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Abstract Pluripotency is a term in cell biology describing a
unique state present in distinct stem cell lines, which were
either established from the inner cell mass of the mammalian
embryo or derived from somatic cells that have been
reprogrammed to induced pluripotent stem cells. Pluripotent
stem cells are continuously self-renewing, and their differen-
tiation capacity enables them to develop into all derivatives of
the three germ layers of a gastrulating embryo (endoderm,
ectoderm, mesoderm). Both human embryonic stem cells
(hESC) and human-induced pluripotent stem cells (hiPSC)
are virtually indistinguishable, at least based on their global
RNA expression patterns. Yet, after these in vitro cell cultures
have been generated, the cell lines’ pluripotent properties may
change considerably on the genetic and/or epigenetic level as
a consequence of long-term propagation. Among other
unphysiological changes, cell lines might acquire aneu-
ploidies, loose physiological imprinting marks, or develop

differentiation biases favoring one cell lineage over the other.
As a result, stem cell researchers have to continuously monitor
each stem cell line’s integrity, transcriptional profile, and func-
tional properties. Regulatory transcription factors, protein-
protein interactions, and signaling networks govern the plu-
ripotent state. As a consequence, emerging small- and large-
scale perturbations to these gene regulatory networks mediate
the outlined unfavorable changes to the pluripotent pheno-
type. Here, we describe a reliable bioinformatic framework
called PluriTest for confirmation and assessment of
pluripotency as an animal-free, fast, and inexpensive way
based on genome-wide transcriptional RNA profiles from mi-
croarrays. Additionally, we discuss future developments using
RNA expression profiling for pluripotency assessment.
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Introduction: Large-Scale iPS Cell Generation
and the Need for Pluripotency Assessment

Since Shinya Yamanaka and colleagues [1, 2] and James
Thomson and colleagues [3] have reprogrammed, for the first
time, human somatic cells in vitro towards pluripotency with
defined factors, human-induced pluripotent stem cells
(hiPSC) lines have become a powerful tool for studying stem
cell fates and developmental processes. Furthermore, hiPSCs
have been used to generate human disease models in vitro [4]
and are already—10 years after their original description—
being applied in clinical tissue regeneration [5•]. Current
state-of-the-art methods for reprogramming and culturing
PSCs are highly refined and thus enable to derive thousands
of hiPSC lines every year [6•]. Moreover, large stem cell con-
sortia have been funded and formed, planning to generate and
bank up to 25,000 iPSC lines in the next 4 years for the pur-
pose of disease modeling and drug discovery [7]. In every
single case, once a pluripotent stem cell line has been
established, the researcher has to confirm bona fide pluripo-
tent differentiation potential in every given iPSC line before
any further experiments should be started. Table 1 summarizes
the currently available methodologies for pluripotency assess-
ment of stem cell preparations.

Experimental Approaches for Pluripotency
Assessment

In this section, we will briefly outline the two prevailing ex-
perimental approaches to prove pluripotency in murine and
human pluripotent stem cells. The gold standard for mouse
pluripotent stem cells is the ability for germline transmission,
which demonstrates the ability to generate all somatic cell
types and germ cells in vivo [15]. Experimentally,
pluripotency can be tested most rigorously using the tetraploid
complementation assay as the ultimate benchmark [16].
Successful completion of this test yields mice fully derived

from a given stem cell line if it was truly pluripotent. For
hiPSC, such a rigorous assay is—for obvious reasons—not
available. The teratoma assay is the Bnext best gold standard^
for testing pluripotency in human stem cell preparations [15].
Methodically, human stem cells are injected into immunode-
ficient mice in order to form teratomas in vivo. A teratoma is
an experimental tumor entity that consists of cells of all three
germ layers (mesoderm, endoderm, ectoderm), primarily from
tissues such as neurons, heart muscle, and secretory epithelia.
The teratoma assay has several disadvantages with respect to
time, complexity, and animal usage [17]. First, the teratoma
assay requires several weeks from injection of the cells to final
histological results. Second, a mouse facility and skilled tech-
nicians are necessary in order to obtain reliable test outcomes.
Alternatively, this experiment has to be outsourced to com-
mercial service providers, incurring additional costs. Third,
established protocols varying from different stem cell facilities
may result in incomparable results among different studies.
Fourth, even if the teratoma assay is carried out without tech-
nical inconsistencies, it has been reported that qualitatively,
some stem cell lines may form all three germ layers but at
the same time may be quantitatively biased towards only
one or two germ layers [14, 18, 19]. Last but not the least,
experimentation using animals is expensive, inapplicable for
screening large banks of stem cell lines, and ethically prob-
lematic [20]. In summary, the assay does not add substantial
information on the genetic or epigenetic and resulting tran-
scriptional integrity and possible differentiation biases of a
tested stem cell line.

Protein Biomarkers for Pluripotency Assessment

Initial hope that specific cellular subtypes could be easily de-
fined by a small set of significantly up-regulated genes
(biomarker) has proven to be elusive, as these limited gene
sets are not specific enough for the rigorous characterization
of pluripotency. For example, POU5F1 (often referred to by

Table 1 Assays for pluripotency assessment

Assay type Complexity Cost Standardizable Sensitive Specific Ref.

qRT-PCR (Bmarker^) Low Low Yes Yes No [8]

FACS Low Low No Yes No [8]

Immunostaining Low Low Yes Yes No [8]

TaqMan scorecard (EB + qRT-PCR) High Medium difficult Yes Yes [9]

PluriTest Medium Medium Yes Yes Yes [10]

Epi-Pluri score Medium Medium Yes Yes No [11]

Embryoid body formation High Medium difficult Yes No [12]

Directed differentiation Medium-high Medium Yes Yes Yes [12]

Teratoma formation Very high High difficult No Yes [13]

TeratoScore (teratoma + microarray analysis) Very high High(er) difficult No Yes [14]
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its former name OCT4) is a well-characterized pluripotency
master transcription factor that is always expressed in stem
cells but, in some cases, in nullipotent cell lines, i.e. cells that
fail to develop into all cell types [21–23]. POU5F1/OCT4 is
for example expressed in teratocarcinoma cell lines obtained
from malignant human tissues [21, 24]. These cell lines ex-
press many if not nearly all of the genes usually associated
with genomically normal hESC and hiPSC [10, 21, 24].
Historically, before murine [25] and then human [26] ESC
became available, pluripotency was first discovered and stud-
ied in pluripotent stem cell lines derived from teratocarci-
nomas [27–30]. This makes clear that a simplistic curation
of a gene list with bona fide pluripotency associated genes
(such as OCT4/POU5F1, NANOG, LIN28, and REX1) may-
be sensitive enough to detect even very few PSCs in large
populations of differentiated, somatic cell types [31] but lacks
specificity to discriminate, e. g., fully reprogrammed, geneti-
cally, and epigenetically intact and truly pluripotent PSC lines
from those with limited differentiation potential or even gross
karyotypic abnormalities [32].

Gene Regulatory Networks for Pluripotency
Assessment

This insight has lead us and others to develop genome-wide
bioinformatic approaches utilizing Bcomplex^ biomarkers
based on gene regulatory networks (GRNs) reconstructed
from transcriptional microarray databases such as the stem cell
matrix [10, 24]: First, a global model of the transcriptional
patterns present in a cell state of interest is trained from gene
expression data originating from microarray or RNA-seq ex-
periments. For this, a network of statistically and/or experi-
mentally supported correlations and/or links between genes is
being trained and sub-networks out of the global transcription-
al graph are being selected that are suited best for discriminat-
ing one cell type from all other cell types [24]. For the iden-
tification of discriminant GRNs, it is paramount to have a
valid definition of the cell type to be analyzed. So far, our
understanding of the overall and global organization of the
transcriptional landscape is incomplete, yet we expect signif-
icant advances in this exciting research area in the near future
[33]. Without a reliable definition of a cell identity or defin-
able state, an alternative approach proposed by us is to use
high-content gene expression profiles with unsupervised clus-
tering methods to identify (stem) cell types just from the mea-
surable transcriptomic structure [24]. This approach ensures
that only robustly differentiable cellular phenotypes are used
for GRN discovery. We, for example found that hPSC are—
based on their transcriptomic features—distinct from any oth-
er stem cell type thus contradicting a previously postulated,
quintessential Bstemness^ as a salient and unifying feature of
all stem cell types [34, 35]. Conversely, based on the global

transcriptomic structure, we were unable to differentiate fibro-
blasts from mesenchymal stem cells, while discovering an
unexpected heterogeneity among stem cells all considered to
belong to the neural lineage [24]. Once a stem cell phenotype
has been delineated or can be functionally defined (e.g., by the
teratoma assay), it is possible to reconstruct gene regulatory
networks useful for discriminating one cell type from another
[10, 24]. Independently, several bioinformatic and theoretical
studies have proven the validity of network reconstruction
approaches from high-content datasets [36–40]. In the follow-
ing next step after network reconstruction (and in some cases
exploratory analysis), the computationally derived discrimina-
tory networks can be exploited as complex Bbiomarkers^ for
predictive tasks, such as estimating differentiation potential in
stem cell lines as it has been outlined previously by us and
others [10, 24, 32, 41–43].

Epigenetic Marks for Pluripotency Assessment

The first genome-wide reference map of DNA methylation
became available in 2011, summarizing differences among a
well-defined set of human ESC and iPSC lines [18, 19]. Here,
the authors utilized DNA methylation data (obtained by
reduced-representation bisulfite sequencing (RRBS)) from
undifferentiated hPSC to derive a linear model of differentia-
tion and a set of marker genes to predict an associated lineage
bias. This work has received much attention and has moved
towards commercial application (TaqMan® hPSC
Scorecard™ Assay provided by ThermoFisher Scientific in
a revised version [9]). Furthermore, pluripotency assessment
using computational models built on DNA methylation states
of cells have already been implemented and could potentially
be combinedwith PluriTest technologies [11]. The complexity
of histone tail modifications and the Bhistone code^ [44] of
pluripotent cells has so far not been utilized for hPSC
pluripotency assessment and quality control. Upon
reprogramming of somatic cells into iPSCs, rapid, genome-
wide changes (in particular at euchromatic H3K4me2 marks)
have been reported at more than a thousand loci including
large subsets of promoters and enhancers of pluripotency-
related or developmentally regulated genes [45]. These chro-
matin regulatory events precede transcriptional changes with-
in the corresponding loci and could therefore be used as very
early predictors for loss of pluripotency and initiation of dif-
ferentiation trajectories.

The Basic PluriTest Concept

Conceptually, the PluriTest algorithm is built on a stem cell
classification and prediction framework based on non-
negative matrix factorization (NMF) [46]. To this end, all

230 Curr Stem Cell Rep (2016) 2:228–235



features of a given microarray platform (in the current techni-
cal implementation: probes on Illumina HT12v3 or HT12v4
arrays, 23,000 genes per sample) are Bcondensed^ to relatively
few dimensions (sometimes also referred to as Bmetagenes^)
based on the information content and correlation patterns of
feature groups in order to separate pluripotent stem cells from
differentiated somatic cells. Such metagenes can be also
interpreted in a network-context as sub-networks of features
co-regulated by a Bhidden^ factor, such as, e.g., a single or
more transcription factors binding to the promoter regions of
each feature represented by a certain metagene [47]. In 2011,
we reported a bioinformatic assay for pluripotency termed
PluriTest [10]. The PluriTest platform enables screening of
PSC lines in a high-throughput fashion based on their global
gene expression patterns. As training dataset for the develop-
ment of the PluriTest gene expression model, microarray ex-
pression profiles from teratoma assay validated hESC and
hiPSC lines were used and contrasted with PSC-derived
in vitro preparations, somatic stem cell lines, and terminally
differentiated cell lines extracted from tissues. PluriTest results
can be obtained within a few days after a stem cell sample has
been prepared in the lab, while the process of uploading to the
PluriTest website (www.pluritest.org) and the server-side mi-
croarray raw data processing requires only a few minutes. The
PluriTest platform offers a microarray-based approach to
match messenger RNA (mRNA) samples against a well-
established data set of characterized pluripotent and non-
pluripotent cell lines termed as stem cell matrix 2 (SCM2).
The SCM2 database consists of more than 450 genome-wide
transcriptional profiles including 223 hESC, 41 iPSC lines,
somatic cell lines, and tissue. This dataset contains only opti-
mally quality controlled, normalized, transformed, and filtered
data for subsequent bioinformatic applications. Up to 12 sam-
ples can be uploaded in parallel with a subsequent transfor-
mation and normalization step using a lumi Bioconductor al-
gorithm [48] that reduces microarray chip features by a prin-
cipal component analysis termed non-negative matrix factor-
ization (NMF). An additional step includes the comparison of
the training data set (SCM2) against the reduced data set from
uploaded user samples. The results are calculated in several
minutes and illustrated in a PluriTest report page as summary.
In principle, there are two closely related parameters depicted
as Pluripotency Score and Novelty Score that summarize data
analysis from samples based on empirically determined
thresholds. The Pluripotency Score describes the similarity
of a given sample compared to the SCM2. If highly positive
values are reported (green value in Pluri Raw), this indicates
that the sample is much more similar to pluripotent cells from
SCM2 than somatic cells or tissue from this matrix (red value
in Pluri Raw). Any samples that are specified to have a similar
pluripotent signature compared to pluripotent cells from
SCM2 may not necessarily reflect intact iPSC or hESC cell
lines, as partially reprogrammed, karyotypically abnormal or

teratocarcinoma cells sometimes show similar high
Pluripotency Scores due to their Bpluripotent-like^ expression
pattern. A second parameter—the Novelty Score—was in-
cluded to the PluriTest assay to match the test samples against
well-established and karyotypically normal cells from the
stem cell matrix to yield higher resolution of the similarity
between samples and pluripotent cells from this matrix. If high
Novelty Scores are observed, this indicates that test samples
are more dissimilar to iPSC and hESC from the reference ma-
trix. Alternatively, cells may contain an unknown pluripo-
tent signature that currently cannot be explained or compared
to highly characterized iPSC and hESC lines. Low Novelty
Scores in contrast show a high similarity in their expression
profiles thus qualifying them as pluripotent.

Future Development of PluriTest

Even if in vivo testing of hPSC in animals is omitted from the
basic characterization of a clonal stem cell line, the process is
still expensive and laborious and requires a large array of
equipment, consumables, and expertise [12]. We have previ-
ously outlined the concepts of the lifecycle of a stem cell line
(Fig. 1, [49]). A more detailed view at the basic characteriza-
tion of a newly established pluripotent stem cell line illustrates
the large toolset of complimentary and at times competing
technologies for this task (Fig. 2a). We predict that within
the near future, this resource intensive process can be consol-
idated into only a few, sequencing-based, analytical strategies
(Fig. 2b). As sequencing costs have come down considerably,
our envisioned stem cell characterization and quality control
process will report—through predefined, Bpipelined^ bioin-
formatic analysis tools—additional sophisticated readouts to
stem cell scientists. We believe that the first step towards this
direction will be expanding tertiary analysis tools such as
PluriTest towards accommodating of second generation se-
quencing data sets.

In recent years, next-generation sequencing technologies,
including high-throughput RNA sequencing (RNA-seq), have
revolutionized transcriptomic discoveries. The qualitative as-
sessment of nucleotide-based signals, including genomic var-
iation in health and disease, identification of transcript variants
specific to defined cell types, identification of long non-
coding RNAs (among other previously unknown RNA spe-
cies), and detection of pathogens in complex body fluids, has
been a tremendous achievement and vast improvement over
microarray technologies. Therefore, RNA-seq is currently
displacing microarrays as the preferred method for gene ex-
pression profiling [50]. As far as the quantitative assessment
of biological systems is concerned, several open questions
remain with both next-generation sequencing (NGS) and mi-
croarray technologies. Based on our experience, working with
a diverse set of sequencing-based readouts of cell identity
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(including RNA-seq) and the data generated by the
SEQC/MAQC-III consortium [51], RNA-seq (with spike in
controls provided by the External RNA Control Consortium
(ERCC) [52], and a broad variety of alignment and quantifi-
cation strategies) does—somewhat surprisingly—not offer
any predictive advantage over microarrays in the assessment
of endpoints, even though all the mentioned qualitative read-
outs would suggest otherwise [53]. Genome-wide, unbiased
datasets (from arrays or NGS technologies) capture so many
data points that the resulting predictions can be extremely
good—so good indeed that they perform equally well—even
though RNA-seq would offer much more data depth on the
qualitative level. NGS technology is superior when calling the
genomic identity of a cell line using SNPs—information clear-
ly unattainable from gene expression microarrays. In cancer,
structural genomic information, e.g., on fusion transcripts pro-
vided by NGS, might allow for the rational development/
application of targeted therapies. The endpoint prediction of
genomic integrity of Bnormal^ hiPSC lines, however, which
stands at the core of all current PluriTest results, would not
benefit from such information.

This technological refinement requires major adapta-
tions of the original implementation of PluriTest and also
provides a chance to implement novel functionalities
based on the or iginal Plur iTest /SCM2 concept .
Expanding this assay to RNA-seq is a logical evolution,
yet the main challenge is not conceptual but technical:
microarray platforms have matured to a highly reproduc-
ible and standardized technology, while BRNA-seq^ can
only be considered an umbrella term for a group of related
t e chno log i e s , compa r ab l e t o t h e t e rm BPCR^

encompassing genomic PCR, conventional RT-PCR,
TaqMan PCR, and digital droplet PCR. A wide variety
of RNA-seq platforms, protocols, and performance capa-
bilities exists which has created the need for comprehen-
sive reference data [51, 54]. Despite recent technological
advancements with regard to sample handling and pro-
cessing, e.g., the automation for DNA/RNA fragmentation
and size selection or the library preparation workflow, we
and others have observed an enormous technical variabil-
ity among batches even when RNA-seq datasets were
generated by the same core facility. This issue becomes
significantly worse when datasets from different sites are
combined. Overall, the field has already achieved a high
concordance rate with regard to intra-platform and inter-
platform variability for expression level comparisons [54].
Other challenges remain, e.g., the reliable detection of
splice junctions and resulting transcript variants between
RNA-seq platforms [54]. Therefore, it will be the key to
further refine metrics for expression level comparisons
and methods for identification of differentially expressed
transcripts. Several approaches have been developed to
date, but as of yet, no consensus exists on the best pro-
cessing pipeline to use [55, 56]. Furthermore, due to the
reduction of starting RNA material, required fascinating
technological advancements have emerged including sin-
gle cell transcriptomics, in particular transcriptional pro-
filing of individual cells using nanoliter droplets [57••,
58••]. These BDrop-seq^ technologies will enable re-
searchers to take into account the heterogeneity of hPSC
cultures and the relative contribution of (a) karyotypically
abnormal cells which might gain a growth advantage and

Fig. 1 Life cycle of a pluripotent
stem cell line. An hPSC line
progresses through general stages
throughout its life cycle:
establishment, experimentation,
long-term modification, and long-
term propagation. An hPSC line
can Bfork^ into different paths, for
example, clonal lines and reporter
lines have been derived from the
WA09 line (e.g., WA09.2). At
each of the illustrated steps, a
thorough pluripotency assessment
is recommended (Fig. 1 and the
associated figure legend are from
Muller et al. [49])
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(b) cells which have entered early differentiation pro-
grams and have lost pluripotency.

We are confident that the PluriTest concept can be
exploited to not only interrogate the pluripotent state of a
given (single) cell but could also allow for the assessment of
transcriptomic (and associated genomic) stability. Moreover,
the routine application of human iPSC-derived terminally dif-
ferentiated cells (e.g., cardiomyocytes, hepatocytes, neurons)
in disease modeling, drug development, and clinical applica-
tion for regenerative medicine is often hampered by insuffi-
cient maturity of the respective cell type. Major advances with
regard to robustness, effectiveness, scalability, and reproduc-
ibility of differentiation paradigms for ectodermal (e.g., neu-
rons [59]), mesodermal (e.g., cardiomyocytes [60, 61]), or
endodermal (e.g., pancreatic β cells [62]) lineages from
hiPSCs have been achieved in the past years. In addition, it

will be of utmost importance to identify residual Bcontamina-
ting^ pluripotent cells in preparations of differentiated cells
from hiPSC for clinical application in regenerative medicine
[5•].

Conclusions

With tens of thousands of hiPSC lines being generated, the
current need for reliable, unbiased, cost-efficient, and animal-
free assays for pluripotency assessment of stem cell character-
istics is very high. RNA expression signatures—as previously
demonstrated using the PluriTest platform—provide a basis
for pluripotency assessment of stem cells. Future applications
of the concept extend to the interrogation of pluripotency and
differentiation characteristics for in vitro disease modeling,

Fig. 2 Basic characterization of hPSC lines today and in the near future.
a After a clone stem salon has been derived, it has to undergo several
complementary characterization and quality control steps following

consensus in the stem cell field. We predict that as outlined in b, this
process can be consolidated in only a few, high-throughput sequencing-
based methods and subsequent tertiary analysis pipelines
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drug development, and clinical application for regenerative
therapy.
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