Skip to main content

Advertisement

Log in

An adaptive nonlinear control strategy for a stand-alone permanent magnet synchronous generator driven by a variable speed wind turbine

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents a simple control structure using rotor flux oriented vector technique for a stand-alone permanent magnet synchronous generator (PMSG) associated to PWM rectifier, PWM DC–DC converter and PWM inverter. The DC–DC converter feeding an electronic load is controlled to maintain the dc-bus voltage at a desired constant value. The isolated PMSG is assumed to be driven by a variable speed wind turbine. A sliding mode control strategy has been developed to regulate the direct axis current, ensure maximum power tracking issue as well dc-bus voltage regulation. The online estimation of the rotor flux using sliding mode concept is provided. The control and estimator stability analysis is based on Lyapunov theory. Simulation results, carried out in Matlab/Simulink software, are presented to demonstrate the effectiveness of the proposed control method when the control system operates under load variations and parameters uncertainties. The proposed adaptive control can be used in remote area where wind speed is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sniders A, Straume I (2008) Simulation of electrical machine system with permanent magnet synchronous generator. Eng Rural Dev 29:97–102

    Google Scholar 

  2. Dambur L, Bezrukov V, Pugachev V, Johanson U (1994) On the use of the permanent magnet motor as a generator for the wind-power plant (WPP). Latv J Phys Tech Sci 5:63–67

    Google Scholar 

  3. Chang L (2002) Systèmes de conversion de l’énergie éolienne. IEEE Canadian Review 1–5

  4. Messaoud M, Abdessamed R (2011) Modeling and optimization of wind turbine driving permanent magnet synchronous generator. Jordan J Mech Ind Eng 6:489–494

    Google Scholar 

  5. Belakehal S, Bentounsi A, Merzoug M, Benalla H (2010) Modélisation et commande d’une génératrice synchrone à aimants permanents dédiée à la production de l’énergie éolienne. Revue des Energies Renouvelables 13:149–161

    Google Scholar 

  6. Chennoufi H, Lamri L, Nemmour AL, Khezzar A, (2010) Contrôle d’une génératrice synchrone à aimants permanents dédiée à la conversion de l’énergie éolienne par la commande directe du couple. Revue des Energies Renouvelables SMEE’10 Bou Ismail Tipaza, 115–124

  7. Merzoug MS, Benalla H, Louze L (2011) Nonlinear control of permanent magnet synchronous generators ( PMSG) using feedback linearization. Revue des Energies Renouvelables 14:357–367

    Google Scholar 

  8. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40:26–36

    Article  Google Scholar 

  9. Utkin VI, Guldner J, Shi J (1999) Sliding mode control in electromechanical systems. CRC Press LLC, New York

    Google Scholar 

  10. Kenné G, Ahmed-Ali T, Nkwawo H, Lamnabhi-Lagarrigue F (2005) Robust rotor flux and speed control of induction motors using on-line time-varying rotor resistance adaptation. Proceeding of the 44th IEEE conference on decision and control, and European control conference,CDC-ECC’05, Seville, Spain

  11. Kenné G, Ahmed-Ali T, Lamnabhi-Lagarrigue F, Arzande A (2007) Real-time implementation of rotor flux and speed control of induction motors using on-line rotor resistance and load torque adaptation. Book of the selected papers of the joint CTS-HYCON Workshop, 15:341–362 Paris, France, July 2006, Ed. by ISTE Publishing Knowledge, ISBN: 978 1 905209 65 1

  12. Bekakra Y, Ben Attous D (2014) DFIG sliding mode control fed by back-to-back PWM converter with DC-link voltage control for variable speed wind turbine. Front Energy 8:345–354

    Article  Google Scholar 

  13. Merzoug MS, Benalla H, Louze L (2012) Sliding mode control (SMC) of permanent magnet synchronous generators (PMSG). Energy Procedia 18:43–52

    Article  Google Scholar 

  14. Hostettler J, Wang X (2015) Sliding mode control of a permanent magnet synchronous generator for variable speed wind energy conversion systems. Syst Sci Control Eng 3:453–459

    Article  Google Scholar 

  15. Ciampichetti S, Corradini ML, Ippoliti G, Orlando G, (2011) Sliding mode control of permanent magnet synchronous generators for wind turbines. IEEE IECON, 37th annual conference on IEEE industrial electronics society 740–745

  16. Li-Xia S, Zhe W, Feng-Ling H, Feng Y (2014) A chattering-free terminal sliding mode control of direct-drive PWM for wind generation system. IEEE IECON, 4th annual IEEE international conference on cyber technology in automation, control and intelligent systems, 296–301

  17. Benelghali SE, Benbouzid MEH, Charpentier JF, Ahmed-Ali I, Munteanu T (2011) Experimental validation of a marine current turbine simulator: application to a permanent magnet synchronous generator-based system. IEEE Trans Ind Electron 58:118–126

    Article  Google Scholar 

  18. Valenciaga F, Puleston PF (2008) High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator. IEEE Trans Energy Convers 23:860–867

    Article  Google Scholar 

  19. Heier S (1998) Grid integration of wind energy conversion systems. Wiley, Hoboken

    Google Scholar 

  20. Hadri-Hamida A, Zerouali S, Allag A (2013) Toward a nonlinear control of an AC-DC-PWM converter dedicated to induction heating. Front Energy 7:140–145

    Article  Google Scholar 

  21. Thongam JS, Bouchard P, Beguenane R, Okou AF, Merabet A, (2011) Control of variable speed wind energy conversion system using a wind speed sensorless optimum speed MPPT control cethod. IEEE IECON. 37th annual conference of the IEEE industrial electronics 855–860

  22. Lin CH (2013) Recurrent modified elman neural network control of permanent magnet synchronous generator system based on wind turbine emulator. AIP J Renew Sustain Energy 5:053103

    Article  Google Scholar 

  23. Deraz SA, Abdel Kader FE (2013) A new control strategy for a stand-alone self-excited induction generator driven by a variable speed wind turbine. Renew Energy 51:263–273

    Article  Google Scholar 

  24. Beltran B, Ahmed Ali T, Hachemi Benbouzid ME (2009) High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Ind Electron 56:3314–3321

    Article  Google Scholar 

  25. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, New york

    MATH  Google Scholar 

  26. Utkin VI (1992) Sliding modes in optimization and control. Springer, Berlin

    Book  MATH  Google Scholar 

  27. Haque ME, Muttaqi KM, Sayeef S, Negnevitsky MM (2008) Control of a stand alone variable speed wind turbine with a permanent magnet synchronous generator. IEEE IECON. Energy society general meeting. Pittsburgh, pp. 1–9

  28. Mancilla-David F, Ortega R (2012) Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems. Control Eng Pract 20:173–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godpromesse Kenne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenne, G., Douanla, R.M. & Pelap, F.B. An adaptive nonlinear control strategy for a stand-alone permanent magnet synchronous generator driven by a variable speed wind turbine. Int. J. Dynam. Control 5, 1103–1113 (2017). https://doi.org/10.1007/s40435-016-0257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0257-7

Keywords

Navigation