the following example,
we only detail the MOVE primitive, the other reconfiguration primitives being
specified similarly.

process Configurator [SEND, RECV] (C:Config, R:AddrSet) : noexit :=
(* ... other reconfiguration primitives *)
(choice A:Addr, S:SiteId []

[(Aisin C) and (getsite (A) ne S)] ->
(let A2:Addr = newaddr (S, C) in

Passivate [SEND, RECV] (cps (A, C)) »
SEND !A !confaddr !MOVE !A2 !dummy;

RECV !confaddr !A2 !ACK !dummy !dummy;
Activate [SEND, RECV] (A, A2, cps (A, C)) »
Configurator [SEND, RECV]

(setaddr (A, A2, setchan (cps (A, C), A, A2, C)), R)
)
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)
end proc

The address A of the agent to be moved and its destination site identifier S
are chosen non-deterministically. The agents in the set cps(A) are made passive
by calling the auxiliary process Passivate. Then, a MOVE command is sent
to agent A, which must respond with an acknowledgement upon completion of
its migration to site S. The agents in cps(A) are then reactivated by calling the
auxiliary processActivate, which also notifies them with the new addressA2
of agent A. Finally, the Configurator calls itself recursively with a modified
configuration obtained from C by updating the address of agent A and the output
channels of the agents in cps(A).

3.4. Application agents
Application agents execute the code of the application according to the event-

reaction model and must also react to the reconfiguration commands sent by
the configurator agent. Since we focus on the reconfiguration protocol itself
rather than on the agent-based applications built upon it, we consider only one
application-level message (called SERVICE) sent between agents.

TheAgent process has four parameters: its current abstract state S, its current
address A, the set R of agent addresses (output channels) towards which it has
a reference and a boolean B indicating whether a message was received while
it was passive (this may occur during the migration of another agent towards
which the current agent has an output channel). The Agent process has a cyclic
behaviour: it receives an event, executes the corresponding reaction according
to its current abstract state S, and calls itself recursively with the parameters
updated appropriately. In the following example, we only detail the reaction
of an agent to the MOVE command, the other reconfiguration commands being
specified similarly.

process Agent [SEND, RECV] (S:State, A:Addr, R:AddrSet, B:Bool):noexit:=
(* ... other reconfiguration commands *)
[S eq ACTIVE] ->

RECV !A !confaddr !MOVE ?A2:Addr !dummy;
SEND !confaddr !A2 !ACK !dummy !dummy;

Agent [SEND, RECV] (S, A2, R, B)
[]
[S eq PASSIVE] ->

RECV !A !confaddr !MOVE ?A2:Addr !dummy;
([B] ->
(choice A3:Addr [] [A3 isin replace (A, A2, R)] ->
SEND !A3 !A !SERVICE !dummy !dummy;

SEND !confaddr !A2 !ACK !dummy !dummy;
Agent [SEND, RECV] (ACTIVE, A2, replace (A, A2, R), false)

)
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[]
[not (B)] -> SEND !confaddr !A2 !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A2, replace (A, A2, R), false)
)

endproc

The migration is specified simply by changing the agent address. If the agent
is active, it simply sends an acknowledgement with its new address A2 back to
the configurator, and then calls itself recursively with an updated address. If
the agent is passive (this can happen only if it has an output channel directed to
itself), it first reacts to the events received from other agents while it was passive,
then sends an acknowledgement to the configurator, and finally becomes active,
updating its address and its output channels.

4. MODEL-CHECKING VERIFICATION

To analyze the behaviour of the dynamic reconfiguration protocol, we used
the CADP tool set, which we briefly present. We then express the correct-
ness properties of the protocol and give experimental results regarding model-
checking verification.

4.1. Overview of the CADP tool set
CADP(CÆSAR/ALDÉBARAN Development Package) [6] is a state-of-the-art

tool set dedicated to the verification of communication protocols and distributed
systems. CADP offers an integrated set of functionalities ranging from interac-
tive simulation to exhaustive, model-based verification. In this case-study, we
used the following tools of CADP:

CAESAR.ADT [8] and CAESAR [10] are compilers for the data part and
the control part of LOTOS specifications, respectively. They can be used to
translate a LOTOS  specification into a Labelled Transition System (LTS), i.e., a
state-transition graph modelling exhaustively the behaviour of the specification.
Each LTS transition is labelled with an action resulting from synchronization
on a gate, possibly with communication of data values.

EVALUATOR 3.0 [18] is an on-the-fly model-checker for temporal logic
formulas over LTSs. The logic considered is an extension of the alternation-
free -calculus [5] with action predicates and regular expressions. The tool
also provides diagnostics (examples and counterexamples) explaining the truth
value of the formulas.

BCG_MIN is a tool for minimizing LTSs according to various equivalence
relations, such as strong bisimulation, observational or branching equivalence,
etc.

SVL 2.0 [9] is a tool for compositional and on-the-fly verification based
on the approach proposed in [15]. Compositional verification is a mean to



Specification and Verification of a Dynamic Reconfiguration Protocol 239

avoid state explosion in model-checking by dividing a concurrent system into
its parallel components (e.g., the configurator agent, application agents, and
the bus), generating (modulo some abstractions) the LTS corresponding to each
component, minimizing each LTS and recombining the minimized LTSs to
obtain the whole system.

4.2. Correctness properties
To express the correct behaviour of the dynamic reconfiguration protocol,

we expressed a set of relevant properties about its behaviour. Two main classes
of properties are usually considered for distributed systems: safety properties,
stating that “something bad never happens”, and liveness properties, stating
that “something good eventually happens” during the execution of the system.
For the dynamic reconfiguration protocol under study, we identified, together
with the developers of the AAA middleware, 10 safety and liveness properties
characterizing either the global behaviour of the protocol or the particular be-
haviour of each reconfiguration primitive. These properties are shown in the
table below (the S and L superscripts indicate safety and liveness, respectively).

Then, we expressed these properties in regular alternation-free -calculus,
the temporal logic accepted by the EVALUATOR 3.0 model-checker. This logic
allows to succinctly encode safety properties by using regular modalities of the
form [R] F, which state the absence of “bad” execution sequences character-
ized by a regular expression R. For instance, property is encoded by the
formula[T*.SEND_CMD1.(–SEND_ACK)*.SEND_CMD2] F, where the action pred-
icates SEND_CMD1, SEND_CMD2, and SEND_ACK denote the emission of two re-
configuration commands and of an acknowledgement, respectively.
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4.3. Verification results

As model-checking verification is only applicable to finite-state models (of
tractable size), we considered several instances of the protocol involving a finite
number of agents, sites, and reconfiguration commands. The experimental re-
sults regarding LTS generation are shown in the table below. For each instance,
the table gives the LTS size (number of states and transitions) and the time
required for its generation using CADP. All experiments have been performed
on a 500 MHz Pentium II machine with 768 Mbytes of memory.

As expected, the LTS size increases rapidly with the number of agents present
in the instance, because the number of possible application configurations is ex-
ponential in the number of agents. Using the EVALUATOR 3.0 model-checker,
we verified that all temporal properties given in Section 4.2 are valid on each
instance considered. The average verification time of a property over an LTS
was about one minute.

5. CONCLUSION AND FUTURE WORK
In this paper, we used the ISO language LOTOS [12] and the CADP verifi-

cation tool set [6] to analyse a protocol for dynamic reconfiguration proposed
in [20] and used in the AAA platform [1].

The LOTOS specification developed (about 900 lines) provides a non-
ambiguous description of the protocol and a basis for future development and
experimentation of new reconfiguration primitives. Using model-checking and
temporal logic, we were able to verify the correct functioning of the protocol
on various configurations involving several agents, sites, and reconfiguration
primitives. This experiment increased the confidence in the correctness of the
protocol and demonstrated the usefulness of formal methods for agent-based
applications.

Three future research directions are of interest. Firstly, to improve scalabil-
ity, the protocol could be extended to use a distributed configurator instead of
the current centralized solution. Secondly, the validation activity could be con-
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tinued on larger configurations of the protocol and more detailed specification
of the AAA communication infrastructure. Thirdly, one could investigate the
generation of test suites for the JAVA implementation of the protocol, by using
the TGV tool [7] recently integrated in CADP, which allows to automatically
derive test suites from user-defined test purposes.
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