Skip to main content
Log in

On coexisting bifurcations and hyperchaos in a class of diode-based oscillators: a case study

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The bi-stability property and transition to hyperchaos of a class of semiconductor diode-based oscillators are investigated. A simple 4D hyperchaotic oscillator proposed by Lindberg and co-workers (referred to as the LMT oscillator hereafter) is considered as a paradigm. Due to the usage of stable oscillators coupled through a non-linear resistor, this circuit has better reproducibility and higher stability and thus may be exploited for secure communication applications. In contrast to current approaches based on piecewise-linearization methods, a smooth mathematical model is derived to investigate the dynamics of the oscillator. The bifurcation analysis shows some striking transitions including period-adding, period doubling and torus breakdown routes to chaos when monitoring the control parameters in tiny ranges. More interestingly, some regions of the parameter space corresponding to the coexistence of different attractors are revealed. This phenomenon was not reported previously and thus represents an enriching contribution concerning the behaviour of such types of oscillators. The transitions to hyperchaos are contrasted with equivalent scenarios obtained from an experimental implementation of the circuit in PSpice yielding a very good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Filali RL, Benrejeb M, Borne P (2004) On observer-based secure communication design using discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 19:1424–1432

    Article  MathSciNet  Google Scholar 

  2. Tamasevicius A, Namajunas A, Cenys A (1996) Simple 4D chaotic oscillator. Electron Lett 32(11):957–958

    Article  Google Scholar 

  3. Tamasevicius A, Cenys A, Mykolaittis G, Namajunas A, Lindberg E (1997) Hyperchaotic oscillators with gyrators. Electron Lett 33(7):542–544

    Article  Google Scholar 

  4. Tamasevicius A, Cenis A (1998) Hyperchaos in dynamical systems with a monoactive degree of freedom. Chaos Solitons Fractals 9(1–2):115–119

    Article  MathSciNet  MATH  Google Scholar 

  5. Murali K, Tamasevicius A, Mykolaitis G, Namajunas A, Lindberg E (2000) Hyperchaos system with unstable oscillators. Nonlinear Phenom Complex Syst 3:7–10

    Google Scholar 

  6. Lindberg E, Murali K, Tamasevicius A (2001) Hyperchaotic circuit with damped harmonic oscillators. In: Proceedings on the 2001 IEEE international symposium on circuits and systems, vol 2. pp 759–762

  7. Barbara C, Silvano C (2002) Hyperchaotic behaviour of two bi-directionally Chua’s circuits. Int J Circuit Theory Appl 30:625–637

    Article  MATH  Google Scholar 

  8. Cenys A, Tamasevicius A, Baziliauskas A, Krivickas R, Lindberg E (2003) Hyperchaos in coupled Colpitts oscillators. Chaos Solitons Fractals 17:349–353

    Article  MATH  Google Scholar 

  9. Matsumoto T, Chua LO, Kobayashi K (1996) Hyperchaos: laboratory experiment and numerical confirmation. IEEE Trans Circuits Syst 11:1143–1147

    MathSciNet  Google Scholar 

  10. Effati S, Saberi Nik H, Jajarmi A (2013) Hyperchaos control of the hyperchaotic chen system by optimal control design. Nonlinear Dyn 73:499–508

    Article  MathSciNet  MATH  Google Scholar 

  11. Rossler OE (1979) An equation for hyperchaos. Phys Lett A 71:155–157

    Article  MathSciNet  MATH  Google Scholar 

  12. Keihui S, Xuan L, Cong Z, Sprott JC (2012) Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn 69:1383–1391

    Article  MathSciNet  Google Scholar 

  13. Mykolaitis G, Tamasevicius A, Cenis A, Bumeliene S, Anagnostopoulos AN, Kalkan N (2003) Very high and ultrahigh frequency hyperchaotic oscillators with delay line. Chaos Solitons Fractals 17:343–347

    Article  MATH  Google Scholar 

  14. Hanias MP, Giannaris G, Spyridakis AR (2006) Time series analysis in chaotic diode resonator circuit. Chaos Solitons Fractals 27:569–573

    Article  MATH  Google Scholar 

  15. Kengne J, Chedjou JC, Kenne G, Kyamakya K (2012) Dynamical properties and chaos synchronization of improved Colpitts oscillators. Commnun Nonlinear Sci Numer Simul 17:2914–2923

    Article  MathSciNet  MATH  Google Scholar 

  16. Kengne J, Chedjou JC, Fono VA, Kyamakya K (2012) On the analysis of bipolar transistor based chaotic circuits: case of a two-stage Colpitts oscillators. Nonlinear Dyn 67:1247–1260

    Article  Google Scholar 

  17. Maggio GM, Di Bernardo M, Kennedy MP (2000) Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator. IEEE Trans Circuits Syst I 47:1160–1177

    Article  MathSciNet  MATH  Google Scholar 

  18. Tetsushi U, Akihisa T (2012) Bifurcation analysis of a simple 3D oscillator and chaos synchronization of its coupled systems. Chaos Solitons Fractals 45:1460–1468

    Article  Google Scholar 

  19. Maggio GM, De Feo O, Kennedy MP (1999) Nonlinear analysis of the Colpitts oscillator and application to design. IEEE Trans Circuits Syst I Fundam Theory Appl 46:1118–1130

    Article  MATH  Google Scholar 

  20. Fozin TF, Kengne J, Pelap FB (2014) Theoretical analysis and adaptive synchronization of a 4D hyperchaotic oscillator. J Chaos 429809

  21. Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos 23(1):1330002

    Article  MathSciNet  MATH  Google Scholar 

  22. Molaie M, Jafari S, Sprott JC, Golpayegani SMRH (2013) Simple chaotic flows with one stable equilibrium. Int J Bifurc Chaos 23(11):1350188

    Article  MathSciNet  MATH  Google Scholar 

  23. Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Phys D 16:285–317

    Article  MathSciNet  MATH  Google Scholar 

  24. Masoller C (1994) Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys Rev A 50:2569–2578

    Article  Google Scholar 

  25. Cushing JM, Henson SM, Blackburn CC (2007) Multiple mixed attractors in a competition model. J Biol Dyn 1(4):347–362

    Article  MathSciNet  MATH  Google Scholar 

  26. Vaithianathan V, Veijun J (1999) Coexistence of four different attractors in a fundamental power system model. IEEE Trans Circuits Syst I 46(3):405–409

    Article  Google Scholar 

  27. Lindberg E, Murali K, Tamasevicius A (2005) The smallest transistor-based nonautonomous chaotic circuit. IEEE Trans Cicuits Syst 52(10):661–664

    Google Scholar 

  28. Hamill DC (1993) Learning about chaotic circuits with SPICE. IEEE Trans Edu 36:28–35

    Article  Google Scholar 

  29. Kengne J, Chedjou JC, Fozin TF, Kyamakya K, Kenne G (2014) On the analysis of semiconductor diode based chaotic and hyperchaotic chaotic circuits—a case study. Nonlinear Dyn 77:373–386

    Article  Google Scholar 

  30. Cuomo KM, Oppenheim AV (1993) Circuit implementation of synchronized chaos with applications to communications. Phys Rev Lett 71:65

  31. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books Publishing, New York

    MATH  Google Scholar 

  32. Suzuki T, Saito T (1994) On fundamental bifurcations from a hysteresis hyperchaos generator. IEEE Trans Circuits Syst I 41:876–884

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kengne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, J., Tsotsop, M.F., Mbe, E.S.K. et al. On coexisting bifurcations and hyperchaos in a class of diode-based oscillators: a case study. Int. J. Dynam. Control 5, 530–541 (2017). https://doi.org/10.1007/s40435-016-0247-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0247-9

Keywords

Navigation