Skip to main content
Log in

Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The purpose of the present study was to isolate and identify the metal-resistant lactic acid bacteria from sediments of coastal aquaculture habitats for removal of cadmium and lead from ambience. Collected sediment samples were used to isolate the cadmium- and lead-resistant bacterial colonies by spread plate technique using agar media (De Man, Rogosa and Sharpe) supplemented with cadmium or lead at 50 mg/l. Isolates were identified by bacterial colony polymerase chain reaction and sequencing of 16S ribosomal deoxyribonucleic acid. Metal removing probiotic was determined by characterizing the lactic acid yield in culture media, viability in fish intestine, metal-resistant and metal-removal efficiencies. 16S ribosomal deoxyribonucleic acid sequencing data of five (Cd10, Cd11, Pb9, Pb12 and Pb18) and other all isolates clearly showed 99 % similarities to Enterococcus faecium and Bacillus cereus, respectively. The Pb12 exhibited higher lactic acid yield (180 mmol) than that of the remaining E. faecium strains and excellent viability without pathogenicity; therefore, further study was carried out using Pb12 strain. The selected Pb12 strain showed elevated metal resistant (minimum inhibitory concentrations 120 and 800 mg/l for cadmium and lead, respectively) and removal efficiencies [Cadmium 0.0377 mg/h/g and lead 0.0460 mg/h/g of cells (wet weight)]. From the viability and metal removal points of view, it can be concluded that isolated metal-resistant E. faecium Pb12 strains might be used as potential probiotic strains for removing heavy metals from fish intestinal milieu to control the progressive bioaccumulation of heavy metals in the fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026

    Article  CAS  Google Scholar 

  • Amundsen PA, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov YS (1997) Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 201(3):211–224

    Article  CAS  Google Scholar 

  • Anadon A, Martynes-Larranaga MR, Martynes MA (2006) Probiotic for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol 45(1):91–95

    Article  CAS  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2011) Heavy metals accumulation in plants growing on former tin mining catchment. Int J Environ Sci Technol 8(2):401–416

    CAS  Google Scholar 

  • Belimov AA, Ontzeas N, Safronova VI (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250

    Article  CAS  Google Scholar 

  • Brown MJ, Lester JN (1982) Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge-1. Effect of metal concentration. Water Res 16(11):1539–1548

    Article  CAS  Google Scholar 

  • Bunting SW, Pretty J, Edwards P (2010) Wastewater-fed aquaculture in the East Kolkata Wetlands, India: anachronism or archetype for resilient ecocultures? Rev Aquac 2(3):138–153

    Article  Google Scholar 

  • Campbell PGC (2006) Cadmium—a priority pollutant. Environ Chem 3(6):387–388

    Article  CAS  Google Scholar 

  • Edwards P (2005a) Demise of periurban wastewater-fed aquaculture? Urban Agric Mag 14:27–29

    Google Scholar 

  • Edwards P (2005b) Development status of, and prospects for, wastewater-fed aquaculture in urban environments. In: Costa-Pierce B, Desbonnet A, Edwards P, Baker D (eds) Urban aquaculture. CABI Publishing, Wallingford, pp 45–59

    Chapter  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46(8):834–840

    Article  CAS  Google Scholar 

  • Giller K, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil B Biochem 30(10–11):1389–1414

    Article  CAS  Google Scholar 

  • Gupta UC, Gupta SC (1998) Trace element toxicity relationships to crop production and livestock and human health: implications for management. Commun Soil Sci Plant Anal 29(11 & 14):1491–1522

    Article  CAS  Google Scholar 

  • Herranz C, Casaus P, Mukhopadhyay S, Martínez JM, Rodríguez JM, Nes IF, Hernández PE, Cintas LM (2001) Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiol 18(2):115–131

    Article  CAS  Google Scholar 

  • Hollis L, Hogstrand C, Wood CM (2001) Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal cadmium exposure in juvenile rainbow trout. Arch Environ Contam Toxicol 41(4):468–474

    Article  CAS  Google Scholar 

  • Hrudey SE, Chen W, Rousseaux CG (1996) Bioavailability in environmental risk assessment. Lewis Publications, Boca Raton

    Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thaspi goesingense. Appl Environ Microbiol 70(5):2667–2677

    Article  CAS  Google Scholar 

  • Jana BB (1998) Sweage-fed aquaculture: the Calcutta model1. Ecol Eng 11(1–4):73–85

    Article  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  Google Scholar 

  • Kalay M, Aly O, Canil M (1999) Heavy metal concentrations in fish tissues from the Northeast Mediterranean sea. Bull Environ Contam Toxicol 63(5):673–681

    Article  CAS  Google Scholar 

  • Kara Y (2005) Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale. Int J Environ Sci Technol 2(1):63–67

    CAS  Google Scholar 

  • Kratochvil D, Volesky D (1998) Advances in the biosorption of heavy metals. Tybtech 16(7):291–300

    Article  CAS  Google Scholar 

  • Ling T, Jun R, Fangke Y (2011) Effect of cadmium supply levels to cadmium accumulation by Salix. Int J Environ Sci Technol 8(3):493–500

    CAS  Google Scholar 

  • Long A, Wang W (2005) Assimilation and bioconcentration of Ag and Cd by the marine black bream after waterborne and dietary metal exposure. Environ Toxicol Chem 24(3):709–716

    Article  CAS  Google Scholar 

  • Macey BM, Coyne VE (2005) Improved growth rate and disease resistance of farmed Haliotis midae through probiotic treatment. Aquaculture 245(1–4):249–261

    Article  Google Scholar 

  • Macha M, Taras D, Vahjen W (2004) Specific enumeration of the probiotic strain Enterococcus faecium NCIMB 10415 in the intestinal tract and in faeces of piglets and sows. Arch Anim Nutr 58(6):443–452

    Article  CAS  Google Scholar 

  • Marcussen H, Holm PE, Ha LT, Dalsgaard A (2007) Food safety aspects of toxic element accumulation in fish from wastewater-fed ponds in Hanoi, Vietnam. Trop Med Int Health 12(2):34–39

    Article  CAS  Google Scholar 

  • Min-sheng H, Jing P, Le-ping Z (2001) Removal of heavy metals from aqueous solutions using bacteria. J Shanghai Univ 5(3):253–259

    Article  Google Scholar 

  • Mohideen MMAK, Selva TM, Mohamed SP, Hussain MIZ (2010) Effect of probiotic bacteria on the growth rate of freshwater fish, Catla catla. Int J Biol Technol 1(2):113–117

    Google Scholar 

  • Musikasang H, Tani A, H-kittikun A, Maneerat S (2009) Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J Microbiol Biotechnol 25(8):337–1345

    Article  Google Scholar 

  • Nwachukwu MA, Feng H, Alinnor J (2010) Assessment of heavy metal pollution in soil and their implications within and around mechanic villages. Int J Environ Sci Technol 7(2):347–358

    CAS  Google Scholar 

  • Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H (2005) The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243(1–4):241–254

    Article  Google Scholar 

  • Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64(10):4068–4072

    CAS  Google Scholar 

  • Phuong NTD, Tuan PA (2005) Current status of periurban aquatic production in Hanoi. Urban Agric Mag 14:10–12

    Google Scholar 

  • Qing H, Min-Na D, Hong-Yan Q, Xiang-Ming X, Guo-Qiang Z, Min Y (2007) Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. J Environ Sci 19(9):1114–1119

    Article  Google Scholar 

  • Rengpipat S, Rueangruklikhit T, Piyatiratitivorakul S (2008) Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer. Aquac Res 39(2):134–143

    Article  Google Scholar 

  • Ruangsomboon S, Wongrat L (2006) Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus and C. gariepinus. Aquat Toxicol 78(1):15–20

    Article  CAS  Google Scholar 

  • Ruiz-Barba JL, Maldonado A, Jiménez-Díaz R (2005) Small-scale total DNA extraction from bacteria and yeast for PCR applications. Anal Biochem 347(2):333–335

    Article  CAS  Google Scholar 

  • Scharek L, Guth J, Reiter K, Weyrauch KD, Taras D, Schwerk P, Schierack P, Schmidt MFG, Wieler LH, Tedin K (2005) Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol 105(1–2):151–161

    Article  CAS  Google Scholar 

  • Sugita H, Ishigaki T, Iwai D, Suzuki Y, Okano R, Matsuura S, Asfie M, Aono E, Deguchi Y (1998) Antibacterial abilities of intestinal bacteria from three coastal fishes. Suisan Zoshoku 46(4):563–568

    Google Scholar 

  • Taras D, Vahjen W, Macha M (2006) Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. Anim Sci 84(3):608–617

    CAS  Google Scholar 

  • USEPA (1992) Common chemicals found at superfund sites. U.S. Gov Print Office, Washington, DC, Miner Eng 14:317–340

  • Vahjen W, Jadamus A, Simon O (2002) Influence of a probiotic Enterococcus faecium stain on selected bacterial groups in the small intestine of growing turkey poults. Arch Anim Nutr 56(6):419–429

    CAS  Google Scholar 

  • Wong CK, Wong PPK, Chu LM (2001) Heavy metal concentrations in marine fishes collected from fish culture sites in Hong Kong. Arch Environ Contam Toxicol 40(1):60–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Govt. of Japan for sponsoring the Grant-in-Aid for Scientific Research fund to carry out the present study. Dr. Bhakta is also especially thankful to Japan Society for the Promotion of Science for providing the fellowship under the “FY2009 JSPS postdoctoral fellowship for foreign researcher”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Bhakta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhakta, J.N., Munekage, Y., Ohnishi, K. et al. Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int. J. Environ. Sci. Technol. 9, 433–440 (2012). https://doi.org/10.1007/s13762-012-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0049-3

Keywords

Navigation