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Statistical energy functions are general models about atomic or residue-level interactions in biomolecules, derived
from existing experimental data. They provide quantitative foundations for structural modeling as well as for
structure-based protein sequence design. Statistical energy functions can be derived computationally either based on
statistical distributions or based on variational assumptions. We present overviews on the theoretical assumptions
underlying the various types of approaches. Theoretical considerations underlying important pragmatic choices are
discussed.
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INTRODUCTION

In discovery as well as in engineering studies of
biomolecular systems, structural modeling and structure-
based design have been playing increasingly important
roles [1–4]. At the foundations of these approaches are
computational models developed to quantify the inter-
and intra-molecular interactions between individual
atoms or residues. These include physics-based models
such as the various molecular mechanics force fields [5–
7], and data-based models such as the so-called statistical
or knowledge-based potential energy functions [8–16].
In principle, computational models of biomolecular

interactions can be based exclusively on physical
principles, for example, by using a full molecular
mechanics model with explicit treatment of solvent. In
practice, because of the high computational costs
associated with such full molecular mechanics treatments,
and also because of the compromised accuracy of most
simplified models, using only physics-based models
cannot yet allow the potential of computational
approaches to be fully realized [17]. On the other hand,
data-based models, namely, models derived from existing
experimental data, can also provide foundations for
accurate and efficient modeling and design. Some data-

based models are system-specific, such as the structure-
specific or protein family-specific sequence profiles. We
are not to discuss this type of model here. Instead, we will
focus on statistical energy functions (also called knowl-
edge-based energy functions) that are meant to be
generally applicable to different structural types or protein
families. Such statistical energy functions can be used
alone, or they can be used in combination with physics-
based models of complementing strengths [18,19], to
boost the accuracy and efficiency of both structural
modeling and sequence design of biomolecules, espe-
cially proteins [16,20].
There exist extensive literature on statistical energy

functions. Especially for structural modeling, there have
been excellent reviews summarizing theoretical basis,
implementation, benchmark as well as applications [21–
28]. In the current paper, we try to analyze the topic with a
compact and theoretically-oriented point of view. While
some of the issues discussed here should have already
been examined in existing literature, albeit to varied
extents [16,29–33], previous discussions have been
widely scattered at different places and often in disparate
contexts. In this review, the various aspects are introduced
and discussed in a related context. Besides statistical
energy functions for structural modeling, we emphasize
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models for sequence design, a topic less covered in the
literature. The statistical energy functions for sequence
design are closely related to those for structural modeling,
but involve some distinct considerations. Resolving some
of these issues has led us to develop the ABACUS energy
function, which has been shown to complement and rival
previous best methods in fixed-backbone de novo protein
design [16], with experimentally verified design results.
ABACUS is acronym for A Backbone-based Amino aCid
Usage Survey. The program with examples can be
downloaded from http://biocomp.ustc.edu.cn/Download.
html.

STATISTICAL ENERGY FUNCTIONS FOR
STRUCTURAL MODELING

The various protein structure prediction approaches
(Figure 1) include constructing structural models using
conformational sampling or optimization, or ranking
different folds/structures contained in a set of candidate
structures. They all rely on effective energy functions to
model molecular interactions under given structures
quantitatively.

Deriving models based on statistical distributions

The potential of mean forces picture

There are different ways to rationalize a data-based model
of molecular interactions. One is through the potential-of-
mean-forces concept in statistical mechanics [9,21]. Let
us use the derivation of a distance-dependent, pair-wise
interaction term between two types of protein atom, a and
b, as an example. As training data, we have different
proteins with known sequences and structures, each
containing a number of atoms of types a and b. The direct
interaction between a and b is supposed to contribute to

the overall stability of different structural states of their
containing proteins. On the other hand, the training
proteins provide varied sequential and structural contexts
for the interaction. For a training protein c, such context
may be collectively noted by the coordinate Rc. In given
protein c, the potential of mean forces between a and b as
a function of their inter-atomic distance r is related to the
probability density of the distance in respective con-
formational ensemble, namely,

ucabðrÞ=– kBT ln�
c
abðrÞ, (1)

where kB is the Boltzmann constant, and T is the
temperature. The distance probability distribution �cabðrÞ
is determined by the thermodynamics partition function
of the molecular system,

�cabðrÞ=
1

Z
!δðrab – rÞexp –

UðRc, ra, rbÞ
kBT dΓ, (2)

in which δ is the Dirac δ function, rab represents the
distance variable between a and b, UðRc, ra, rbÞ
represents the total energy of the system, !dΓ represents

integration over the configurational space of the mole-
cular system, and Z is the partition function defined by

Z=!exp – βUðRc, ra, rbÞdΓ: (3)

We assume that the overall potential of mean forces
ucabðrÞ comprises two parts: a context-dependent but atom
type-independent part ~uc ðrÞ, and a context-independent
but atom-type dependent part uabðrÞ, that is

ucabðrÞ=~uc ðrÞ þ uabðrÞ: (4)

We emphasize that the uabðrÞ includes not only the
interactions that could be assigned directly to a and b
by any intermolecular interaction theory, but also the
thermodynamics contributions from an “averaged” envir-
onment. Because of the averaging, this term is supposed

Figure 1. The basic processes of protein structure prediction. An effective (free) energy as a function of the structure is
employed either to guide structure sampling, as objective for structure optimization, or to evaluate different structure candidates.
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to be independent of the specific environment of a
particular protein.
We further assume that the overall distribution �abðrÞ as

observed in all training proteins is an average (represented
as a weighted summation below) over the distributions in
individual proteins. This leads to

�abðrÞ=
X

c

wc�cabðrÞ=
X

c

w0ce –
~uc ðrÞ
kBT

" #
e
–
uabðrÞ
kBT : (5)

For simplicity, factors for weighting different training
proteins and for probability normalization and so on have
all been absorbed into the weights wc for the probability
distributions, or w0c for the Boltzmann factors. Then the
context-independent interaction may be formulated as

uabðrÞ=– kBT ln
�abðrÞ
�ref ðrÞ, (6)

with

�ref ðrÞ=� kBT ln
X

c

w0ce –
~uc ðrÞ
kBT

" #
: (7)

In Equations (6) and (7), the �ref ðrÞ represents a
“background” or “reference” distribution that involves an
average of the context-dependent part over different
training proteins. By definition, this reference distribution
should be independent of the specific atom types a and b.
The above “derivation” of a context-independent,

atom-type specific interaction uabðrÞ implies a natural
way of determining it from the training data (Figure 2):
one needs to estimate the �abðrÞ from the training data,
which is straightforward, and to choose an appropriate
�ref ðrÞ.

Choosing reference distributions

There have been different models for the reference
distribution �ref ðrÞ. The simplest is to estimate it as the
average of �abðrÞ over different combinations of atom

types, or formally

�ref ðrÞ=
X

ab

wab�abðrÞ: (8)

If the statistical interaction uabðrÞ has been derived with a
reference distribution according to Equation (8), the atom
type-independent part of the interaction, i.e., ~uc ðrÞ in
Equations (4) and (7), may not be all coming from the
context of a and b. It may still contain strong residual
context-independent interactions between a and b, which
in Equation (8) do not necessarily averaged to zero over
different atom types in the well-folded native protein
structures from which the raw distributions �abðrÞ have
been built. The resulting overall statistical potential may
suit for the comparisons between different native-like,
well folded structures [11,18,34]. However, because the
direct interactions between any pair a and b have not been
completely included in uabðrÞ, the applicability of the
resulting energy function in problems involving non-
native like structures (e.g., structures encountered during
ab initio folding) would be questionable [21]. For
example, the energy function may be applied to evaluate
the relative stability of different native-like structural
states (e.g., those generated through threading), but it
should not be used to evaluate the stability of any such
native-like conformations relative to non-native like
conformations (e.g., those generated with an unrestrained
conformation sampling algorithm).
Given the limitation of Equation (8) which defines

�ref ðrÞ based on the training native proteins, it is desirable
to define �ref ðrÞ in other ways, so that the statistical
potential can be applied to compare native like and non-
native like conformations.
The distance-scaled, ideal-gas reference state (DFIRE)

energy function is a model in which the definition of
�ref ðrÞ has been innovated [13]. It employs a �ref ðrÞ that
has been defined based on a reference state of non-
interacting, finite-sized particles inside a spherical
volume. With the physically sound definition of reference
distributions, the DEFIRE energy function has found
great successes in protein structure predictions.

Figure 2. The distance-dependent interaction between two types of structural units (e.g., atoms or residues) α and b is
determined by both a data-base-derived distribution and a unit-type independent reference distribution.
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The parametric �ref ðrÞ of DEFIRE is implicitly based
on non-native like structural states. An alternative
approach is to consider explicit non-native like structural
states [26,32,35] when defining �ref ðrÞ. In such an
approaches, ensembles of alternative conformations
(called decoy conformations [35]) are usually generated
with conformation sampling techniques, �ref ðrÞ estimated
from the set of sampled conformations. Based on
Equations (4)–(6), the sampling should be carried out
without considering the context-independent interaction
uabðrÞ. On the other hand, other types of restraints (e.g.,
covalent chain structures and steric exclusions) must be
applied during the sampling to reach any converged
distribution. Thus the sampled conformation set depends
on the particular restraints as well as on any other
consequential set ups of the sampling procedure. So does
the �ref ðrÞ estimated from the sampled set of conforma-
tions. Then the resulting statistical interactions are
justified only in scenarios in which conformations to be
evaluated are generated by exactly the same sampling
approach. This is in fact somewhat similar to the iterative
development of coarse-grained potentials [30]. It also
explains the inconsistent relative performances of using
potentials constructed with different reference states to
evaluate different sets of decoy protein [33].

Constructing interaction models based on
optimization

To substitute the statistical-based definition of interactions
in Equation (6) which needs somewhat unclearly defined
reference distributions, optimization-based approaches
have been proposed to derive knowledge-based interac-
tions [29,36]. In this approach, a set of non-native training
conformations are not used to estimate background
distributions such as �ref ðrÞ. Instead, they are used as
“decoy” structures to provide references which are
supposed to be of higher energies relative to respective
true native structures. The energy gap between the decoy
states and respective native states are maximized with
respect to parameters in the statistical energy. A common
practice is to represent the energy gap by the Z-score of
the native state energy with respect to the distribution of
the decoy state energies, namely,

Z=
Enative –Edecoy

�Edecoy

, (9)

in which Edecoy and �Edecoy
denote the average and the root

mean squared variation of the energies of the decoys,
respectively. Usually a number of training proteins are
considered, each associated with a native state and a
number of decoy states. Then the Z-score averaged over

the training proteins is optimized. For example, such a
negative Z-score could be minimized with respect to the
set of pair-wise statistical energy terms fuoptab ðrÞ,a,b∈
atom  typesg to obtain an optimum set of pair-wise terms,
namely,

fuoptab ðrÞ,a,b∈atom  typesg

¼ argmin
fuabðrÞ ,a,b∈atom  typesg

Z[fuabðrÞ,a,b∈atom  typesg]

(10)

Usually, stochastic optimization techniques such as
Monte Carlo simulated annealing or genetic algorithm
are used to solve the optimization problem.
The optimization approach toward constructing statis-

tical energy function could also be thought of as using the
following variational assumption as an explicit restraint
on the energy function: the native conformational states
should be of the lowest energy as compared with all non-
native conformational states, and a good statistical energy
function should reproduce this. Although in principle this
restraint alone could be sufficient to uniquely determine
the interactions, in practice such sufficiency is always
compromised by approximations. The most consequential
approximations include, but not limited to, the represen-
tation of the enormous number of non-native conforma-
tional states with a relatively small number of decoy
conformations, and the restriction of the interaction to be
of special forms so that efficient energy evaluation and
parameter optimization can be executed. The eventual
choices of how to implement these approximations are of
critical importance for the accuracy and efficiency of the
final model. With such factors generally recognized, there
have been continuous and diverse research efforts
investigating different ways to produce decoy structures
and various functional forms with parametrization
schemes for the statistical energy function [32,33,37].

Miscellaneous issues

Correlated coordinates

For transferability and for ease of estimation, a statistical
energy is often defined as a summation of individual
energy terms that are of simple forms. For example, the
most common energy terms are one dimensional func-
tions, each using an inter-particle distance as the variable.
With such simple choice of coordinate variables, the
variables for different energy terms may be significantly
correlated. Simply add these energy terms together to
compose a total energy function is in principle not
justified. For example, because of the covalent connec-
tions between the atoms contained in one residue, the
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different interatomic distances between atoms in two
residues are correlated and their distributions are not
independent from each other. One resulting caveat may be
the following: as the number of inter-atomic distances
between two residues is equal to the multiplication
between the numbers of atoms contained respectively in
the two residues, adding all the inter-atomic terms
together would lead to artificially strong interactions
between residues with large sidechains.
One possible way to resolve the inter-coordinate

correlation issue is to choose new, often collective (i.e.,
coarse-grained) coordinates as variables for the energy
function. For example, the problem of over counting
correlated inter-atomic distances may be mended by using
a single inter-residue statistical interaction term, although
information such as relative orientation between side
chains would then be left out if a simple inter-residue
distance is used as the variable. An alternative is to define
multi-dimensional energy terms that each depends on a
number of strongly correlated coordinate variables. For
example, the inter-residue interaction term can depend on
both distances and orientations [32,38–40], or simulta-
neously on multiple inter-atomic distances. The downside
is that the estimation of multi-dimensional distributions
can be much more complicated and less accurate than the
estimation of one-dimensional distributions.
Combining the statistical distribution-based and the

optimization-based approach can somewhat ease the
burdens on coordinate selection. For example, the total
energy may be treated as a weighted summation of energy
terms each based on a statistical distribution [18]. The
weights, which are subjected to optimization, may
account for some of the (unknown) extents of over
counting due to correlations.
Finally, correlations between local coordinate variables

(e.g., interatomic distances) with more global ones (e.g.,
radius of gyration) may be implicitly handled by
considering explicitly sampled reference sates. For
example, if a potential of mean force of the radius of
gyration is to be applied in conjunction with a set of local
interaction terms, either the reference distribution for the
local interaction terms should be sampled with a given
potential of mean force for the radius of gyration, or the
reference distribution for the radius of gyration should be
estimated with conformations sampled with given local
interaction terms [31].

Optimizing an energy funnel

Besides the energy gap between native and decoy states,
other objectives have been proposed for deriving
statistical energy functions variationally [29]. In a number
of studies, the supposedly funnel-shaped energy land-
scapes around the native states are considered as the

explicit objectives for optimization [41]. To define such
an objective, a structural metric is proposed to quantify
the deviation of decoy states from respective native states.
Then the correlation between this structural deviation and
the energy difference between respective decoy and
native states is maximized with respect to the energy
function parameters. The structural metric is usually
defined in a coarse grained manner, for example, as the
fraction of native inter-residue contacts in a decoy
structure. For the purpose of representing the conforma-
tional variations near the respective native states, the
decoy structures may be generated through deliberate
distortion of respective native structures. This can be
especially effective for the development of models for
protein-protein docking [42].
A statistical energy that produces a smooth funnel-

shaped energy landscape is advantageous in structural
modeling applications, as it may suffer less from the local
minimum problem. However, the underlying hypothesis
is somewhat less solid and the conformational ensemble
to represent the funnel should be considered carefully to
avoid introducing artifacts.

STATISTICAL ENERGY FUNCTIONS FOR
STRUCTURE-BASED SEQUENCE DESIGN

In protein design (Figure 3), design goals such as folding
into specific target structures or binding to specific partner
proteins are often encoded into effective energies as
functions of the amino acid sequence. Sequences that
minimize respective energy functions are identified and
proposed as design results to fulfill corresponding design
goals.

Deriving models based on statistical distributions

Analogizing sequence distributions to thermodynamics
distributions

While statistical interaction models for structural model-
ing may find, at least partially, theoretical foundations in
statistical mechanics or in the thermodynamics hypothesis
about protein native structures, it can be more difficult to
do so for statistical models for sequence design. Here we
invoke an alternative rational that is based on conditional
probability distributions.
We consider the problem of finding a sequence that

uniquely folds into an intended structure (we assume that
the intended structure is designable, namely, there exists
sequences that we are looking for). We transform the
problem into one about probabilities: based on the
observed sequences and structures of native proteins,
can we estimate a probability function that gives the
distribution of sequences associated with (or conditioned
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on) the intended structure? If we can do this, writing the
respective function as PðsequencejstructureÞ, we can try
to find the most probable sequence by maximizing this
conditional probability, namely,

sequenceopt= argmax
sequence

PðsequencejstructureÞ: (11)

The sought probability distribution is of many variables
or high dimensional: the amino acid residue type at every
variable sequence position is a variable. To make the
problem tractable, simplifications, which are essentially
assumptions about the forms and parameters of this
probability function, need to be made. We may analogize
this distribution to the thermodynamics equilibrium
distribution of a hypothetical physical system of a finite
number of particles, each in discretely allowed states:
every variable position of the protein corresponds to a
particle in the analogous system, while the amino acid
type at the position corresponds to the state of the particle.
In addition, we may consider the different structural
arrangements of the amino acid positions to be correspond
to different configurations of the imaginary discrete-state
particles, the energies and interactions of the particles
(and thus the total energy of the system) being dependent
not only on their states (amino acid types), but also on
their configurations (structure). With this analogy, we
may assume that the sequence distribution we are

interested in is of the same form as the equilibrium state
distribution of the hypothetical system, which is the
following Boltzmann distribution

PðsequencejstructureÞ � Pða1, a2, :::, aLjstructureÞ
=

1

Z
e – βEða1, a2, :::, aLjstructureÞ,

(12)

where L represents the total number of amino acid
positions (or the length of the peptide chain), ai with i∈
f1, 2, :::, Lg represents the amino acid type at position i,
b represents “temperature”, E represents “energy”, and
the partition function

Z=
X

a1

X

a2

:::
X

aL

e – βEða1, a2, :::, aLjstructureÞ, (13)

in which each summation is over the 20 types of
amino acid residue. With the above analogy, we may
formulate our assumptions on the basis of Eða1, a2, :::,
aLjstructureÞ instead of PðsequencejstructureÞ.

Estimating the one-residue and two-residue energies

Next, we assume that the total energy can be broken into
single body or one-residue terms, or the sum of single-
body and two-body or two-residue terms, ignoring the
remaining higher order interactions [10,16,43]. This leads

Figure 3. The basic process of protein sequence design. An effective energy as a function of the sequence needs to be
optimized with respect to sequence to achieve specific design goals, such as folding into a given three-dimensional structure, or
binding to a given target protein.
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to

Eða1, a2, :::, aLjstructureÞ �
XL

i=1

eiðaijstructureÞ

þ
XL – 1

i=1

XL

j=iþ1

eijðai, ajjstructureÞ:
(14)

The second, double summation term should be omitted if
only the single-body is to be considered.
Now we are at a position to consider how the individual

single-body and two-body energies are dependent on the
structure (or configuration of the imaginary particles). It is
reasonable to consider that these energies are only
dependent on the local structural environments and the
relative arrangements of the amino acid positions
involved, i.e.,

eiðajstructureÞ=~eiðaÞ, (15)

and

eijða, a0jstructureÞ=~eijða, a0Þ: (16)

We use ~ei to represent the one-position energy that
depends on the local structural environment of position i,
and ~eij to represent two-position energy that depends on
the local structural environments of both i and j, as well as
on the relative arrangements of the two positions. We
have replaced the variable notations ai,aj by a,a0,
respectively, as these variables no longer need to be
differentiated by sequence position indices.
It is somewhat straightforward to derive ~ei and ~eij from

a set of training protein structures and sequences, except
that one need to define certain representations of the
“local structural environment”, as well as of the “relative
arrangements”. Such representations are used to identify
positions in the training proteins of structural arrange-
ments (configurations) identical to position i or positions i
and j. Based on the previously introduced potential of
mean forces concept, the amino acid type-dependent
energy terms ~ei and ~eij are determined from the amino acid
type distributions ~�iðaÞ and ~�ijða,a0Þ at these positions.
Similar to Equation (6), the amino acid type variables
substituting the distance and variable, we have

~eiðaÞ=–
1

β
ln~�iðaÞ, (17)

and

~eijða,a0Þ=–
1

β
ln

~�ijða, a0Þ
�refij ða, a0Þ : (18)

In Equation (18), we use �refij ða, a0Þ=~�iðaÞ~�jða0Þ to
remove the contribution of one residue, local environment

dependent energies in the two residue term.

Deriving models based on optimization

Just as in structural modeling where the energy gap
between native and non-native structures can be used as
an objective to optimize the potential, in sequence design,
the energy gap between native sequences and alternative
ones can also be used to optimize the potential. This
approach was first adopted by RosettaDesign [20,24]. In
general, we can write a sequence design energy function
with a certain set of undetermined parameters Θ, as Eðs
equencejstructure, ΘÞ (for example, in RosettaDesign,
the Θ included the relative weights of different energy
terms, as well as the reference energies of different residue
types). To determine Θ, an objective related to the energy
differences between native and non-native sequences of
training proteins is chosen. The energy differences should
be calculated with Eðsequencejstructure, ΘÞ. For non-
native sequences, the most commonly considered are
single residue changes. For each position i in a set of
training protein structures, we may calculate the energies
associated with each of the 20 amino acid types at that
position, εiðajΘÞ, and look at the probability of the native
amino acid type a0i according to a Boltzmann distribution
based on the energies,

piða0i jΘÞ=
X

a

e – βεiðajΘÞ
" # – 1

e – βεiða
0
i jΘÞ: (19)

Then the objective for optimization may be formed as

ΩðΘÞ=lnLðΘÞ=ln∏
i
piða0i jΘÞ=

X

i

lnpiða0i jΘÞ: (20)

The optimization problem

Θopt= argmax
Θ

ΩðΘÞ (21)

may be solved with stochastic optimization techniques
such as simulated annealing or genetic algorithms.
Objectives altered from Equations (19)–(20) can be

used. For example, instead of the Boltzmann probability,
the rank of the native residue type in the 20 residue types
according to energy may be considered. Either the
averaged rank of all positions or the fraction of positions
at which the native type is ranked as the lowest can be
considered as objectives for optimization. As these
objectives are strongly correlated, optimization of any
them may do the job equally well, and their resulting
differences in a final energy model may no longer be
critical as compared with effects of other approximations
of the model.
By limiting the non-native sequences for consideration

to single residue substitutions, we are assuming that the
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basic form of Eðsequencejstructure, ΘÞ can already
capture the defects of non-native sequences that deviate
significantly from the native ones, and the refinement ofΘ
is needed for the fine tuning of accuracy. In the context of
sequence design, this fine tuning can be critical for
accuracy because sequence design is prone to small
sequence errors and there are enormous number of
possibilities for such small errors.

Miscellaneous issues

Extracting structure features

In Equations (11)–(16), structural features most informa-
tive [44] about compatible sequences should be extracted
from the overall structures to condition the amino acid
type distributions. For conditions of one residue distribu-
tions, commonly employed local structure features
include secondary structure type, solvent exposure,
backbone conformation, and so on. For two-residue
distributions, previously the most commonly used feature
is inter-residue distance.
One issue that has often been overlooked is the

correlated dependence of amino-acid preferences on
different structural features. For example, given the
amino acid type distribution conditioned on the secondary
structure type and the distribution conditioned on the
solvent exposure, their product (normalization assumed)
does not necessary produce the distribution conditioned
on both features. Thus a proper way is to consider the
distribution jointly conditioned on both features. The joint

dependence of residue pair preference on both local
structural features and relative positioning in three
dimensional space was the reason for us in the ABACUS
model to define a two-residue term Equations (16) and
(18) that depends on not only the relative positioning of
the two residues, but the respective local structural
environments as well [16].

Class-based and neighbor-based statistics

In many studies, statistical analysis was performed by
classifying the training data according to a selected
structural feature. We may call this as class-based
statistics [44–46]. For example, residue positions might
be classified according to their solvent exposure into
exposed or buried classes (often more classes were
defined). For each class of position the respective amino-
acid distribution could be determined. During design a
position in the intended structure would be classified in
the same manner and the corresponding distribution
applied. With this approach, positions with intermediate
properties would be described poorly. An alternative is
the neighbor-based statistics [16,47], in which neighbors
of respective design targets are searched in the structural
feature space. The target is always located at the center of
the utilized training data. Figure 4 illustrates differences
between the two approaches to deriving single residue
statistics that depends on a one-dimensional structural
coordinate.
The neighbor-based statistics is especially suitable for

considering joint dependences on different structural

Figure 4. Example structure-dependent amino acid energies derived with class-based (top) and neighbor-based
approach (bottom). This energy term as a function of residue type is assumed to be dependent on only one structural coordinate.

It is difficult (easy) to extend the cluster-based (neighbor-based) approach to include simultaneous or joint dependences on multiple
structural coordinates.

164 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Haiyan Liu



features [16]: defining a similarity metric in a higher-
dimensional space is much easier and probably much
more robust than defining classes within a higher-
dimensional distribution. In addition, the similarity cutoff
can be chosen adaptively based on accumulated size of
the training neighbors, balancing between the size and the
relevance of training samples [16]. In ABACUS, we have
applied neighbor-based statistics with adaptive similarity
cutoffs to find one-residue dependences on solvent
exposure as well as to two-residue dependences on spatial
arrangements. In the later the root mean square deviations
of all backbone atoms is used as the similarity metric,
treating relative orientations in a more or less natural and
unbiased manner.

Positive design and negative design

If we assume the energy function for sequence design
represents a true physical energy (in many current
sequence design programs, at least some of the terms in
the overall model are rooted in true physical energies),
sequence design by minimizing this energy function is a
form of “positive design”. Physically, the requirements on
a protein molecule to uniquely fold into a particular three-
dimensional structure is that the intended structural state
should be of the lowest energy as compared with any
other possible structural states, or formally,

EðstructureintendedjsequenceÞ£EðstructureanyjsequenceÞ
(22)

The goal of sequence design is to find sequences that
satisfy Equation (22). For this purpose, to consider
only the intended structural state and the associated
EðstructureintendedjsequenceÞ would not be enough. We
also need to know, for a candidate sequence, if there exist
any other structural states that are of lower energy than the
intended structural state. Thus, both positive design
(namely, stabilizing the intended structural state) and
negative design [47] (that is, destabilizing alternative,
unintended structural states) should be considered. Most
current sequence design researches has focused on
positive design, how to realize negative design generally
remaining elusive. Some kind of “average” negative
design may have been implicated by trying to solve the
following optimization problem instead of trying to find
sequences satisfying Equation (22),

sequenceopt= argmin
sequence

[EðstructureintendedjsequenceÞ

–Eref ðsequenceÞ]: (23)

Here Eref ðsequenceÞ depends only on the sequence and is
usually a summation over the energies of individual
residue, which depend solely on residue type. It could be

argued that this term in Equation (23) can substitute Eðs
tructureanyjsequenceÞ in Equation (22) on average. In
practice, the reference energy is assumed to be a sum of
residue-type specific constant energies over all residues,
the constant energies determined through parameter
optimization.

TESTING AND VERIFICATION

There have been many established benchmark sets to
assess and compare different statistical models for
structural modeling. A wide range of structural modeling
tasks are covered, including comparative modeling, fold
recognition, de novo folding, as well as complex structure
prediction. In such cases, comparing the computationally
modeled structures with existing experimentally-deter-
mined structures would usually constitute a stringent test
if the respective experimental information has been
unknown or unconsidered by the modeler.
The test or assessment of sequence design models is

quite different. There usually exist an enormous number
of possible solutions that satisfy the design specifications
(for example, there are many protein sequences that fold
into an intended structure). Thus comparing designed
sequences with existing ones does not tell much. Any
stringent test must comprise new experiments to verify
the specific design results. In other words, theoretical tests
are always built on hypotheses or assumptions with
known flaws. For example, sequence recovery rate is
often considered as a criterion in sequence redesign tests,
although we know that high recovery rate does not equal
to good design. De novo structural modeling on designed
sequences has also been used as an assessment tool
[16,48]. However, current de novo modeling aimed at
finding the right fold for an input foldable sequence,
not at discriminating between foldable and unfoldable
sequences. Despite these and possibly other caveats,
theoretical tests can be carried out in large scales, and they
are economic for comparing different models. The results
of theoretical test can be meaningful if looked at
statistically but not individually [16]. Thus systematic
theoretical assessments should play important roles for
the progressive development of biomolecular design
methods.

CONCLUDING REMARKS

In last decades, enormous amount of biomolecular
sequence and structure data have been accumulated
through the extensive efforts of molecular biologists and
structural biologists from around the globe. It has been
more than 20 years since approaches to extract systematic
and quantitative models about sequence-structure rela-
tionship were proposed. Data-based structural modeling
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approaches have become more-or-less mature and found
wide applications. On the other hand, we believe that
data-based biomolecular design is still in its infancy.
Compared with 20 years ago, the amount of available data
have increased by at least two orders of magnitudes. In the
meantime, the speed for data-accumulation still keeps
increasing rapidly. Besides these, new experimental
techniques can be adopted to support model development
with more efficient and extensive feedbacks. For example,
in ref. [16], we have used a general approach to assess and
improve the foldability of designed proteins without
tedious and expensive protein expression and purification.
With these continuing improvements, we expect to see
new developments of protein design to address many
currently difficult problems, such as the design of protein
fold or of novel molecular recognition interface.
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