
Vol.:(0123456789)

Current Ophthalmology Reports (2024) 12:13–22 
https://doi.org/10.1007/s40135-024-00322-5

Incidence and Mitigation of Corneal Pseudomicrocysts Induced 
by Antibody–Drug Conjugates (ADCs)

Ethan S. Lindgren1 · Rongshan Yan1 · Onur Cil2 · Alan S. Verkman3 · Matilda F. Chan1,4 · Gerami D. Seitzman1,4 · 
Asim V. Farooq5 · Laura A. Huppert6 · Hope S. Rugo6 · Paula R. Pohlmann7 · Janice Lu8 · Laura J. Esserman6,9 · 
Neel D. Pasricha1,4

Accepted: 1 March 2024 / Published online: 25 March 2024 
© The Author(s) 2024

Abstract
Purpose of Review  This study is to highlight the incidence of corneal pseudomicrocysts in FDA-approved antibody–drug 
conjugates (ADCs), and success of preventive therapies for pseudomicrocysts and related ocular surface adverse events (AEs).
Recent Findings  ADCs are an emerging class of selective cancer therapies that consist of a potent cytotoxin connected to a 
monoclonal antibody (mAb) that targets antigens expressed on malignant cells. Currently, there are 11 FDA-approved ADCs 
with over 164 in clinical trials. Various AEs have been attributed to ADCs, including ocular surface AEs (keratitis/keratopa-
thy, dry eye, conjunctivitis, blurred vision, corneal pseudomicrocysts). While the severity and prevalence of ADC-induced 
ocular surface AEs are well reported, the reporting of corneal pseudomicrocysts is limited, complicating the development 
of therapies to prevent or treat ADC-related ocular surface toxicity.
Summary  Three of 11 FDA-approved ADCs have been implicated with corneal pseudomicrocysts, with incidence ranging 
from 41 to 100% of patients. Of the six ADCs that reported ocular surface AEs, only three had ocular substudies to investi-
gate the benefit of preventive therapies including topical steroids, vasoconstrictors, and preservative-free lubricants. Current 
preventive therapies demonstrate limited efficacy at mitigating pseudomicrocysts and other ocular surface AEs.

Keywords  Antibody–drug conjugates · Corneal pseudomicrocysts · Microcyst-like epithelial changes · Ocular surface 
adverse events · Ocular surface epithelium · Cornea · Conjunctiva

Introduction

Antibody–drug conjugates (ADCs) comprise a growing cat-
egory of targeted cancer therapy [1••, 2••]. The first ADC 
was approved in 2000 for acute myeloid leukemia (gemtu-
zumab ozogamicin, Mylotarg) [3]. Today, there are 11 FDA-
approved ADCs on the market designed to treat hematologi-
cal malignancies and solid tumors, with an additional 164 
in the clinical trial pipeline [4–7]. In concept, ADCs offer 
increased selectivity towards cancer cells while minimizing 
the systemic and off-target toxicities accompanied by tradi-
tional chemotherapies [8, 9]. Despite the designed selectivity 
of ADCs, adverse events (AEs) are still common in various 
tissues, including the eye [9]. The most prevalent forms of 
ADC-related ocular surface AEs are keratitis/keratopathy, 
dry eye, conjunctivitis, blurred vision, and corneal pseu-
domicrocysts, previously known as microcyst-like epithelial 

changes (MECs) [10]. This review focuses on the prevalence 
and medical management of corneal pseudomicrocysts in 
addition to other ocular surface AEs.

An ADC is composed of a monoclonal antibody (mAb) 
that is fused to a highly potent cytotoxic payload by a chemi-
cal linker (Fig. 1). mAbs bind to an antigen expressed on 
tumor cells enabling the efficient delivery of the cytotoxic 
payload to the tumor [11]. Each component of an ADC has 
the potential to play a role in toxicity [11–13].

ADC treatment is typically administered every 1 to 
4 weeks via 30-min intravenous infusion [14•, 15]. The 
success of ADCs can be hindered by resistance to ADCs 
or severe systemic AEs across the body that necessitates 
discontinuation of therapy [1••]. Resistance to ADCs may 
be related to the rate of ADC internalization, changes to 
antigen expression on the target cell, or resistance to the 
payload [16].

Ocular surface AEs are clinically relevant due to their 
ability to interrupt ADC treatment. One study evaluating the 
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safety profile of belantamab mafodotin (Blenrep) found that 
72% of patients developed corneal pseudomicrocysts. These 
pseudomicrocysts caused dose delays in 47% of patients and 
dose reductions in 25%. Corneal pseudomicrocysts necessi-
tated that 3% of patients discontinue ADC infusions [17••]. 
These dose modifications highlight the importance of cor-
neal pseudomicrocyst mitigation.

Corneal Pseudomicrocysts

Corneal pseudomicrocysts are microcyst-like structures 
located in the corneal epithelium’s basal layer [10]. Cor-
neal histology suggests that these represent intracytoplastic 
inclusions within pre-apoptotic or apoptotic epithelial cells 
[18]. Corneal pseudomicrocysts initially emerge bilaterally 
around the limbus in a ring-like pattern and migrate toward 
the central cornea with subsequent drug infusions (Fig. 2) 
[10, 17••, 19, 20•]. Anterior segment optical coherence 
tomography (AS-OCT) and in vivo confocal microscopy 
(IVCM) can identify these structures as hyperreflective tiny 
circles. Notably, true cystic structures would be hypore-
flective [20•, 21]. Patients with corneal pseudomicrocysts 
commonly report symptoms such as blurred vision, dry eye, 
irritation, tearing, and photophobia. However, some patients 
with corneal pseudomicrocysts can be asymptomatic [17••, 
20•]. Peripherally located corneal pseudomicrocysts cause 
relative central corneal flattening and induce a hyperopic 
shift, while centrally located cysts cause relative peripheral 
flattening, leading to a myopic shift [22•].

Patients receiving ADC treatment may develop corneal 
pseudomicrocysts as early as 3 weeks after the start of infu-
sions [22•, 23]. These corneal changes are reversible upon 
the discontinuation of treatment within a matter of weeks to 

months (2–32 weeks) [17••, 21, 22•, 24–26]. In our experi-
ence, some patients take up to 9 months for complete resolu-
tion of corneal pseudomicrocysts. However, resumption of 
ADC treatment can cause a rapid reappearance of corneal 
pseudomicrocysts that may take longer to resolve after ADC 
treatment stops [19]. The success of topical steroids, vaso-
constrictors, and preservative-free artificial tears (PF-ATs) 
as prophylaxis or treatment for corneal pseudomicrocysts 
varies [17••, 27•, 28]. Dose reductions, delays, or discon-
tinuations are currently the only known efficacious strategy 
for mitigation [2••, 10, 27•, 29, 30].

Literature Review

Corneal pseudomicrocysts is the accepted current termi-
nology for the cyst-like corneal changes induced by ADCs. 
However, the nomenclature for corneal pseudomicrocysts 
is inconsistent in the literature. This review specifically 
evaluates corneal pseudomicrocysts reported in the lit-
erature and summarizes preventive therapies. Publications 
were searched for on two databases: PubMed and Drugs@
FDA. Search terms included individual FDA-approved ADC 
names (including belantamab mafodotin) and various terms 
used interchangeably to characterize corneal pseudomicro-
cysts. These terms include the following: pseudomicrocysts, 
microcyst-like epithelial changes (MECs), microcyst epithe-
lial keratopathies (MEKs), cornea cysts, corneal epithelial 
deposits, corneal epithelial microcysts, keratopathy, micro-
cyst corneal lesions, and intra-epithelial opacities. 

Results

Table 1 summarizes the incidence and prevalence of the ocu-
lar surface AEs associated with ADC treatment. There are 
12 ADCs listed, 11 of which are FDA-approved and used in 
clinical practice as of January 2024. Additional ADCs have 
received FDA-approval but have been removed from distri-
bution for safety or economic reasons. Belantamab mafodo-
tin (Blenrep) was previously FDA-approved but then with-
drawn from the US market after failing to meet certain FDA 
requirements during phase III trials. Of the various ocular 
surface AEs, a special focus is given to corneal pseudomi-
crocysts. Three (25%) of the ADCs listed in Table 1 induced 
corneal pseudomicrocysts, and six (50%) were reported to 
induce other ocular surface AEs, of which dry eye was the 
most commonly reported (6, 100%). Keratopathy/keratitis 
was the second most common ocular surface AE (3, 50%) 
followed by conjunctivitis (2, 33%). Of the six ADCs with 
ocular surface AEs, only three (belantamab mafodotin, mir-
vetuximab soravtansine, tisotumab vedotin) had ocular sub-
studies that evaluated the efficacy of preventive therapies 

Fig. 1   Structure of ADCs. There are three well-defined components: 
antibody, chemical linker, and cytotoxic payload. Of the current FDA-
approved ADCs, all have IgG1 or IgG4 mAbs. Payloads, which either 
damage DNA or disrupt microtubule formation during mitosis, are 
linked to the mAb via a chemical linker, which are defined as cleav-
able or non-cleavable. Created with BioRender.com 
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for ocular surface AEs. Of these substudies, only one dem-
onstrated that topical steroids could mitigate ADC-induced 
corneal pseudomicrocysts. Another found that a regimen of 
vasoconstrictors, topical steroids, and PF-ATs reduced the 
rate of conjunctivitis and ocular AEs.

Mechanism of ADC‑Induced Ocular Toxicity

Characteristics unique to both the ocular surface (cornea 
and conjunctiva) and ADCs are suspected to play a role in 
toxicity of ADCs [31, 32]. The ocular surface is likely sus-
ceptible to ADC-related toxicity due to a rapidly regenerat-
ing population of limbal stem cells, diversity of cell surface 
receptors, and rich blood supply [10, 11]. ADCs’ structure 
may contribute to toxicity due to linker instability or expres-
sion of the target antigen in ocular tissues [11]. Notably, 

of the three ADCs that induce corneal pseudomicrocysts, 
one has a target antigen that is expressed in both the cornea 
and conjunctiva (HER2), one has a target antigen expressed 
solely in the conjunctiva (FRα), and one has a target antigen 
that is not expressed on the ocular surface (BCMA) [33].

Off-target toxicity of ADCs on the ocular surface can be 
attributed to various mechanisms (Fig. 3). Macropinocyto-
sis, a form of non-specific endocytosis known as “cell drink-
ing,” facilitates the internalization of ADCs or the decon-
jugated payload [10, 31]. Fc and C-type lectin receptors 
enable endocytosis in a receptor specific manner [10, 31]. 
Internalization of an ADC in normal tissue can lead to the 
premature release of the cytotoxin due to linker instability 
or linker degradation by normal metabolism in the cell [23]. 
Additionally, the payload may passively diffuse into a cell 
due to non-charged, membrane permeable residues on the 

Fig. 2   Manifestation of corneal 
pseudomicrocysts. A Examina-
tion of the ocular surface with 
diffuse illumination appears 
normal. B High magnification 
sclerotic scatter show numerous 
peripheral corneal pseudomi-
crocysts. C Corneal topography 
demonstrates peripheral ring-
like steepening corresponding 
to the area of corneal pseudomi-
crocysts 
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payload [34]. Another mechanism is the “bystander effect” 
where after an ADC is internalized and degraded by a cell, 
a fraction of the payload can release from the dead cell into 
the extracellular space and kill neighboring cells, regardless 
of their target antigen expression (35).

Drug-antibody ratio (DAR), or drug loading, is another 
significant player in ADC toxicity. Each antibody is attached 
to a certain number of payloads; FDA-approved ADCs range 
between DAR 2 and 8 [1••]. Mouse studies have demon-
strated that a higher DAR has a lower therapeutic index [36]. 
In monkey studies, a higher DAR was associated with an 
earlier onset and a higher incidence of corneal toxicity [37•].

Novel Preventive Therapies

Several preventive therapies have been investigated to miti-
gate ADC-induced corneal toxicity to varying success.

Topical steroid eye drops have been used with various 
ADCs because they are hypothesized to slow down limbal 
stem cell regeneration and, in theory, make the cornea less 
susceptible to toxicity [28]. Outcomes from steroid eye drops 
have ranged from no benefit to complete clearance of cor-
neal pseudomicrocysts [28, 30, 38]. Variation in response to 
steroids can likely be attributed to biological variability in 
the patient population and differing mechanisms of toxicity 
[2••]. In our experience, topical steroid eye drops do not 
address the underlying corneal pseudomicrocysts but may 
alleviate some eye pain symptoms. Vasoconstricting eye 
drops and cold compresses were used to mitigate ocular AEs 
during infusions of Tisotumab vedotin (Tivdak) by reduc-
ing drug uptake in the cornea. Although vasoconstrictors 
reduced the rate of conjunctivitis, their effect on corneal 
pseudomicrocysts has not been reported [39]. An ocular sub-
study on the ADC depatuxizumab mafodotin (ABT-414), an 
EGFR mAb conjugated to the tubulin inhibitor monomethyl 
auristatin F (MMAF) via a stable maleimidocaproyl link, 
found no difference in the prevalence of ocular surface AEs 
in eyes treated with topical steroids with and without vaso-
constrictors. This study also evaluated the use of a bandage 
contact lens for ocular surface AEs and observed no pro-
tective benefit, with nearly half the patients progressing to 
develop grade 3 ocular surface AEs [40]. PF-ATs can pro-
vide relief for certain ocular surface AEs, such as dry eye, 
but have no preventive effect for the pseudomicrocysts [2••]. 
Therapies like antihistamines are used to alleviate ocular 
AEs such as conjunctivitis, but no data has been reported 
on their ability to mitigate corneal pseudomicrocysts [20•].

Zhao et al. [41] investigated macropinocytosis as a poten-
tial culprit of ADC-induced ocular toxicity. Specifically, 
they studied cell proliferation in human corneal epithelial 
cell (HCEC) culture exposed to modified versions of ADCs 

and macropinocytosis inhibitors. ADCs were modified to 
alter positive charges and hydrophobic residues by attaching 
polyethylene glycol, polyglutamate residues, or by mutat-
ing amino acids on the ADC. In a separate experiment, 
cells were exposed to unmodified ADCs with and without 
macropinocytosis inhibitors. In both conditions, cell viabil-
ity of HCECs increased when treated with macropinocytosis 
inhibitors or modified ADCs.

Calm Water Therapeutics (Rochester, NY) demonstrated 
in a pilot study the ability of polylysine-graft-polyethylene 
glycol (PLL-g-PEG) to inhibit the uptake of ADCs by 
HCECs in vitro. Specifically, PLL-g-PEG dose dependently 
decreased ADC uptake in HCECs exposed to rituximab-
MMAF, an ADC in development. PLL-g-PEG is proposed 
to create electrostatic interference between ADCs and off-
target cell receptors to mitigate ocular surface toxicities 
[42]. Future studies are needed to investigate PLL-g-PEG 
in patients.

Loberg et al. [37•] assessed the corneal toxicity in mon-
keys caused by depatuxizumab mafodotin (ABT-414). They 
administered depatuxizumab, the anti-EGFR mAb that is the 
antibody component of the ADC, systemically and topically 
via eye drops. Their rationale was to saturate the binding 
of depatuxizumab to EGFR to inhibit the ADC (Depatuxi-
zumab mafodotin) binding EGFR expressed in the cornea. 
They also investigated the success of topical preventive 
therapies, such as vasoconstrictors, tear stimulants/anti-
inflammatories, and lubrication with antioxidants, none of 
which were successful.

Kreps et al. [43] reported the use of 20% autologous 
serum tear eye drops 6 times daily in one patient being 
treated with trastuzumab emtansine (Kadcyla) who had 
developed corneal pseudomicrocysts. Despite ongoing ADC 
treatment for 14 months, the patient had no worsening of 
the corneal pseudomicrocysts while using 20% autologous 
serum tear eye drops.

In our experience, scleral lenses offer an effective solu-
tion to improve the eye pain and blurry vision associated 
with corneal pseudomicrocysts. However, scleral lenses 
are logistically challenging to utilize given the significant 
time needed for lens fitting, steep learning curve to place 
and remove the lenses, and high out-of-pocket expense to 
patients.

Conclusion

ADCs are a promising and increasingly utilized targeted 
cancer therapy that are associated with corneal pseudomi-
crocysts and various ocular surface AEs. As a result of this 
increasing popularity of ADCs, there is a need to standardize 
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the reporting and treatment of corneal pseudomicrocysts 
induced by ADCs. Current preventive therapies for corneal 
pseudomicrocysts (e.g., topical steroids, vasoconstrictors, 
PF-ATs) have limited efficacy, but corneal pseudomicrocysts 
are reversible with modification of ADC therapy, including 
dose delay, dose reduction, and drug cessation. There is a 
need for unambiguous ocular surface AE grading scales to 
ensure accurate and timely detection of ADC-related AEs. 
This will facilitate clear communication between eye care 
providers and oncologists to prevent and mitigate ocular 
surface toxicity through ADC dose modifications. Future 
research on ADCs is needed to elucidate the mechanisms 
of ocular surface toxicity and to explore novel therapeutic 
approaches.
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