Skip to main content

Advertisement

Log in

Evaluation of mucoadhesive nanoparticle based nasal vaccine

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

The main objective of this study was to prepare Hepatitis B surface antigen (HBsAg) loaded poly(lactic-co-glycolic acid) (PLGA), Trimethyl chitosan (TMC) as well as TMC-coated PLGA nanoparticles and compare their efficacy as nasal vaccine. The developed formulations were characterized for size, zeta potential, entrapment efficiency, mucin adsorption ability, Dentritic cells interaction, in vitro and in vivo studies. PLGA nanoparticles demonstrated negative zeta potential whereas TMC and PLGA–TMC nanoparticles showed higher positive zeta potential. Results indicated that TMC and PLGA–TMC nanoparticles demonstrated substantially higher mucin adsorption when compared to PLGA nanoparticles. The nanoparticles were nontoxic to isolated nasal epithelium. Immunogenicity increased as a function of particle size upon nasal administration. HBsAg encapsulated in PLGA–TMC particles elicited a significantly higher secretory (IgA) immune response compared to that encapsulated in PLGA and TMC particles. Similar to in vivo immune response data, fluorescent-labelled nanoparticles of smaller size are taken up more efficiently by rat alveolar macrophages compared to those of larger size. Results indicated that alum based HBsAg induced strong humoral but less mucosal immunity. However, PLGA–TMC nanoparticles induced stronger immune response at both of the fronts as compared to generated by PLGA or TMC nanoparticles. Present study demonstrates that PLGA–TMC nanoparticles with specific size range can be a better carrier adjuvant for nasal subunit vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida AJ, Alpar HO (1996) Nasal delivery of vaccines. J Drug Target 3:455–467

    Article  PubMed  CAS  Google Scholar 

  • Baca-Estrada ME, Foldvari M, Snider M (1999) Induction of mucosal immune responses by administration of liposome-antigen formulations and interleukin-12. J Interferon Cytokine Res 19:455–462

    Article  PubMed  CAS  Google Scholar 

  • Bal SM, Slütter B, van Riet E, Kruithof AC, Ding Z, Kersten GF (2009) Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release 142:374–383

    Article  PubMed  Google Scholar 

  • Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed 1(2):117–128

    Article  CAS  Google Scholar 

  • Brandtzaeg P (2011) Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am J Respir Crit Care Med 183:1595–1604

    Article  PubMed  Google Scholar 

  • Chandan T, Vivek G, Fakhrul A (2010) Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharma Res 27(5):905–919

    Google Scholar 

  • Cruz LF, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG et al (2010) Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC–SIGN in vitro. J Control Release 144(2):118–126

    Article  PubMed  CAS  Google Scholar 

  • Debin A, Kravtzoff R, Santiago JV, Cazales L, Sperandio S, Melber K (2002) Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine 20:2752–2763

    Article  PubMed  CAS  Google Scholar 

  • Dilip P, Amit KG, Sharad M, Neeraj M, Bhuvaneshwar V, Shailja T, Arvind KJ, Suresh PV (2010) Evaluation of mucoadhesive PLGA microparticles for nasal immunization. AAPS J 12(2):130–137

    Google Scholar 

  • Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(d, l,-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22(19):2406–2412

    Article  PubMed  CAS  Google Scholar 

  • Espuelas S, Gamazo C, Balnco-Prieto MJ, Irache JM (2007) Nanoparticles as adjuvant-vectors for vaccination in nanoparticulate drug delivery systems. Informa Healthc 166:317

    Google Scholar 

  • Evora C, Soriano I, Rogers RA, Shakesheff KN, Hanes J, Langer R (1998) Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J Control Release 51:143–152

    Article  PubMed  CAS  Google Scholar 

  • Fiebrig I, Harding SE, Rowe AJ, Hyman SC, Davis SS (1995) Transmission electron microscopy studies on pig gastric mucin and its interactions with chitosan. Carbohydr Polym 28(3):239–244

    Google Scholar 

  • Filipović-Grčić J, Škalko-Basnet N, Jalšienjak I (2001) Mucoadhesive chitosan-coated liposomes: characteristics and stability. J Microencapsul 18(1):3–12

    Google Scholar 

  • Fischer S, Uetz-von Allmen E, Waeckerle-Men Y, Groettrup M, Merkle HP, Gander B (2007) The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles. Biomaterials 28:994–1004

    Article  PubMed  CAS  Google Scholar 

  • Friede M, Aguado MT (2005) Need for new vaccine formulations and potential of particulate antigen and DNA delivery systems. Adv Drug Deliv Rev 57:325–331

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Siber GR (1995) Adjuvants for human vaccines-current status, problems and future prospects. Vaccine 13:1263–1276

    Article  PubMed  CAS  Google Scholar 

  • Gutierro I, Pedraz JL (2002) Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21:67–77

    Article  PubMed  CAS  Google Scholar 

  • Jaganathan KS, Suresh PV (2006) Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant Hepatitis B antigen administered intranasally. Vaccine 24:4201–4211

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Singh P, Mishra V, Vyas SP (2005) Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against Hepatitis B. Immunol Lett 101(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Jorissen M, Van der Schueren B, Tyberghein J, Van der Berghe H, Cassiman JJ (1989) Ciliogenesis and coordinated ciliary beating in human nasal epithelial cells cultured in vitro. Acta Otorhinolaryngol Belg 43:67–73

    PubMed  CAS  Google Scholar 

  • Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18:352–360

    Article  PubMed  CAS  Google Scholar 

  • Kaliner M, Shelhamer JH, Borson B, Nadel J, Patow C, Marom Z (1986) Human respiratory mucus. Am Rev Respir Dis 134:612–621

    PubMed  CAS  Google Scholar 

  • Kanchan V, Panda AK (2007) Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28(35):5344–5357

    Article  PubMed  CAS  Google Scholar 

  • Kiyono H, Fukuyama S (2004) NALT versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710

    Article  PubMed  CAS  Google Scholar 

  • Kotzé AF, Thanou MM, Lueben HL, De Boer AG, Coos Verhoef J, Junginger HE (1998) Enhancement of paracellular drug transport with highly quaternized N-Trimethyl chitosan chloride in neutral environments: In vitro evaluation in intestinal epithelial cells (Caco-2). J Pharm Sci 88(2):253–257

    Google Scholar 

  • Kwon YJ, Standley SM, Goh SL, Fréchet JMJ (2005) Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J Control Release 105:199–212

    Article  PubMed  CAS  Google Scholar 

  • Lehr C-M, Bouwstra JA, Schacht EH, Junginge HE (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78(1–3):43–48

    Google Scholar 

  • Lemoine D, Deschuyteneer M, Hogge F, Preat V (1999) Intranasal immunization against influenza virus using polymeric particles. J Biomater Sci Polym Ed 10:805–825

    Article  PubMed  CAS  Google Scholar 

  • Panyam J (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  PubMed  CAS  Google Scholar 

  • Peppas NA, Carr DA (2009) Impact of absorption and transport on intelligent therapeutics and nanoscale delivery of protein therapeutic agents. Chem Eng Sci 64:4553–4565

    Article  PubMed  CAS  Google Scholar 

  • Sayin B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO (2008) Mono-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm 363:139–148

    Article  PubMed  CAS  Google Scholar 

  • Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP (2006) Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28:112–125

    Article  PubMed  Google Scholar 

  • Slütter B, Plapied L, Fievez V, Alonso Sande M, des Rieux A, Schneider YJ (2009) Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J Control Release 138:113–121

    Article  PubMed  Google Scholar 

  • Somavarapu S, Alpar HO, Song CYS (1998) Biodegradable nanoparticles in nasal vaccine delivery: effect of particle size and loading. Proc Int Symp Control Release Bioact Mater 25:645–646

    Google Scholar 

  • Sun H, Pollock KG, Brewer JM (2003) Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21:849–885

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Yamagata Y, Misaki M, Taira K, Kurokawa T (2003) Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique. J Control Release 88:229–242

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Yamamoto H, Kawashima Y (2001) Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev 47(1):39–54

    Article  PubMed  CAS  Google Scholar 

  • Thiele L, Merkle HP, Walter E (2002) Phagocytosis of synthetic particulate vaccine delivery systems to program dendritic cells. Expert Rev Vaccines 1:215–226

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Gupta V, Ahsan F (2010) Particle size influences the immune response produced by Hepatitis B vaccine formulated in inhalable particles. Pharm Res 27(5):905–919

    Article  PubMed  CAS  Google Scholar 

  • Vajdy M, O’Hagan DT (2001) Microparticles for intranasal immunization. Adv Drug Deliv Rev 51:127–141

    Article  PubMed  CAS  Google Scholar 

  • Vila A, Sanchez A, Evora C, Soriano I, McCallion O, Alonso MJ (2005) PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm 292:43–52

    Article  PubMed  CAS  Google Scholar 

  • Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, Plebanski M (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Shantha Biotechnics (Hyderabad, India) for providing HBsAg antigen. We are thankful to Indian Institute of Chemical Technology for Providing the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Krishnakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnakumar, D., Kalaiyarasi, D., Bose, J.C. et al. Evaluation of mucoadhesive nanoparticle based nasal vaccine. Journal of Pharmaceutical Investigation 42, 315–326 (2012). https://doi.org/10.1007/s40005-012-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-012-0042-3

Keywords

Navigation