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Abstract

®
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Purpose of Review This short review article aims at emphasizing interesting and important new insights about investigating sleep
and memory in children aged between 6 and 13 years (middle childhood).

Recent Findings That sleep in comparison to wakefulness benefits the consolidation of memories is well established—especially
for the adult population. However, the underlying theoretical frameworks trying to explain the benefits of sleep for memory still
strive for more substantiate findings including biological and physiological correlates.

Summary Based on the most recent literature about sleep-related memory consolidation and its physiological markers during
middle childhood, this article provides a review and highlights recent updates in this field.

Keywords Middle childhood - Sleep - Memory consolidation - Sleep spindles - Slow oscillations

Introduction

Relationships between sleep and memory processes in the
adult brain are nowadays well established. However, there
are recent controversial discussions about the robustness of
sleep-mediated memory benefits, which should be considered
whenever investigating hypotheses in this research field.
Cordi and Rasch [1e°] argue that more attempts to replicate
and meta-analytic approaches together with higher standards
for reproducible science are critical to advance the field of
sleep and memory. Besides this upcoming debate in the cur-
rent adult sleep and memory literature, it still remains unclear,
whether and how sleep plays a role in the development of
memory in children. It has to be noted that it is important to
explicitly differentiate between studies [1+¢] examining asso-
ciations between sleep physiology and general cognitive abil-
ities (e.g., intelligence, learning ability) indicating a trait from
[2] studies comparing how sleep physiology affects overnight
memory consolidation, indicating a state. It is well known that
sleep is the brain’s main activity during the early years: until
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school age, a child has spent more time asleep than in social
interactions, exploring the environment, eating, or any other
waking activity [2, 3]. Further, it is well established that de-
veloping brains need a considerable amount of sleep each day
and that sleep promotes neural plasticity and thereby memory
processes—especially the consolidation of memories (i.e., a
process that makes memories stronger and less vulnerable to
interference). A meta-analysis by Astill and colleagues [4]
suggests that insufficient sleep in children (5-12 years) is
associated with deficits in higher-order and complex cognitive
functions like memory and an increase in behavioral prob-
lems. In a recent longitudinal study by Seegers and colleagues
[5], parents (N=1192) reported their children’s nocturnal
sleep duration annually from ages 2.5 to 10 years and it was
found that short persistent sleep duration is associated with
poor vocabulary performance in middle childhood. In the
above studies, the fact that sleep quality and quantity are pos-
itively related to general cognitive abilities irrespective of
whether learning occurred before sleep indicates the gener-
al—trait-like—nature of this association. Besides those stud-
ies examining associations between general cognitive ability
and sleep physiology (trait), there is growing evidence that
children like adults improve after periods of sleep (during
the night but also during the day, i.e., after naps) on declarative
memory tasks [6—11, 12¢¢, 13¢¢]. However, these reported
sleep-related gains in memory performance are typically un-
related to any sleep parameters, as polysomnography was not
recorded during children’s sleep. To give a very recent exam-
ple, Peiffer and colleagues [12¢¢] trained children (7—12 years)
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and adults (2030 years) in a declarative task, where they had
to learn new associations between non-objects and their func-
tions. Retrieval performance was tested during an immediate
and a delayed retrieval session separated by either a retention
interval containing sleep or wakefulness. Sleep led to stabi-
lized memory retrieval performance only in children, not in
adults, whereas no age-related difference was observed after a
similar period of wakefulness. The authors concluded that this
effect might be related to more abundant and deeper sleep
during childhood. Another very interesting behavioral study
by Prehn-Kirstensen and colleagues [14] showed that sleep
prevents the forgetting of reward-associated memory repre-
sentations. They found an indication that this effect is more
pronounced in children than in adults. It has to be noted—
like for other studies investigating sleep-related memory in
children—that besides these very interesting behavioral ef-
fects, the authors of both publications did not record
polysomnography during sleep and therefore could not
quantify sleep on a physiological level, or search for poten-
tial relationships with overnight changes in memory perfor-
mance. However, studies like these, comparing populations
of adults with that of children, are rare but are critical to
understanding whether and how these processes differ in
adults as compared to children. In addition to studies
reporting solely behavioral results, there is second category
of empirical studies, which apply polysomnography in chil-
dren. These studies mainly report results of a purely correl-
ative nature, where sleep parameters are correlated with
learning and memory performance to uncover the underly-
ing neurophysiological correlates of the beneficial effect of
sleep for memory consolidation. One very recent study
[15¢¢] addressed the association of sleep electroencepha-
lography features with executive functions as well as plan-
ning and problem-solving skills by application of the
“Tower of Hanoi” task in children aged between 9.5 and
12.8 years. Their results indicated a stronger performance
improvement across wake in children with more stage N2
sleep and less slow-wave sleep. Stronger improvements
across sleep were related to higher slow sleep spindle den-
sity and to reduced fast sleep spindle density, duration, and
power. However, as noted by the authors themselves, it
remains unknown whether these findings are specific to
the acquisition of planning and problem-solving skills
(state), or that they apply to a more general cognitive factor
(trait). Furthermore, there is an increasing number of a third
category of studies that actively manipulate sleep in order
to observe neurocognitive and memory consequences
[16—18, 19+°]. These studies applied different schedules of
sleep restriction and their findings in general suggest that
sleep quality and quantity are consistently related to chil-
dren’s and adolescent’s memory performance and that sleep
deficits are often associated with poor declarative and pro-
cedural memory consolidation. Randazzo and colleagues

[16] randomly assigned children between the ages of 10
and 14 years to either an experimental sleep restriction
group (5 h time in bed) or a control group (11 h time in
bed). Higher cognitive functions in children, such as verbal
creativity and abstract thinking, were impaired already after a
single night of restricted sleep. More recently, the authors of
the very elegant “Need for Sleep Study” [17, 19+¢] implement-
ed a parallel-group design where 56 adolescents (15—19 years)
were randomly assigned to a week of either 5 or 9 h of time in
bed for sleep each night as part of a 14-day protocol conducted
at a boarding school in Singapore.

The protocol consisted of three nights of baseline
sleep, seven nights of sleep manipulation, and three nights
of recovery sleep. Memory performance was assessed by
a declarative learning task (40 word pairs). Besides ma-
nipulating time in bed, the authors further investigated
different learning strategies: word pairs were either pre-
sented over four consecutive days (i.e., spaced items), or
all at once during one single study session (i.e., massed
items), with total study time kept constant across condi-
tions. Recall performance was examined O h, 24 h, and
120 h after all items were studied. In general, recall of
massed items was impaired by a greater amount in ado-
lescents exposed to sleep restriction. In contrast, cued re-
call performance on spaced items was similar between
sleep groups. These findings demonstrate the importance
of combining good study strategies as well as good sleep
habits to optimize memory outcomes. A further way to
experimentally manipulate memory consolidation during
sleep is called “targeted memory reactivation,” which
has been described, e.g., by Rasch and colleagues [20]
(2007) in adults. They found that presenting odor cues
during learning of object locations in a declarative task
(2D object-location) and re-presenting the same odor cues
during slow wave sleep improves memory consolidation.
These findings were recently replicated in a field study in
a regular school setting investigating children aged be-
tween 10 and 11 years [21¢°]. Their results replicate pre-
vious findings in adults and show that the odor effect also
works outside the laboratory settings. However, they did
not monitor sleep objectively, but continuous cueing at
night obviously produces similar effect sizes as in the
study of Rasch and colleagues [20] with selective cueing
in specific sleep stages. Taken together, there is an in-
creasing body of evidence, investigating sleep-related
memory consolidation during childhood, however, still
strikingly little is known about the specific functions of
sleep physiology for the quality and quantity of memory
during childhood, which requires more of the
abovementioned third category of studies, experimentally
manipulating sleep and memory consolidation as well as
longitudinal approaches to investigating developmental
changes of these relationships.
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Sleep in Children

Starting in the utero and continuing through childhood but
also during adolescence and adulthood, environmental and
social activities control the timing and duration of sleep (and
wakefulness), which underlies our circadian rhythm of ap-
proximately 24 h. Timing of light exposure controls the timing
of melatonin secretion and thereby the timing of sleep.
Awakening time, timing, and brightness of artificial lighting
after sunset and before sunrise, exercise, feeding schedule,
and social interactions influence the child’s timing of sleep
propensity [22]. Regarding the sleep architecture of children,
we know that children show distinctly different sleep patterns
than adults: total sleep time, sleep efficiency, NREM3, and
also REM sleep are higher during childhood, while percentage
of NREM2 increases with age. Furthermore, REM latency is
negatively correlated with age [23]. Besides these changes at
the macroscopic level of sleep architecture, there are further
differences at the level of cortical oscillations unique to the
sleeping brain.

First, children compared to adults show an increase in EEG
delta (0.5—4 Hz) and theta (4-8 Hz) activity [24-26] and sec-
ond, the morphology of slow oscillation (SO) as well as sleep
spindles changes considerably throughout development. Slow
wave activity becomes most pronounced during adolescence
where about 40% of NREM3 sleep is lost. According to our
own data [27¢°] and also others [24, 25, 28-30], this promi-
nent age-dependent change in slow wave activity is reflected
in declines in power, amplitude, and steepness of slope.
Interestingly, sleep slow waves are traveling waves and are
thus a marker for brain connectivity. Schoch et al. [31] very
recently investigated across-night dynamics of traveling slow
waves during sleep in children from preschool age (25 years)
to young adolescence (9—17 years). By using high-density
EEG during sleep, they elegantly demonstrated that brain con-
nectivity undergoes across-night dynamics specific to matura-
tional periods. SO propagation distance decreased across a
night of sleep, which was dependent on age and most preva-
lent in preschool children. The authors propose that these
changes represent important milestones in maturational brain
processes and that slow waves are therefore important markers
for neurodevelopment, directly involved in human brain de-
velopment processes (for a review see [32¢¢]). Besides SO, it
is well known that sleep spindle number, density, duration,
intra-spindle frequency, and local distribution change with
age [23, 29, 33-41]. Spindle oscillations are a prominent fea-
ture of NREM2 sleep, consisting of 7-14 Hz (0.5-3 s) waxing
and waning field potentials. They are electrographic land-
marks for the transition from wake to sleep and they are asso-
ciated with loss of perceptual awareness. There is profound
knowledge that they are generated by thalamic and cortico-
thalamic networks, superimposed to delta activity or tempo-
rally locked to a K-complex (for review [42—44]). Based on
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frequency and topography, sleep spindles can be distinguished
in frontal slow spindles (11-13 Hz) and centro-parietal fast
spindles (13—15 Hz) with presumed distinct underlying gen-
erators [45-47]. Both spindle types seem to share common
thalamic activation; however, slow spindles are associated
with activation in the superior frontal gyrus and sources in
the frontal cortex, while fast spindles appeared to originate
in the precuneus with mesial frontal, sensorimotor area, and
hippocampal activations [45, 47] The notion of two different
sleep spindle types is already corroborated by their develop-
mental trajectory. In an early cross-sectional study [48] (age
range 4-24 years), frontal spindle frequency was shown to
increase rapidly during early adolescence with an abrupt de-
crease in spectral power. In contrast, centro-parietal spindles
showed a linear frequency increase and marginal power
changes across adolescence.

A more recent longitudinal study by Campbell and
Feinberg [49] supports these findings. The spectral peak of
sigma frequency (11-15 Hz, i.e., the frequency band corre-
sponding to sleep spindles) has been found to shift linearly
from childhood to adolescence (618 years of age), indicating
spindle frequency acceleration. Whereas the lower sigma fre-
quency power (11-12.8 Hz) rapidly declined from 12 years
onwards, higher sigma frequency power (13.4-14.4 Hz)
steadily increased. This indicates different developmental tra-
jectories of slow and fast spindles. Further cross-sectional
studies showed that spindle density (number of sleep spin-
dles per time epoch) increased and reached a maximum at
16 years of age but subsequently decreased from early
adulthood (20-69 years of age) onwards [34, 35].
Furthermore, not only the independent development of the
morphology of these two most prominent sleep oscillations
but also the coupling of these oscillatory hallmarks of sleep
changes considerably throughout maturation. Using a lon-
gitudinal study design spanning from childhood (9.5 +
0.8 years) to adolescence (16+0.9 years), we found that
SO-spindle coupling strength increases during maturation
and most fascinating, this increase indicated enhanced
memory consolidation from childhood to adolescence
[27¢¢]. Taken together, there is accumulating knowledge
about the physiology of sleep also during childhood; how-
ever, there are still some significant ingredients missing
before we can identify the developmental role and function
of sleep for memory consolidation and general memory
performance especially in children.

Sleep-Dependent Memory Consolidation

Since the pioneering work by Jenkins and Dallenbach [50]
who claimed that recall in humans improved after an interven-
ing night of sleep, a growing body of experimental evidence
has shown the beneficial influence of sleep on memory
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processes (for review, see [51]). Similar to human sleep,
which is composed of NREM and REM sleep, human mem-
ory is also not a homogenous phenomenon. According to
Squire [52], long-term memories belong to multiple memory
systems, categorized in two main types: declarative, explicit
memories, and non-declarative, implicit memories. Whereas
declarative memory systems (i.e., accessible to conscious
awareness) include episodic (personal events, e.g., “My cat
Nelly likes sausages”) and semantic (general facts, e.g.,
“Paris is the capital city of France”) memories, non-
declarative or implicit memory (without phenomenal aware-
ness) contains procedural knowledge, motor learning, prim-
ing, classical conditioning, and non-associative learning (i.e.,
walking, speech production, playground skills like climbing).
Brain structures like the hippocampus and prefrontal areas are
responsible for forming and storing declarative memories,
while for building long-term implicit motor memories, the
prefrontal cortex and also basal ganglia and the basal-
ganglia-thalamic network are required. Memory formation in
general is established in three steps: (i) encoding, (ii) consol-
idation, and (iii) retrieval. After encoding, newly acquired
memories are usually very fragile and prone to disruptions
induced by the learning of other, especially interfering, infor-
mation [53, 54].

Hence, in order to be able to accumulate knowledge (i.e., to
constantly encode new information but simultaneously retain
old memories), a post-learning process of memory stabiliza-
tion or consolidation is required. While the acquisition and
retrieval of new information occur mainly and most efficiently
during wakefulness, there is ample evidence that memory
consolidation (i.e., reactivation and redistribution of newly
encoded memory from the temporary into the long-term store)
primarily and most efficiently takes place during sleep, a pe-
riod when information flow into the brain is strongly reduced
(for review, see [55]). Newly acquired information is initially
stored within a memory buffer, the hippocampus. During
sleep, these memories become repeatedly reactivated and
thereby gradually transferred into long-lasting memory net-
works. Specific networks are located within the neocortex,
with the temporal dynamics of these reactivation phenomena
being orchestrated by a fine-tuned interplay between fast field
oscillations originating in hippocampal layers (i.e., sharp
wave-ripple complexes [56, 57]), thalamo-cortically generat-
ed sleep spindles [45, 58], and cortical SOs (~0.75 Hz [59]).
In recent decades, the vast number of studies supporting the
beneficial role of sleep in memory has inspired several theo-
ries about the underlying mechanisms of sleep-associated
memory consolidation. In early sleep and memory research,
a main focus relied on “macroscopic” estimates of sleep, that
is, the amount of NREM or REM sleep. Earlier experimental
evidence suggested that NREM sleep and REM sleep differ-
entially modulate the consolidation of declarative and non-
declarative memories, respectively (i.e., the dual process

hypothesis [60—62]). Further, there are also studies that indi-
cate that the ordered succession of NREM sleep and REM
sleep is necessary for the consolidation of memory traces,
irrespective of the memory system (i.e., the double step hy-
pothesis [63-65]). Today, however, specific sleep features
and mechanisms, that is, the “microscopic” estimates of sleep,
are regarded as increasingly important for different types of
offline memory (re-)processing. Nowadays, two sleep and
memory consolidation models have received the most atten-
tion: (1) the active system consolidation hypothesis (ASCO;
for review, see [66]) and (2) the synaptic homeostasis hypoth-
esis (SHY;; for review, see [67]). Whereas ASCO asserts that
memory consolidation during sleep is based on an active pro-
cess that relies on covert memory reactivations during sleep,
SHY assumes the beneficial effect of sleep on memory to be a
passive epiphenomenon of a global synaptic downscaling oc-
curring during sleep. According to ASCO, SOs during NREM
sleep are the key player, as they are suggested to drive and
group hippocampal memory reactivations into optimal time
frames for cortical plasticity. SOs are generated within cor-
tical networks [68] and occur in human sleep electroen-
cephalogram with a mean spectral peak frequency of 0.7—
0.8 Hz [69]. Every SO consists of a hyperpolarized
“down”-state associated with a decreased cortical activity
and a depolarized “up”-state characterized by an increased
cortical activity [70, 71].

In particular, the interaction of the three main rhythms of
NREM sleep: (i) the thalamo-cortical spindles (7-14 Hz; 0.5—
3's), (ii) the hippocampal sharp wave ripples (100-250 Hz),
and (iii) the cortical SOs (< 1 Hz) is thought to be critical for
memory consolidation during sleep. Importantly, these three
oscillations form a temporal hierarchy, where ripples and spin-
dles are nested in SO peaks (especially in the depolarizing up-
states characterized by increased cortical activity) with ripples
also being locked to spindle troughs. This hierarchy likely
constitutes an endogenous timing mechanism to ensure that
the neocortical system is in an optimal state to consolidate new
memories [72-75, 76, 77-79]. In particular, the consolida-
tion of declarative memory and also explicit and implicit mo-
tor sequence learning during sleep have been shown to rely on
the hierarchical phase-locking of these rhythms (for reviews,
see [55, 80]). Interestingly, both ASCO and SHY assign a key
role to SOs regarding the beneficial effect of sleep on memory.
However, SHY argues that slow oscillations are critical due
to their involvement in synaptic downscaling and not based
on an active role in reactivation. In short, SHY states the
following: (i) learning occurs during wakefulness and is
mainly accompanied by synaptic long-term potentiation.
Hence, net synaptic strength is increased after a period of
wakefulness; (ii) slow wave activity, which reflects the “en-
ergy” of the SO, changes as a function of the net synaptic
weight that has accumulated during prior wakefulness [67,
81]. There is evidence that slow wave activity increases in
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task-related cortical areas following learning [82—84], and
decreases over the sensorimotor cortex following 12 h of
daytime arm immobilization [85]; (iii) slow wave activity
not only is a consequence of synaptic potentiation during
wakefulness but also contributes to a generalized depres-
sion or downscaling of net synaptic strength during sleep.
According to Tononi and Cirelli [86], downscaling reduces
net synaptic weights back to a baseline level while preserv-
ing relative differences in connection strengths. It is pro-
posed that synaptic downscaling might be promoted mainly
by mechanisms involved in long-term depression and that
this process is induced by the SO, possibly through the
alternating sequence of cortical depolarization and hyper-
polarization; (iv) synaptic downscaling is accompanied by
several functional benefits, such as benefits for learning and
memory. Given this knowledge, sleep seems to be a perfect
candidate for shaping neuronal networks. More specifical-
ly, it is assumed that slow oscillations, sleep spindles, and
sharp wave ripples are a functional correlate of the “quali-
ty” of thalamo- and/or hippocampo-cortical connectedness.
In addition, these oscillations seem to operate and shape the
interconnectivity between these brain areas and therefore
seem to be biological markers indicating cognitive as well
as memory performance because efficiently shaped
thalamo- and/or hippocampo-cortical networks are of equal
importance for both types of processing demands.

Sleep-Dependent Memory Consolidation
in Children

As described earlier, the transition from childhood to adoles-
cence is marked by considerable changes in sleep architecture,
also especially affecting those sleep parameters involved in
the SHY and ASCO model. Given the fact that children do
not only have to memorize much more material but also sleep
longer and more deeply than adults [23, 29], there is a strong
expectation that sleep in children is important for memory
consolidation. However, there is still a lack of research, investi-
gating the effects of sleep on brain processes underlying the
consolidation of memories in children, in spite of the close links
between the development of sleep features (e.g., spindles or SO),
brain maturation, and cognitive processes. An elegant study by
Urbain et al. [87] recorded the brain activity of school-aged
children (8.0-12.5 years) by magnetencephalography to explore
the specific impact of diurnal sleep (90 min nap) on the neuro-
physiological processes during learning and consolidation of de-
clarative memories (i.e., novel associations between unknown
objects and their functions). Learning-dependent changes were
observed within hippocampal and parahippocampal regions,
followed by sleep-dependent changes in the prefrontal cortex,
whereas no equivalent changes were observed after a similar
period of wakefulness. Further, they found that learning-related
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activity in (para)hippocampal regions was correlated with in-
creased slow wave sleep activity during the post-training nap,
which was specific to the newly learned representations. A fur-
ther very recent study by Sulkamo and colleagues (2019) inves-
tigated the relationships between local (occurring in only one
channel: Fpl, Fp2, C3, or C4), bilateral, and diffuse (occurring
in all four channels) spindles and neurobehavioral performance
(Wechsler Intelligence Scale for Children; Developmental
Neuropsychological Assessment; CogniSped) in 17 healthy chil-
dren (8.9-10.8 years). The main result was that local spindles,
and also more widespread central spindles, seem to be involved
in the cognitive processes. Furthermore, this study highlights the
methodological importance of age-adjusting frequency limits
when investigating sleep spindles. One of our own studies [41]
applied a longitudinal approach (across 7 years) to explore
whether developmental changes in sleep spindle density can
explain individual differences in sleep-dependent memory con-
solidation and general cognitive abilities. Mature spindle topog-
raphy developed between initial (8—11 years) and follow-up re-
cordings (14—18 years). Very fascinating, an enhancement in fast
spindle density was associated with sleep-dependent word pair
memory consolidation. Furthermore, fast spindle development
predicted the difference in memory consolidation between initial
and follow-up recordings, whereas slow spindle development
correlated with cognitive abilities. Besides declarative sleep-
related memory consolidation, we recently investigated the im-
pact of sleep on complex gross-motor adaptation (i.e., riding an
inverse steering bicycle) in children aged between 11 and
14 years. We combined a between-subjects (wake vs. sleep re-
tention interval group) and a within-subject (learning vs. control
task) design and did not find evidence for sleep-dependent motor
memory consolidation. However, NREM2 slow sleep spindle
activity was found to be related to overnight gains in perfor-
mance accuracy. Additionally, decreases in tonic REM sleep
duration indicated higher overnight improvements in accuracy.
Regarding speed, an increase in tonic REM duration was favor-
able for higher overnight gains in riding time. Thus, although not
yet detectable on the behavioral level, sleep also plays a role in
the adaptation of gross-motor memory in children. In general,
previous research investigating sleep-related memory pro-
cesses in children mainly focused on the individual devel-
opment of sleep physiology patterns like SOs and sleep
spindles across brain maturation. As described above, it
was demonstrated that these cardinal sleep oscillations un-
dergo a substantial evolution in their defining features such
as amplitude, frequency, distribution, and occurrence [27¢¢,
34,40, 48, 49, 88]. Interestingly, very recent findings indi-
cate that especially the precise temporal coordination of
SOs and sleep spindles—so-called SO-spindle-coupling—
might be most important, as is its deteriorating over the
lifespan, which might further contribute to age-related
memory decline [89-91]. Very recently, we could foster
this knowledge by our own longitudinal data, where we
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investigated the maturation of this SO-spindle coupling
from childhood (8—11 years) to adolescence (14—18 years).
We found a significant enhancement of this coupling pat-
tern until adolescence and most interestingly, this increase
indicated enhanced declarative memory formation (i.e.,
word-pair associates) from childhood to adolescence. Our
results, therefore, provided the first evidence based on
physiology that improved coordination between SOs and
spindles represents a biological marker for the development
of a sleep-dependent memory network (Hahn et al. 2020),
which has been earlier been discussed mainly from a theo-
retical standpoint within the ASCO theory [51, 55, 75]).

Conclusion

The research field investigating the beneficial effects of
sleep for memory formation is rapidly growing, howev-
er, studies in children are particularly still needed to
unravel the picture of sleep-dependent memory consoli-
dation during human maturation. Despite our own expe-
rience regarding how hard it is to get ethical approval
and to recruit highly motivated and compliant children
(and parents), the implementation of longitudinal ap-
proaches as well as study designs actively manipulating
sleep (e.g., sleep restriction or targeted memory reacti-
vation) and memory (e.g., different learning strategies)
in order to observe neurocognitive and memory conse-
quences of reduced sleep quality and quantity are highly
recommended. Furthermore, some basic methodological
aspects have to be stressed, whenever analyzing sleep
oscillations especially in children. Regarding sleep spin-
dles age-adjusted frequency boundaries should be uti-
lized and it has to be carefully considered which spe-
cific spindle parameters are utilized and how they are
defined (sleep spindle number, density, amplitude,
length, power, activity, or spectral peak frequency).
Additionally, the variation of sleep spindle features be-
tween individuals, like for example gender differences,
hormonal effects, and circadian rhythm variations (i.e.,
chronotype) have to be taken into account.

The same is true for analyzing slow oscillations and
the combination of both sleep parameters (e.g., slow
oscillation—sleep spindle coupling). Besides the physi-
ological measures, also the assessment of memory con-
solidation needs to be chosen very carefully as this def-
initely affects the outcome of studies investigating
sleep-related memory consolidation. Taken into consid-
eration these methodological aspects whenever planning
a study in this field, new insights into the basics of
sleep-related memory consolidation could be provided
and the understanding of the functional significance of
sleep for cognition during childhood would be fostered.
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