
AGE-RELATED STEM CELL MODIFIERS (L KURIAN AND A PAPANTONIS, SECTION EDITORS)

Enhancer Remodeling During EarlyMammalian Embryogenesis:
Lessons for Somatic Reprogramming, Rejuvenation, and Aging

Patricia Respuela1 & Alvaro Rada-Iglesias1,2

Published online: 28 May 2016
# Springer International Publishing AG 2016

Abstract Early during mammalian embryogenesis, epiblast
cells undertake major cell fate decisions, becoming specified
towards either the perishable soma or the immortal germline.
Despite the importance of these developmental transitions, the
transcriptional regulatory mechanisms orchestrating them have
remained poorly characterized due to the transient nature and
scarcity of the involved cell populations. However, our view of
these processes is dramatically changing due to advances in
mouse and human embryonic stem cell (ESC) differentiation
models that faithfully recapitulate peri-implantation transitions.
Recent studies using these models have uncovered enhancers as
critical cis-regulators during the maintenance, extinction, or re-
establishment of pluripotency. Here, we review the major tran-
scriptional and epigenetic regulators controlling the remodeling
of enhancer landscapes during mammalian peri-implantation de-
velopment. Last but not least, we discuss how a global and
mechanistic understanding of enhancer remodeling can provide
important insights into somatic reprogramming, the molecular
basis of aging, and the implementation of cellular rejuvenation
strategies.
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Introduction

Following implantation of the mouse blastocyst, highly rele-
vant and dynamic cellular transitions take place during a de-
velopmental time window that we will refer to as peri-
implantation development (E4.5–E7.5) (Fig. 1). The pre-
implantation epiblast (∼E4.5) displays naïve or ground-state
pluripotency, as it can give rise to all embryonic lineages,
including the germline [1]. Immediately after implantation,
the epiblast progresses to a transient state that has been recent-
ly referred to as formative pluripotency (∼E5.5–6.5) and
which is characterized by the dismantling of the naïve
pluripotency expression program [2]. Subsequently and coin-
ciding with the beginning of gastrulation, the epiblast cells
acquire a primed pluripotent state (∼E6.5–7.5) and start ex-
pressing somatic germ layer specifiers [2]. Remarkably, while
both formative and primed pluripotent cells are able to differ-
entiate into all somatic lineages, only formative cells are com-
petent for primordial germ cell (PGC) induction and specifi-
cation (∼E6–6.5) [3]. Moreover, PGC specification involves
and functionally requires the re-activation of naïve
pluripotency genes, including several transcription factors
(TFs) with master regulatory functions [4, 5•, 6]. Therefore,
a pluripotency cycle maintained by a shared transcriptional
regulatory network has been hypothesized to exist between
the naïve epiblast and the germline [1].

As mammalian embryogenesis proceeds, the acquisition of
novel cellular identities requires not only the establishment of
new gene expression programs but also the extinction of previ-
ously existing ones. It is now widely accepted that enhancers
play a preponderant role during these developmental events by
integrating the regulatory activities of TFs, epigenetic regulators,
and signaling pathways [7]. Consequently, developmental tran-
sitions are accompanied by dramatic changes in enhancer reper-
toires, involving not only the activation but also the silencing of a
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large number of enhancers [8]. The paucity and transient nature
of the cell populations involved in peri-implantation develop-
ment have precluded the molecular characterization of the tran-
scriptional and epigenetic changes that accompany these cellular
transitions. Recent advances in ESC culture conditions, together
with newly developed differentiation protocol, allow a faithful
recapitulation of early embryogenesis, both in mouse and in

humans. Chiefly, these in vitro models are genetically tractable
and can provide relevant peri-implantation cellular states in num-
bers compatible with genomic and biochemical approaches. In
the next sections, we briefly describe these in vitro models and
how they have been used to characterize enhancer dynamics
during peri-implantation transitions, giving special emphasis to
a core set of enhancers controlling the expression of naïve

Fig. 1 Remodeling of enhancers associated with naïve pluripotency and
early germline genes. During mouse peri-implantation transitions, en-
hancers controlling the expression of naïve pluripotency and early
germline genes are active in naïve pluripotent cells (i.e., E4.5 epiblast/2i
ESC), as reflected by the presence of H3K4me1/2 andH3K27ac and their
overall hypomethylation (empty lollipops). These enhancers are bound by
pluripotency TFs (e.g., OCT4, SOX2, NANOG) (activators: green ovals)
that recruit co-activators and sustain their active state. Moreover, these
enhancers are also bound by transcriptional repressors (e.g., FOXD3,
TCF3) (red ovals) that recruit co-repressors and promote the
decommissioning of these regulatory sequences. As a result, epiblast cells
exit naïve pluripotency and transiently acquire a formative pluripotent
state (i.e., E5.5–6.5/EpiLC), in which naïve pluripotency/germline

enhancers become decommissioned as they loose H3K27ac and
H3K4me2, while retaining H3K4me1 and remaining hypomethylated.
Subsequently, these enhancers will undergo two alternative fates: (i) in
the germline, these enhancers become re-activated through the binding of
PGC and naïve pluripotency master regulators (green ovals), which rein-
state the typical chromatin signature of active enhancers (i.e., H3K4me1/
2, H3K27ac); (ii) in the primed pluripotent epiblast (E7.5/EpiSC) and in
the soma, these enhancers get fully silenced, as they gain H3K9me2/3 and
become hypermethylated (filled lollipops). The repressive chromatin en-
vironment established around naïve pluripotency/germline enhancers in
the soma ensures their stable silencing and represents a major roadblock
for somatic reprogramming
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pluripotency and early germline genes (Bpluripotency/germline
enhancers^) (Fig. 1).

Enhancer Dynamics During the Transition
from Naïve to Primed Pluripotency

Mouse ESC (mESC) have been traditionally grown under
BLIF+ serum^ conditions, which results in heterogeneity and
metastability as these cells reversibly switch between naïve
and primed pluripotent states [9]. Importantly, these two states
can now be independently maintained in culture, as represent-
ed by mESC grown under B2i+LIF^ (2i ESC, 2i=MEK and
GSK3 inhibitors) and epiblast stem cell (EpiSC), respectively
[10, 11]. Moreover, the recently described epiblast-like cells
(EpiLC) resemble the pre-gastrulating epiblast and display
formative pluripotency, a transitional state between naïve
and primed pluripotency [2, 6].

The transcriptional regulatory network that maintains the
naïve pluripotent state has been extensively characterized. This
network consists of a set of Bcore^ (OCT4/POU5F11, SOX2)
and Bancillary^ (NANOG, ESRRB, KLF4, KLF2, TBX3,
PRDM14) TFs that, together with the final effectors of key sig-
naling pathways (LIF, WNT, BMP), sustain naïve pluripotency
through cooperative binding and consequent activation of a
broad set of enhancers [9, 12, 13]. This involves the recruitment
of co-activators (e.g., p300, BRG1) and the establishment of a
chromatin signature characteristic of active enhancers (nucleoso-
mal depletion, H3K4me1/2, H3K27ac) [14, 15]. Moreover, at
least one of these TFs, PRDM14, ensures naïve pluripotency by
repressing, in a polycomb dependentmanner, key signaling path-
ways (i.e., FGF), and epigenetic regulators (i.e., Dnmt3A/B) that
promote the transition to primed pluripotency [16].

The establishment of EpiSC and the differentiation of 2i
mESC into EpiLC has enabled the characterization of the tran-
sition from naïve into formative and then primed pluripotency.
During these transitions, core pluripotency TFs (OCT4 and
SOX2) remain highly expressed and partner with a different
set of TFs, such as OTX2, leading to the cooperative activation
of many novel enhancers and their target genes [17•, 18••].
Although some of these enhancers display a primed or poised
state in 2i ESC, most of them lack any pre-marking (e.g.,
H3K4me1, DNAseI hypersensitivity) and are activated de
novo in EpiLC [18••]. Overall, the gene expression programs
of naïve, formative, and primed pluripotent cells are markedly
different, yet they express some genes in common.
Remarkably, genes active in both mESC and EpiSC are appar-
ently regulated by different sets of enhancers in each cell type
[19•], including a set of EpiSC-specific enhancers referred to as
Bseed^ enhancers that are frequently used at subsequent devel-
opmental stages in somatic tissues [10]. Interestingly, it has
been recently reported that differentiated somatic cells with
the capacity to self-renew (e.g., macrophages) might be able

to do so by activating an ESC-like self-renewal gene expression
program [20••]. Once again, ESC and differentiated cells utilize
distinct sets of enhancers to control such self-renewal program.
It would be interesting to determine if Bseed^ enhancers are
preferentially used by self-renewing somatic cells.

As stated above, developmental transitions require not only
the induction of new gene expression programs but also the
dismantling of previously existing ones. FOXD3 and TCF3/
TCF7L1 are transcriptional repressors that promote the exit
from naïve pluripotency by mediating the silencing of distinct
sets of ground-state regulators (e.g., TCF3 targets: Tfcp2l1,
Klf2, Esrrb, Nanog; FOXD3 targets: Prdm14, Tbx3, Pramel6/
7) [21, 22••]. This suggests that these two repressors might be
independently required to exit naïve pluripotency by disman-
tling discrete parts of the naïve expression program. FOXD3
executes its repressive function by mediating the
decommissioning of a subset of naïve pluripotency enhancers
[22••]. Mechanistically, this involves the displacement of
pluripotency TFs and co-activators as well as the recruitment
of co-repressors (e.g., LSD1, HDAC1/2, NuRD) [22••, 23]. It is
currently unknown if TCF3 repressive function involves a sim-
ilar enhancer decommissioningmechanism, but data from other
cellular contexts suggest that this could be certainly the case
and could then involve the recruitment of additional co-
repressors (e.g., TLE/Groucho) [24]. The repressive activity
of these two and most likely other, yet undiscovered, TFs leads
to the decommissioning of a large set of enhancers during the
transition from naïve (i.e., 2i ESC) to formative pluripotency
(i.e., EpiLC,), which involves a progressive loss of H3K27ac
and H3K4me2 and retention of H3K4me1 [18••, 22••] (Fig. 1).
Interestingly, during this transition, these enhancers start
gaining H3K9me2 as part of their silencing mechanism, al-
though they remain hypomethylated despite the raising levels
of de novo DNA methyltransferases (i.e., DNMT3A/B) [25•,
26, 27]. As primed pluripotency emerges (i.e., EpiSC), naïve
pluripotency enhancers become fully decommissioned,
completely loosing not only H3K27ac but also H3K4me1,
while gaining even higher levels of H3K9me2 [19•, 25•].
Although not formally shown, since DNMTs display negative
and positive crosstalk with H3K4me1/2 and H3K9me2/3, re-
spectively [28, 29], it is likely that these enhancers will become
accessible for DNMT3A/B and hypermethylated already in
EpiSC. Upon somatic differentiation, the repressive chromatin
environment around naïve pluripotency enhancers becomes
consolidated, stable, and largely inaccessible [30] (Fig. 1).

The characterization of how enhancer landscapes are
remodeled during the transition from naïve to primed
pluripotency has been by and large performed using murine
in vitro models. Traditional culture conditions for human ESC
(hESC) results in a cellular state that, in many aspects, resem-
bles mouse EpiSC and are thus considered to display primed
pluripotency [10]. However, after extensive effort, the long-
sought conditions to induce naïve pluripotency in hESC were
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recently reported [31•, 32••]. Perhaps not surprisingly, these
two hESC states manifest markedly different transcriptomes
and epigenomes as well as enhancer repertoires [32••, 33•]. It
remains to be elucidated if mouse and humans use the same or
different TFs to control the major enhancer landscape remod-
eling that characterizes the transition from naïve to primed
pluripotency.

Common Enhancers Participate in the Maintenance
of Naïve Pluripotency and in Germline Specification

Soon after implantation, epiblast cells become primed towards
somatic differentiation and start to express somatic lineage
specifiers. However, in response to high levels of BMP4 and
WNT3 emanating from the extraembryonic tissues adjacent to
the proximo-posterior epiblast, a few epiblast cells revert so-
matic differentiation and initiate PGC specification [34]. This
process is tightly regulated by a group of master regulators
(BLIMP1/PRDM1, PRDM14, TFAP2C) that become sequen-
tially activated in PGC precursors (∼E6.25–6.75) [3, 35••, 36].
Importantly, these TFs are all expressed in naïve pluripotent
cells, in which, at least PRDM14, is also functionally required
to maintain the ground pluripotent state [16]. Likewise,
NANOG, a key naïve pluripotency regulator, plays a major role
during PGC specification [4, 5•]. The coordinated action of
these TFs results in marked transcriptional changes that even-
tually lead to the establishment of a gene expression program
remarkably similar to that of the naïve epiblast [1]. These tran-
scriptional changes include (i) the repression of the incipient
somatic program and of genes required for DNA methylation,
(ii) the re-activation of the naïve pluripotency network, includ-
ing highly relevant TFs (e.g., Nanog, Oct4, Sox2) (iii) the si-
lencing of genes that are upregulated during the transition from
naïve to formative pluripotency and that characterize the forma-
tive pluripotent state (e.g., Otx2, Pou3f1, Foxd3, Tcf3), and (iv)
the induction of early germline genes (e.g., Rhox5/6/9,Nanos3)
[6, 22••, 34]. As a result, a cluster of approximately 40 PGCs is
formed (∼E7.25), which then undergo major epigenetic
reprogramming (i.e., global DNA demethylation, imprinting
erasure, changes in histone modification profiles) as they pro-
liferate and migrate towards the genital ridges [34].

Historically, uncovering the molecular basis of the transcrip-
tional and epigenetic changes underlying PGC specification has
been a daunting task due to the scarcity of these cells. However,
the Saitou lab established an in vitro protocol whereby primor-
dial germ cell-like cells (PGCLC) are induced from EpiLC,
faithfully recapitulating murine PGC specification [6]. This
novel protocol has dramatically improved our understanding
of this process, allowing, among other things, to uncover the
set of enhancers involved in germline specification [37••].
Analogously to the extensive changes in enhancer usage ob-
served during the transition from naïve to primed pluripotency,

PGC specification is also accompanied by a considerable re-
modeling of enhancer landscapes [37••]. These enhancer
changes can be broadly divided into two major categories: (i)
enhancers that become rapidly and transiently activated (day 2
PGCLC) and that most likely control the induction of mesoder-
mal genes (e.g., T) directly involved in the earliest steps of PGC
specification [38] and (ii) enhancers activated later during PGC
specification (day 6 PGCLC) and that presumably promote the
re-activation of naïve pluripotency and early germline genes.
Notably, this second group of regulatory elements includes
multiple enhancers that are originally active in naïve ESC and
that become decommissioned in EpiLC [22••, 37••]. This sup-
ports the existence of a pluripotency/germline cycle in which a
core set of pluripotency/germline enhancers might control the
expression of naïve pluripotency and early germline genes in
the pre-implantation epiblast and PGCs [1] (Fig. 1).

Intriguingly, upon exit from naïve pluripotency, the initial
decommissioning of pluripotency/germline enhancers does
not entail a full silencing of these key regulatory elements.
Instead, in EpiLC/E6.5 epiblast, these regulatory sequences
acquire a transient poised state in which they retain
H3K4me1, remain hypomethylated, and are most likely
bound by TFs (e.g., FOXD3, OCT4) [18••, 22••, 26, 27]
(Fig. 1). The presence of H3K4me1 and TFs is known to be
refractory for the enzymatic activity of DNMT3A/B, which
could explain why pluripotency/germline enhancers remain
hypomethylated in the face of the extensive de novo DNA
methylation that occurs in EpiLC and the post-implantation
epiblast [28, 39, 40]. We have previously hypothesized that
such poised state, imposed at least partially by FOXD3, could
then facilitate the re-activation of pluripotency/germline en-
hancers and their associated genes upon binding of PGC spec-
ifiers (e.g., PRDM14, TFAP2C) [22••, 35••, 36]. This could
explain why naïve pluripotency and early germline genes are
re-activated before the major wave of DNA demethylation
that occurs at later stages of PGC specification and that might
be critically required to induce genes involved in meiosis and
late germline development [41, 42]. As stated above, the
poised state of pluripotency/germline enhancers in EpiLC is
transient, since these regulatory sequences become progres-
sively silenced and heterochromatinized upon transition to
primed pluripotency/EpiSC and subsequent somatic differen-
tiation [19•, 25•, 30]. Like the poised state of pluripotency/
germline enhancers, germline competence is also transient and
short-lived as it is a unique property of the pre-gastrulating
post-implantation epiblast in vivo and of EpiLC in vitro [3, 6].
Hence, it is tempting to speculate that germline competence
might be at least partially dependent on the poised
hypomethylated state of pluripotency/germline enhancers.

Similarly to the transition from naïve to primed
pluripotency, much of what we know about enhancer dynam-
ics during PGC specification has been described using murine
in vitro models. However, the Surani and Saitou labs have
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recently reported two similar protocols whereby hESC can be
efficiently differentiated into PGCLC [43•, 44••]. These in
vitro models have been already used to reveal the major sim-
ilarities (e.g., BLIMP1, PRDM14, TFAP2C, NANOG) but
also the notable differences (e.g., SOX17) among the TFs
involved in human PGC specification with respect to the
mouse [43•, 44••]. We anticipate that these in vitro models
will be soon used to uncover how enhancer repertoires change
during specification of the human germline.

Enhancer Remodeling During Somatic
Reprogramming

Ectopic expression of a limited set of transcription factors
(OCT4, SOX2, KLF4, C-MYC (OSKM)) is sufficient to re-
program somatic cells towards pluripotency [45, 46]. Both
mouse and human induced pluripotent stem cells (iPSC) dis-
play remarkable transcriptional, epigenetic, and functional
similarities to ESCs, which, not surprisingly, includes highly
similar enhancer repertoires [47, 48]. In addition to its obvious
and far-reaching clinical applications, the generation of iPSC
offers a tractable system to investigate the transcriptional and
epigenetic mechanisms controlling developmental transitions
[49, 50]. Unfortunately, somatic reprogramming is typically
inefficient and great efforts have been devoted to uncovering
the major facilitators and roadblocks of this process [30, 51•,
52–55, 56••, 57]. Somatic cells are frequently arrested in a
partially reprogrammed state (i.e., pre-iPSC), in which the
re-activation of core pluripotency regulators is a major rate-
limiting step towards the acquisition of full pluripotency [30,
49, 51•, 52, 54]. Remarkably, the set of genes that are espe-
cially refractory to re-activation during reprogramming in-
cludes not only pluripotency regulators but also early germline
genes, overall coinciding with genes that dynamically change
their expression during peri-implantation transitions, as de-
scribed in previous sections [30, 52, 54]. We will now review
evidence suggesting that, similarly to peri-implantation tran-
sitions, the re-activation of these pluripotency/germline genes
during reprogramming depends on the epigenetic status and
accessibility of their associated enhancers (Fig. 1).

Seminal work from the Zaret lab demonstrated that exoge-
nous OSKM TFs were able to bind to a large set of distal
sequences already at the initial steps of somatic reprogramming
[30]. Importantly, these sequences could be broadly divided
into two groups: (i) sites with accessible chromatin in somatic
cells, as represented by DNAseI hypersensitivity and presence
of H3K4me1/2 [57] and (ii) sites with closed chromatin in
which OSK acted as pioneer TFs and facilitated C-MYC bind-
ing. Importantly, the second group included important en-
hancers that in mESC are active and occupied by endogenous
pluripotency TFs. The binding of OSKM TFs to these en-
hancers leads to their subsequent activation, which,

interestingly, precedes the induction of their target genes [30,
58]. These results suggest that, despite the major epigenetic
barriers that are believed to exist between different cellular
states and despite the refractory effect of silent chromatin on
TF binding, ectopic OSKM TFs can readily access a remark-
able fraction of their endogenous binding sites in ESCs.
Importantly though, the reprogramming TFs initially fail to
bind a core set of enhancers associated with relevant
pluripotency/germline genes, which remain silent and inacces-
sible, thus impeding the re-activation of their critical target
genes [30]. Overall, these observations illustrate the importance
of pluripotency/germline enhancers for the acquisition of
pluripotency and also raise major questions regarding the inac-
cessibility of these sequences and the chromatin features that
make them so resistant to TF binding. Epigenomic analysis in
MEFs and pre-iPSC indicates that these enhancers are
hypermethylated and enriched in H3K9me2/3, creating a het-
erochromatic environment particularly impenetrable for TFs
[30, 51•, 52, 58] (Fig. 1). In full agreement with this, enzymes
that methylate (e.g., DNMT1, DNMT3A) or demethylate
(TET1, TET2, AID) 5mC have been shown to act as inhibitors
and facilitators of reprogramming, respectively [52, 53, 59, 60].
Likewise, H3K9 methyltransferases (HMTs) (e.g., SUV39H1,
SUV39H2, SEDB1, EHMT2) act as reprogramming barriers,
while H3K9me2/3 demethylases (e.g., JMJD1A, JMJD1B,
JMJD2B, JMJD2C) increase reprogramming efficiency [30,
51•, 55]. DNA methylation has been traditionally investigated
in the context of promoter regions and repetitive elements, but a
major role in controlling enhancer activity, mostly by interfer-
ing with TF binding, has been recently appreciated [40, 61,
62•]. On the other hand, reprogramming experiments suggest
that H3K9me3/me2 might have an equally important yet large-
ly unappreciated role in enhancer silencing [30, 51•, 55]. The
importance of DNAmethylation andH3K9me2/3 as epigenetic
reprogramming barriers that prevent the re-activation of
pluripotency/germline enhancers is in perfect agreement with
the epigenetic changes displayed by these regulatory elements
during embryogenesis [17•, 18••, 19•, 22••, 25•, 26, 27, 37••,
63, 64] (Fig. 1). In addition to DNA hypermethylation and gain
of H3K9me2/3, the chromatin changes observed at
pluripotency/early germline enhancers during peri-
implantation transitions suggest that complete loss of
H3K27ac and H3K4me1/2 can also contribute to the full si-
lencing of these regulatory elements [17•, 18••, 19•, 22••, 25•,
37••]. Accordingly, enzymes and protein complexes mediating
histone deacetylation (e.g., HDAC1, MBD3, NuRD) and
H3K4 demethylation (e.g., LSD1) at enhancer elements can
act as somatic reprogramming barriers [56••, 65, 66].

The re-activation of pluripotency/germline enhancers and
their associated genes seems to be an important and early step
during PGC specification [5•, 22••, 37••]. Interestingly, enhanc-
er re-activation seems to occur effortlessly in PGCs, which is in
stark contrast to the refractory nature of this process during
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somatic reprogramming. As mentioned earlier, germline com-
petencemight require a silent (loss of enhancer RNAs (eRNAs)
and H3K27ac) but poised chromatin state (i.e., H3K4me1,
bound by TFs such as FOXD3) at pluripotency/early germline
enhancers that protects them from DNA hypermethylation
[22••, 26–28, 39] (Fig. 1). Like germline competence itself, this
poised chromatin state is also transient, progressively
transitioning to a fully silent and heterochromatic state as gas-
trulation and somatic differentiation begins [19•, 25•, 63, 64].
So, why do these regulatory elements demand such a resilient
and impenetrable chromatin environment in the soma? From a
functional standpoint, spurious re-activation of these enhancers
could interfere with proper execution of somatic differentiation
programs and/or the maintenance of somatic identity, potential-
ly leading to tumorigenesis [49]. However, mechanistically, it
remains unclear how this unique set of regulatory elements are
specifically targeted by DNMTs and H3K9 HMTs. One possi-
bility is that this is a rather passive process, in which the ab-
sence of positive regulatory inputs (e.g., TFs, co-activators) and
transcriptional activity allows the spreading of a default repres-
sive chromatin environment in a rather unspecific and progres-
sive manner. In agreement with this model, most gene pro-
moters are contained within CpG islands that protect them from
DNA methylation through the establishment of antagonistic
chromatin signatures (e.g., H3K4me2/3, H3K27me3) [28, 67,
68]. In contrast, enhancers typically display low CpG contents
that could in principle render them susceptible to DNMTs ac-
tivity. Nonetheless, this fails to explain why many of the active
enhancers in ESC, once silent in somatic cells, do not gain
H3K9me2/3 and/or become hypermethylated and are thus eas-
ily bound and re-activated byOSKMTFs upon reprogramming
[30]. In fact, many enhancers active during embryogenesis re-
main hypomethylated once silenced in adult somatic tissues in
a so-called vestigial state [69]. Alternatively, more direct and
targeted regulatory mechanisms might be in place to ensure an
efficient silencing of pluripotency/germline enhancers. For ex-
ample, enhancers associated with core pluripotency genes (e.g.,
Sox2,Oct4) become silenced and hypermethylated in a targeted
manner upon differentiation [63, 64]. In the case of Oct4, the
transcriptional repressor GCNF might be involved in this pro-
cess through the recruitment of DNMT3A/B [70]. Although a
general targeting mechanism directing DNA methylation and
H3K9me2/3 to pluripotency/germline enhancers has not been
described, such a mechanism seems to exit for the promoter
regions of genes involved in late germline development and
gametogenesis. In this case, the transcription factor MAX and
the E2F6 complex recruit H3K9 HMTs (e.g., G9a, GLP) to
these promoters in order to ensure stable silencing of the asso-
ciated genes in ESC and somatic tissues [71•, 72]. Future stud-
ies should aim at elucidating the mechanisms involved in the
silencing of pluripotency/germline enhancers during embryo-
genesis, as this might illuminate novel strategies to improve the
efficiency of somatic reprogramming.

Epigenetic Changes During Aging and Rejuvenation

Aging and age-associated cellular processes, such as senes-
cence, represent major impediments for somatic
reprogramming [73–75••]. Nevertheless, hiPSC have been
successfully established from geriatric donors as well as from
samples of progeria patients displaying accelerated aging, thus
demonstrating that age-related barriers can be overcome and
that cells can be rejuvenated [76–78]. As a result, there is
growing interest in using somatic reprogramming as a model
to molecularly and mechanistically understand age-associated
barriers, as this can provide valuable insights into future reju-
venation strategies [79]. Although evidence is still limited,
preliminary observations indicate that age-associated epige-
netic alterations might represent major reprogramming road-
blocks. A work from the Lopez-Otin laboratory has demon-
strated that aging-associated NF-KB activation lead to a
strong induction of DOT1L and consequently increased levels
of H3K79me2 [75••]. DOT1L inhibition greatly facilitated
somatic reprogramming and corrected age-associated alter-
ations, thus representing a promising anti-aging target [75••].
Mechanistically, DOT1L increased expression lead to higher
H3K79me2 levels at fibroblast-specific genes linked to
epithelial-to-mesenchymal transition (EMT), presumably re-
inforcing their active state and preventing their silencing,
which is a critical and early step during fibroblast
reprogramming [53, 75••]. Based on this data, it would be
interesting to evaluate if the rejuvenating effects of DOT1L
inhibition are limited to mesenchymal cell types or instead,
more general and effective in epithelial tissues as well. On the
other hand, it has been conclusively demonstrated that aging
results in hypermethylation of polycomb target genes, an epi-
genetic phenomenon that has also been observed in cancer
[80–83]. Presumably, this hypermethylation locks already si-
lent genes in an evenmore stable repressive chromatin state. A
recent integrative analysis of human reprogramming has re-
vealed an orchestrated re-activation of broad developmental
regulators that recapitulate, in an inverse manner, the events
occurring during normal embryogenesis [56••]. Since many of
these developmental regulators are bona-fide polycomb tar-
gets, we speculate that their age-associated hypermethylation
might block their re-activation and thus could represent a ma-
jor reprogramming barrier. These and other examples empha-
size that epigenetic alterations are a hallmark of aging, which,
chiefly, can be pharmacologically corrected [75••, 84].

A systematic evaluation of how enhancer landscapes and
their associated chromatin features are affected by aging and
age-associated processes has not been performed yet.
However, since aging leads to a loss in cellular homeostasis
and considering the major role of enhancers in conferring
cellular identity, it is likely that epigenetic alteration of these
regulatory sequences will be involved in the aging process
[84, 85]. Hence, it would be interesting to evaluate how the
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chromatin environment of pluripotency/germline enhancers
evolves upon aging, as the re-activation of these regulatory
elements represents a milestone during somat ic
reprogramming (Fig. 1). It is conceivable that the levels of
silencing epigenetic marks (DNA methylation, H3K9me2/3)
will further increase at these enhancers or even extend to other
pluripotency regulatory sequences that normally remain
hypomethylated in somatic tissues. On the other hand, it has
been recently shown that both oncogene-induced senescence
and accelerated aging (as represented by progeroid syn-
dromes) dramatically alter the three-dimensional architecture
of the human genome, preferentially affecting lamina-
associated heterochromatin, also known as lamina-associated
domains (LADs) [86–88]. Interestingly, the association of
these heterochromatin domains with the nuclear lamina is
linked to transcriptional repression and G9a-dependent depo-
sition of H3K9me2 [89, 90]. Since, as stated above,
pluripotency/germline enhancers and their associated loci gain
H3K9me2/3 and become silenced upon somatic differentia-
tion [25•, 30, 63, 64], it is likely that they will frequently reside
within LADs in somatic cells. Moreover, it has been recently
shown that pluripotency enhancers frequently contact each
other, forming spatially organized genomic clusters that have
been proposed to confer robustness to the pluripotent state
[91]. We postulate that during aging, pluripotency/germline
loci might not only retain heterochromatic marks but also lose
their endogenous chromatin topology, which might further
complicate the three-dimensional re-organization of the
pluripotency network upon reprogramming. Thus, it is tempt-
ing to speculate that topological disruption of LADs during
senescence and/or aging might exacerbate the re-activation of
pluripotency loci during reprogramming.

Conclusion

The last few years have witnessed a dramatic change in our view
of the transcriptional and epigenetic regulatory mechanisms in-
volved in the control of early mammalian embryogenesis. The
combination of ESC-based differentiation protocols together
with next-generation sequencing approaches have resulted in a
more global and mechanistic understanding of how pluripotent
states are established, extinguished, or maintained. Recent ad-
vances on single-cell sequencing approaches suggest that the
possibility of similarly characterizing these regulatory processes
in vivo is within reach [89, 92, 93]. We anticipate that, as the
comprehension of pluripotency keeps increasing, this will un-
doubtedly help improving the efficiency of iPSC generation.
Last but not least, since somatic reprogramming can be seen as
a cellular rejuvenation process, uncovering the major facilitators
and barriers of somatic reprogramming can have far-reaching
implications for the molecular understanding of aging and for
the therapeutical treatment of age-related disorders.
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