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Abstract In this paper we show that if a ring R has finite Goldie dimension, then every finitely generated ideal
of R consisting of zero-divisors has non-zero annihilator. We also construct an example of a ring of infinite
Goldie dimension such that above condition does not hold.

Mathematics Subject Classification (2010) 16P60 · 16D25

1 Introduction

Different algebraic systems play a substantial role in studies of some problems of analysis. One can find some
examples of them in [2,3]. Such systems reflect selected properties of analytic objects. Their properties, studied
with use of algebraic tools, can be applied to infer properties of the analytic objects. The motivations for the
studies presented in this paper come from some problems of control theory. In [2,3] Bartosiewicz used the
ring of distributions K (cf. [3], p. 299) in studies of solution of some functional-differential equations. For that
purpose, he studied zero-divisors of the ring K .

Recall that a ∈ R is a zero-divisor of a commutative ring R if and only if there is a nonzero element b ∈ R
such that ab = 0. A zero-divisor is called proper if it is not equal to 0.

For a subset X of R, the annihilator of X in R is defined as annR(X) = {a ∈ R | a X = Xa = 0}. Clearly
a ∈ R is a zero-divisor if and only if annR(a) �= 0.

Bartosiewicz proved that the zero-divisors of the ring K form an ideal of this ring. He obtained this as a
consequence of the following more general property which is satisfied by the ring K :

Proposition 1.1 If a commutative ring R satisfies the condition:
(�) every finite set of zero-divisors of R has a nonzero annihilator

then the set of zero-divisors of R is an ideal of the ring R.
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Bartosiewicz asked (private communication), whether the converse holds, i.e.
(P1) If the set of zero-divisors of a commutative ring R is an ideal of the ring R then R satisfies the condition

(�).
The answer to the above question is negative, because there are examples of rings with ideals consisting entirely
of zero-divisors and such that the ideals contain finite subsets with zero annihilator. General examples of such
rings are presented in [7,16]. In Sect. 3 we give one more, as a simpler and better illustration of the situation
considered in this paper.

It is well-known (cf. [1]) that the set of non-units of a commutative ring is an ideal if and only if the ring is
local (i.e. has a unique maximal ideal). It seems that obtaining of similar characterization for zero-divisors is
difficult. In this paper, we reduce that problem to the following question: for which classes of rings the condi-
tion (�) is satisfied? The most natural class of rings satisfying this condition is the class of Noetherian rings. It
is well-known that if I is an ideal in a Noetherian ring and if I consists of zero-divisors, then the annihilator of
I is non-zero. Therefore, zero-divisors form an ideal in the class of Noetherian rings. In Sect. 3, we generalize
that fact to the class of rings with finite Goldie dimension. Precisely, we show that the condition (�) holds for
each proper ring with finite Goldie dimension (Theorem 3.4). For different classes of rings, condition (�) was
considered by other authors, e.g. [8,11,15]. In our paper the obtained result concerns the class of rings that was
never examined before. Moreover, in many cases, it is not difficult to verify whether a ring has a finite Goldie
dimension. Therefore, Theorem 3.4 is a useful tool for studying the condition (�). For example, this theorem
can be applied to the ring of distributions K mentioned above for which the Goldie dimension is finite.

The related topics to the one examined in this paper one can find in [4,9,12–14].

2 Preliminaries

All rings in this paper are associative and commutative but we do not assume that each ring has an identity
element. To denote that I is an ideal of a ring R we write I � R. For undefined terms and used facts we refer
the reader to [1,10].

Note that if the set of zero-divisors of a ring R forms an ideal I , then I is a ring without identity consisting
of zero-divisors. Thus it is quite natural to consider rings without identity.

It is easy to check that the (P1) is equivalent to the following question.
(P2) Is it true that the annihilator of every finite set is non zero for every commutative ring consisting of

zero-divisors?
Now we recall some notions and a result, which will be used later.
An ideal I of a ring R is called essential if for every non-zero ideal J of R, I ∩ J �= 0.
A non-zero ideal I of a ring R is called uniform if every nonzero ideal of R contained in I is essential in I .
A ring R is said to have finite Goldie dimension if it does not contain infinite direct sums of non-zero

ideals.
It is well-known (cf. [5,6]) that a ring R has a finite Goldie dimension if and only if it contains a direct

sum I = I1 ⊕ · · · ⊕ In of uniform ideals Ii and I is an essential ideal of R.
It is clear that Noetherian rings have a finite Goldie dimension.

3 Results

In this section we will construct a ring with infinite Goldie dimension, giving a negative answer to (P2). We
also show that (P2) has a positive answer for rings with finite Goldie dimension.

Suppose that R is a ring and M is a left and right R-module. M is called R-bimodule if for arbitrary
a, b ∈ R and m ∈ M , a(mb) = (am)b.

If R is a ring and V is an R-bimodule, then the set
{(

r v
0 r

)
| r ∈ R, v ∈ V

}

is a ring with respect to canonical matrix addition and multiplication.

Example 3.1 Let P = F[x, y] be the polynomial ring in two commutative variables x, y over a field F and
let A = x P + y P . Clearly, A is a commutative ring (without identity) and for every w ∈ A, wP � P and
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P/wP has a natural structure of P- bimodule. Let N be the P-bimodule
⊕

0 �=w∈A P/wP . Obviously N is

also A-bimodule so we can form the ring R =
{(

a n
0 a

)
| a ∈ A, n ∈ N

}
.

Note that for arbitrary w ∈ A and n ∈ N ,

(
w n
0 w

)(
0 ew

0 0

)
=

(
0 0
0 0

)
, where ew is the element of N ,

whose wth component is equal to 1 and all other components are equal to 0. Thus R consists of zero-divisors.

Now we will show that annR

({(
x 0
0 x

)
,

(
y 0
0 y

)})
= 0. Indeed, take

(
a n
0 a

)
∈ annR

({(
x 0
0 x

)
,(

y 0
0 y

)})
. Then ax = ay = 0, so a = 0. Moreover xn = yn = 0. This means that for every 0 �= w ∈ A,

xnw = ynw = 0, where nw denotes the w-component of N . However each nw is of the form pw + wP
for some pw ∈ P . Since xnw = ynw = 0 we get that xpw ∈ wP and ypw ∈ wP . Let xpw = wp1 and
ypw = wp2 for some p1, p2 ∈ P . Then xypw = yxp1 = xwp2, so yp1 = xp2. This implies that p1 = xp′

1
and p2 = yp′

2 for some p′
1, p′

1 ∈ P . Consequently, xpw = wxp′
1, so pw = wp′

1. This however means that

pw + wP = wP , so each component of n is equal to 0. Therefore n = 0 which shows that

(
a n
0 a

)
= 0 and

we are done.

One easily sees that the above constructed ring R contains the infinite direct sum
⊕

0 �=w∈A

(
0 P/wP
0 0

)

of ideals, i.e., the Goldie dimension of R is infinite.
It is not hard to find an example of non-Notherian ring of finite Goldie dimension.
Let F be a field and let X ∪ {θ} be a set of symbols {xα}, where α is an element of the set of positive real

number with zero. Multiplication in X is defined as

xαxβ = xα+β if α, β > 0

x0xα = θ = xαx0 if α ≥ 0

θxα = θ = xαθ.

Under this operation the set X ∪ {θ} is a commutative semigroup. Then, let P = F0[X ] be the contracted
semigroup algebra of X over F . It is clear that P has a finite Goldie dimension. In order to prove that P is
non-Noetherian, it is enough to take the elements xα for α > 0 and consider the ideals Iα = xα P .

Now we will show that the condition (�) holds for each proper ring with finite Goldie dimension. We will
need the following two lemmas which are in fact known. The latter one is just a very classical result, which one
can find in [1], the former is not so classical but also known. We include their simple proofs for completeness.

Recall that an ideal I of a ring R is called prime if for arbitrary elements x, y ∈ R \ I , xy �∈ I .

Lemma 3.2 If I is a uniform ideal of a ring R and J is an ideal of R then ĪJ = {x ∈ J | for some
0 �= y ∈ I, xy = 0} is a prime ideal of J .

Proof For every a ∈ Ī J annR(a) ∩ I �= 0. Since I is a uniform ideal of R, for arbitrary 0 �= x, y ∈ Ī J ,
T = annR(x) ∩ annR(y) ∩ I �= 0. Hence T (x + y) = 0, so x + y ∈ Ī J . It is clear that for arbitrary x ∈ Ī J
and r ∈ J , xr ∈ Ī J . Consequently, Ī J is an ideal of J .

Suppose that x, y ∈ J and xy ∈ Ī J . Then there exists 0 �= z ∈ I such that zxy = 0. If zx = 0 then x ∈ Ī J .
If zx �= 0, then, since zx ∈ I , y ∈ Ī J . These show that the ideal Ī is prime. 
�
Lemma 3.3 If I1, . . . , In are prime ideals of a ring R and R = I1 ∪ · · ·∪ In, then R = Ii for some 1 ≤ i ≤ n.

Proof We can assume that the union I1 ∪· · ·∪ In is irredundant and then we have to show that n = 1. Suppose
that n ≥ 2. Take for arbitrary 1 ≤ i ≤ n, xi ∈ Ii \(I1 ∪· · ·∪ Ii−1 ∪ Ii+1 ∪· · ·∪ In) and set x = x1 + x2 · · · · · xn .
Since x2, · · · , xn �∈ I1 and I1 is a prime ideal, x2 · · · · · xn �∈ I1, so x �∈ I1. For every 2 ≤ i ≤ n, x2 · · · · · xn ∈ Ii
but x1 �∈ Ii , so x �∈ Ii . Thus x �∈ I1 ∪ · · · ∪ In = R, a contradiction. 
�
Theorem 3.4 If a proper ring R has a finite Goldie dimension, then every finitely generated ideal of R con-
sisting of zero-divisors has non-zero annihilator.
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Proof Since R is of finite Goldie dimension it contains an essential ideal I = I1 ⊕ · · · ⊕ In , where I1, . . . , In
are uniform ideals of R. Let J =< a1, a2, . . . , ak > be an ideal generated by a1, a2, . . . , ak ∈ R consisting
of zero-divisors. Since J consists of zero-divisors, for every x ∈ J , annR(x) �= 0. Obviously annR(x) is an
ideal of R, so essentiality of I implies that I ∩ annR(x) �= 0. Thus there are xi ∈ Ii , not all equal 0, such that
(x1 +· · ·+ xn)x = 0. However xi x ∈ Ii , so xi x = 0 for all 1 ≤ i ≤ n. This shows that if xi �= 0, then x ∈ Ī J i .
Consequently J = Ī J1 ∪ · · · ∪ ¯IJn . Applying Lemmas 3.2 and 3.3 we get that J = Ī J i for some 1 ≤ i ≤ n.
In particular a1, . . . , ak ∈ Ī J i , so annR(a j ) ∩ Ii �= 0 for 1 ≤ j ≤ k. However Ii is a uniform ideal of R, so
T = annR(a1) ∩ · · · ∩ annR(ak) ∩ Ii �= 0. Clearly T ⊆ annR({a1, . . . , ak}) and we are done. 
�
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