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Abstract The bootstrap category in E-theory for C∗-algebras over a finite space is
embedded into the homotopy category of certain diagrams of K-module spectra. There-
fore it has infinite n-order for every n ∈ N. The same holds for the bootstrap category
in G-equivariant E-theory for a compact group G and for the Spanier–Whitehead
category in connective E-theory.
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1 Introduction

Triangulated categories arise in various contexts such as algebraic geometry, represen-
tation theory and algebraic topology. This motivates their distinction into algebraic,
topological (and non-algebraic), and exotic (that is, non-topological) triangulated cat-
egories; see [17]. Every algebraic triangulated category is topological. The converse
is false; topological triangulated categories may exhibit certain torsion phenomena
which cannot occur in algebraic triangulated categories. The most well-known such
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phenomenon is the fact that the endomorphism ring of the mod-2 Moore spectrum is
not annihilated by multiplication by 2.

In [16,17], Schwede introduced the notion of n-order for triangulated categories (a
non-negative integer or infinity for every n ∈ N). This is an invariant (up to triangulated
equivalence) that can often be used to distinguish non-algebraic triangulated categories
from algebraic ones by measuring the occurrence of the afore-mentioned torsion phe-
nomena: Schwede shows that the n-order of every algebraic triangulated category is
infinite for every n ∈ N; on the other hand, he proves that, if p is a prime number, the
Spanier–Whitehead category in stable homotopy theory has p-order equal to p − 1.

One aim of this note is to determine the n-order of certain triangulated categories
arising in C∗-algebra theory. More specifically, we are interested in the bivariant
homology theories

• connective E-theory for separable C∗-algebras, denoted by bu, as defined by
Thom [18],

• G-equivariant E-theory for separable C∗-algebras with a continuous action of a
compact group G by ∗-automorphisms, denoted by EG , as defined by Guentner,
Higson and Trout [5],

• ideal-related E-theory for separable C∗-algebras over a finite space X , denoted
by E(X), as defined by Dadarlat and Meyer [3].

These give rise to triangulated categories denoted by bu, EG and E(X), respec-
tively. The Spanier–Whitehead category SWbu ⊂ bu in connective E-theory is the
thick triangulated subcategory of bu generated by the C∗-algebra C of complex num-
bers. The bootstrap categories BG

E ⊂ EG and BE(X) ⊂ E(X) are the ℵ0-localizing
subcategories generated by the objects with one-dimensional underlying C∗-algebra,
respectively. (While there are no non-trivial G-actions by ∗-automorphisms on C,
there are as many mutually non-isomorphic ways to turn C into a C∗-algebra over X
as there are points in the space X ).

Our computational result is the following; it may be regarded as a generalization of
Schochet’s observation in [12, Proposition 2.4], stating that K-theory with coefficients
in Z/n is annihilated by multiplication by n

Theorem 1.1 The triangulated categories SWbu, BG
E and BE(X)have infinite n-order

for every n ∈ N.

The theorem is an application of the following result from [17, Example 2.9], which
is based on results due to Tyler Lawson and to Vigleik Angeltveit [1].

Theorem 1.2 Let R be a commutative symmetric ring spectrum such that π∗R is
torsion-free and concentrated in even dimensions. Let A be an R-algebra spectrum.
Then the derived category of A-module spectra has infinite n-order for every n ∈ N.

In order to apply this theorem, we need to embed our bootstrap categories into
appropriate derived categories of module spectra. The theorem then follows because
the n-order can only increase when we pass to a triangulated subcategory. For connec-
tive E-theory and G-equivariant E-theory we get the desired embeddings essentially for
free from the literature. More specifically, we use a result from Andreas Thom’s thesis
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in the case of connective E-theory and a construction of Dell’Ambrogio–Emerson–
Kandelaki–Meyer in the G-equivariant case. In both cases, Theorem [1] may be applied
with A = R. This is not surprising because the categories bu and EG are monoidal.

In the case of ideal-related E-theory, we have to work a little harder to obtain the
desired embedding. We apply the proposition with R equal to the Dell’Ambrogio–
Emerson–Kandelaki–Meyer spectrum K = K(C) for the trivial group and A equal to
a certain K-algebra spectrum KX which may be called the incidence algebra over K
of the partially ordered set X (a finite T0-space is essentially the same as a partially
ordered set). A construction of this form in the special case of upper-triangular 3 × 3-
matrices is indicated by Schwede in [15, Section 4.5].

The category of KX -module spectra is Quillen equivalent to the category of dia-
grams of K-module spectra indexed by X . The obtained embedding

BE(X) ↪→ Der(KX) ∼= Ho
(
Mod(K)X )

is interesting in its own right: it sets the stage for Morita theory, allowing us to construct
equivalences BE(X) ∼= BE(Y ) for many pairs of finite spaces (X,Y ). This will enable
us to treat many spaces X at once when answering questions such as: is there a
manageable homology theory on BE(X) computing the E(X)-groups via a universal
coefficient theorem? These consequences will be pursued elsewhere.

Some preliminaries We refer to [6] as a general reference on model categories and
to [13,14] for the theory of symmetric spectra. Recall that if M is a stable model
category, then its homotopy category Ho(M), defined as the localization of M at
its weak equivalences, is naturally triangulated. The stable model category of module
spectra over a ring spectrum R is denoted by Mod(R); its homotopy category is called
the derived category of R-module spectra and denoted by Der(R). We will use several
times that an R-module map is a weak equivalence if it induces isomorphisms on
stable homotopy groups.

We write C ∈∈ C to denote that C is an object in a category C. The C∗-algebra of
complex numbers is denoted by C.

2 Connective E-theory

In his thesis [18], Andreas Thom defines connective E-theory for separable
C∗-algebras. This is the universal triangulated homology theory on separable C∗-
algebras satisfying matrix stability (and full excision); it is denoted by bu. The category
of separable C∗-algebras with bu-groups as morphisms is denoted by bu; it carries a
triangulation structure inherited from the (C∗-algebra) stable homotopy category; see
[18, Section 3.3 and Section 4.2].

Definition 2.1 The Spanier–Whitehead category SWbu ⊂ bu in connective E-theory
is the thick triangulated subcategory generated by the C∗-algebra C.

It is shown in [18, Theorem 5.1.2] that there is a triangulated functor

KH : bu → Der(bu)
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inducing a graded ring isomorphism bu∗(C,C) ∼= Der(bu)(bu,bu)∗, where bu :=
KH (C) is a commutative symmetric ring spectrum equivalent to the connective
K-theory spectrum (see [18, Propositions 5.1.1 and D.1.1]).

Proposition 2.2 The functor KH : bu → Der(bu) is fully faithful on the Spanier–
Whitehead category SWbu.

Proof This is a standard argument; compare for instance [15, Proposition 3.10].
Consider the full subcategory of bu consisting of the objects B such that the map
bu∗(C, B) → Der(bu)

(
bu,KH (B)

)
∗ is an isomorphism. This subcategory contains C

and is closed under suspension. It is also closed under exact triangles because KH

is triangulated. Hence it contains SWbu. A similar argument shows that, for fixed
B ∈∈ SWbu, the map bu∗(A, B) → Der(bu)

(
KH (A),KH (B)

)
∗ is bijective for all

A ∈∈ SWbu. Hence KH is fully faithful on SWbu. �	
Proposition 2.3 The essential image of the restriction of the functor KH to SWbu is
a triangulated subcategory of Der(bu).

Proof It suffices to prove that every morphism in the image of the restriction of KH

to SWbu has a cone in the image of the restriction of KH . Such a cone can be obtained
as the image of a cone of the lifting of f to bu. �	

Recall from [18, Theorem 5.1.2] that

π∗bu ∼= Der(bu)(bu,bu)∗ ∼= bu∗(C,C) ∼= Z[u],

where u is of degree two. Together with the previous propositions this shows that
Theorem 1.2 may be applied to prove Theorem 1.1 for the category SWbu.

Remark 2.4 We have restricted ourselves to the Spanier–Whitehead subcategory of bu
because we do not expect bu to possess all countable coproducts.

3 G-equivariant E-theory

Let G be a compact group. A general reference for G-equivariant E-theory is [5].

Lemma 3.1 If a functor from C∗sepG maps all EG-equivalences to isomorphisms,
then it factors through the canonical functor C∗sepG → EG.

Proof First, we observe that every element in EG
0 (A, B) can canonically be written

as the composition of a G-equivariant ∗-homomorphism and the inverse of another
(it is straight-forward to check that the construction in [2, Section 25.6] goes through
in the G-equivariant case). To construct the factorization, we can thus proceed as in
the proof of the universal property of E-theory; see [2, Proof of 25.6.1] for details in
the non-equivariant but analogous case. �	

Now we consider the functor KG : C∗sepG → Mod
(
KG(C)

)
constructed in

[4, Section 3.3]. The construction in the non-equivariant case appeared earlier in [7].
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Proposition 3.2 The composition

C∗sepG KG−−→ Mod
(
KG(C)

) → Der
(
KG(C)

)

descends to a triangulated functor

KG : EG → Der
(
KG(C)

)
.

Proof By the previous lemma, it suffices to check that the functor KG : C∗sepG →
Mod(KG(C))maps EG -equivalences to weak equivalences. This is a consequence of
the natural isomorphism

Der
(
KG(C)

)(
KG(C),KG(B)

)
∗ ∼= EG∗ (C, B)

following from (3.6) and (3.7) in [4] and the identification EG∗ (C, B) ∼= KKG∗ (C, B).
The fact that KG is triangulated follows from [4, Remark 3.6] as in the proof of
[4, Theorem 3.8]. �	
Definition 3.3 The bootstrap category (of the tensor unit) BG

E ⊂ EG in G-equivariant
E-theory is the ℵ0-localizing subcategory generated by the C∗-algebra C with the
trivial G-action.

Remark 3.4 Results in [8] indicate that, if G is a (higher-dimensional) torus, then
the class BG in fact provides the correct domain for a potential universal coefficient
theorem.

Proposition 3.5 The functor KG : EG → Der
(
KG(C)

)
is fully faithful on the boot-

strap category BG
E .

Proof The proof again proceeds along the lines of [15, Proposition 3.10]. We have to
check that the category EG has countable coproducts and that the functor KG preserves
them. The former is shown in [5, Proposition 7.1]. To see the latter, we must show that
the canonical map

lim−→
n∈N

KG

(
n⊕

k=1

Ak

)

→ KG

( ∞⊕

k=1

Ak

)

is a weak equivalence for every sequence of objects Ak ∈∈ EG . Since G-equivariant
K-theory preserves countable direct sums, this map induces isomorphisms on stable
homotopy groups and is thus a weak equivalence. �	

As in the previous section, the essential image of the restriction of KG to BG
E is a

triangulated subcategory of Der
(
KG(C)

)
.

The spectrum KG(C) is by construction a commutative symmetric ring spectrum.
In order to apply Theorem 1.2 to prove Theorem 1.1 in the case of BG

E , we need to
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check that the stable homotopy groups π∗KG(C) are torsion-free and concentrated in
even degrees. We may identify

π∗KG(C) ∼= Der
(
KG(C)

)(
KG(C),KG(C)

)
∗ ∼= EG∗ (C,C) ∼= R(G)⊗ Z[β, β−1].

Here R(G) denotes the representation ring of the group G concentrated in degree zero
and β is an invertible element of degree 2 (see [2, Proposition 20.4.4]). Recall that the
underlying Abelian group of the representation ring of G is freely generated by the
isomorphism classes of simple G-modules (see for instance [11]). In particular, R(G)
is torsion-free.

4 Ideal-related E-theory

Let X be a finite T0-space and let C∗sep(X) denote the category of separable
C∗-algebras over X as defined in [9]. In particular, a C∗-algebra over X is a pair
(A, ψ) consisting of a C∗-algebra A and a continuous map from the primitive ideal
space of A to X . Every open subset U of X naturally gives rise to an ideal A(U ) in A.
Let E(X) denote the version of E-theory for C∗-algebras over X defined by Dadarlat
and Meyer [3]. We refer to E(X) as ideal-related E-theory.

Lemma 4.1 If a functor from C∗sep(X)maps all E(X)-equivalences to isomorphisms,
then it factors through the canonical functor C∗sep(X) → E(X).

Proof By [3, Lemma 2.26] (and its proof) every element in E0(X; A, B) can canoni-
cally be written as the composition of a ∗-homomorphism over X and the inverse of
another. To construct the factorization, we can then proceed again as in [2, Proof of
25.6.1]. �	

We denote the smallest open neighbourhood of a point x in X by Ux . We consider X
as a partially ordered set by setting x ≤ y if and only if Ux ⊇ Uy . In order to make
sense of diagrams indexed by X , we regard X as a category with a unique morphism
from x to y if and only if x ≥ y. For a category C, the diagram category CX consists
of all functors from X to C.

Definition 4.2 Let D : C∗sep(X) → C∗sepX be the functor taking a C∗-algebra A
over X to the diagram D(A) in C∗sep given by D(A)(x) = A(Ux ) and the ideal inclu-
sions D(A)(x → y) = (

A(Ux ) ↪→ A(Uy)
)
. Let K : C∗sep → Mod(K(C)) denote

the functor of Dell’Ambrogio–Emerson–Kandelaki–Meyer with trivial group G (see
[4, Section 3.3]). In the following we abbreviate K := K(C). Let

KX : C∗sep(X) → Mod(K)X

be the composition of D with pointwise application of K.

We equip the category Mod(K)X with the stable model structure described in [6,
Theorem 5.1.3]; the weak equivalences and fibrations are defined pointwise.
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Proposition 4.3 The composition

C∗sep(X) KX−−→ Mod(K)X → Ho
(
Mod(K)X

)

descends to a triangulated functor

KX : E(X) → Ho
(
Mod(K)X

)
.

Proof Every E(X)-equivalence is in particular a pointwise E-equivalence. Hence it is
taken to a pointwise weak equivalence in Mod(K)X . By definition, every pointwise
weak equivalence in Mod(K)X is a weak equivalence and thus becomes invertible in

Ho
(
Mod(K)X

)
. The existence of the factorization now follows from Lemma 4.1. The

fact that the induced functor KX is triangulated is a consequence of the observations
in [4, Remark 3.6]. �	

For x ∈ X , we let ixC denote the C∗-algebra of complex numbers together with the
map taking its unique primitive ideal to the point x ∈ X . This is an object in C∗sep(X).
We set R = ⊕

x∈X ixC.
Let KX denote the endomorphism ring spectrum of a stably fibrant approximation of

KX (R). We call this symmetric (non-commutative) K-algebra spectrum the incidence
algebra of X over K. This construction is motivated by [15, Example 4.5(2)]. By [15,
Theorem 4.16], there is a Quillen equivalence between Mod(K)X and Mod(KX). In

particular, we will henceforth identify Ho
(
Mod(K)X

)
with Der(KX). We have

KX (ixC)(y) =
{

K for y ≤ x

∗ else

with all maps between non-trivial entries being identities. This yields a natural iden-
tification Hom

(
KX (ixC),M

) ∼= M(x) for every x ∈ X and M ∈∈ Mod(K)X . The
corresponding relation in E-theory is the adjunction E(X; ixC, B) ∼= E

(
C, B(Ux )

)

from [3, (4.3)]. It follows that the graded ring homomorphism from E∗(X,R,R)
to Der(KX)

(
KX (R),KX (R))∗ induced by the functor KX is an isomorphism and

that both graded rings are isomorphic to the tensor product of the (ungraded) integral
incidence algebra ZX with the ring of Laurent polynomials Z[β, β−1], where β has
degree 2. The incidence algebra ZX is the category ring of the universal pre-additive
category generated by the category X .

Definition 4.4 The bootstrap category BE(X) ⊂ E(X) is the ℵ0-localizing subcate-
gory generated by the object R.

Proposition 4.5 The functor KX : E(X) → Der(KX) is fully faithful on the bootstrap
category BE(X).

Proof The proof is essentially analogous to the one of Proposition 3.5. We use the
fact that ideal-related K-theory preserves countable inductive limits. �	
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As before, the essential image of the restriction of KX to BE(X) is a triangulated
subcategory of Der(KX) and the computation

π∗KX ∼= Der(KX)
(
KX (R),KX (R))∗ ∼= E∗(X;R,R) ∼= ZX ⊗ Z[β, β−1]

with ZX concentrated in degree zero and β of degree 2 shows that we can apply
Theorem 1.2 to prove Theorem 1.1 in the case of BE(X).

5 Conclusion

We have shown that certain triangulated categories related to C∗-algebras have infinite
n-order for every n ∈ N by relating them with certain ring spectra. This means that they
share many structural properties of algebraic triangulated categories, but it is not clear
whether they are actually algebraic. To conclude, we mention that in the specific case
of the derived category of K-module spectra there is an equivalence to an algebraic
triangulated category, but it is not known whether this equivalence is triangulated; see
[10, Theorem 3.1.4.(ii)].
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