Skip to main content
Log in

Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, uncompatibilized and compatibilized blends of low density polyethylene (LDPE) and poly(lactic acid) (PLA) were subjected to several investigations: Fourier transform infrared (FTIR) spectroscopy, morphological analysis and mechanical testing (tensile, impact, microhardness). The copolymer (ethylene-co-glycidyl methacrylate) (EGMA) was used as compatibilizer. The percentages of PLA in LDPE/PLA samples ranged from 0 to 100 wt% while the EGMA was added to the blend 60/40 (LDPE/PLA) at concentrations of 2, 5, 7, 10, 15 and 20 parts per hundred (phr). FTIR analysis showed the absence of any interaction between LDPE and PLA, but after addition of compatibilizer, reactions between epoxy groups of EGMA and carboxylic or hydroxyl groups of PLA were confirmed. Tensile and impact tests revealed a loss of ductility of LDPE with the incorporation of PLA, except for the composition 80/20 (LDPE/PLA). However, the addition of 15 phr of EGMA led to the maximum increase in the elongation-at-break (about three times the value of uncompatibilized blend) and in the impact strength, but a marginal improvement was observed for tensile strength. SEM micrographs confirmed that the enhancement of mechanical properties is due to the improvement of the interfacial adhesion between different phases owing to the presence of EGMA. The microhardness values of the different blends (uncompatibilized or compatibilized) were in good agreement with the macroscopic mechanical properties (tensile and impact strengths).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lugauskas A, Prosychevas I, Levinskaité L, Jaskelevičius B (2004) Physical and chemical aspects of long-term biodeterioration of some polymers and composites. Environ Toxicol 19:318–328

    Article  CAS  Google Scholar 

  2. Guerreiro SDC, João IM, Pimentel Real LE (2012) Evaluation of the influence of testing parameters on the melt flow index of thermoplastics. Polym Test 31:1026–1030

    Article  CAS  Google Scholar 

  3. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    Article  CAS  Google Scholar 

  4. Nicholson JW (2006) The chemistry of polymers, chapter 11. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  5. Corvaglia P, Passaro A, Manni O, Barone L, Maffezzoli A (2006) Recycling of PP-based sandwich panels with continuous fiber composite skins. J Thermoplast Compos Mater 19:731–745

    Article  CAS  Google Scholar 

  6. Yin Q, Dong A, Wang J, Yin Y (2008) Rheological and thermal behaviour of starch/LDPE blends containing EAA. Polym Compos 29:745–749

    Article  CAS  Google Scholar 

  7. Rosa DS, Guedes CGF, Carvalho CLJ (2007) Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci 42:551–557

    Article  CAS  Google Scholar 

  8. Chen GX, Kim HS, Kim ES, Yoon JS (2005) Compatibilization-like effect of reactive organoclay on the poly(l-lactide)/poly(butylene succinate) blends. Polymer 46:11829–11836

    Article  CAS  Google Scholar 

  9. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  10. Wang L, Ma W, Gross RA, McCarthy SP (1998) Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone). Polym Degrad Stab 59:161–168

    Article  CAS  Google Scholar 

  11. Griffin GJL (1977) Biodegradable synthetic resin sheet material containing starch and a fatty material. US Patent 4016117

  12. Otey EH, Mark AM, Mehltretter CL, Russell CR (1974) Starch based film for degradable agricultural mulch. Ind Eng Chem Prod Res Dev 13:90–92

    Article  CAS  Google Scholar 

  13. Albertsson AC, Barenstedt C, Karlsson S, Lindberg T (1995) Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer 36:3075–3083

    Article  CAS  Google Scholar 

  14. Djellali S, Benmahmoud N, Sadoun T (2009) Biodegradation of low density polyethylene/starch films exposed to soil burial. Ann Chim Sci Mat 34:41–48

    Article  CAS  Google Scholar 

  15. Cadar O, Paul M, Roman C, Miclean M, Majdik C (2012) Biodegradation behaviour of poly(lactic acid) and (lactic acid-ethylene glycol-malonic or succinic acid) copolymers under controlled composting conditions in a laboratory test system. Polym Degrad Stab 97:354–357

    Article  CAS  Google Scholar 

  16. Iovino R, Zullo R, Rao MA, Cassar L, Gianfreda L (2008) Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93:147–157

    Article  CAS  Google Scholar 

  17. Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500

    Article  CAS  Google Scholar 

  18. Zhang JF, Sun X (2005) Poly(lactic acid)-based bioplastics. In: Smith R (ed) Biodegradable polymers for industrial applications, chapter 10. Woodhead, Cambridge

    Google Scholar 

  19. Utracki LA (2002) Introduction to polymer blends. In: Utracki LA (ed) Polymer blends handbook, chapter 1. Kluwer, Dordrecht

    Google Scholar 

  20. Anderson KS, Lim SH, Hillmyer MA (2003) Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci 89:3757–3768

    Article  CAS  Google Scholar 

  21. Balakrishnan H, Hassan A, Wahit MU (2010) Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. J Elastom Plast 42:223–239

    Article  CAS  Google Scholar 

  22. Rezgui F, G’Sell C, Dahoun A, Hiver JM, Sadoun T (2011) Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, part 1: microstructural analysis and tensile behavior at constant true strain-rate. Polym Eng Sci 51:117–125

    Article  CAS  Google Scholar 

  23. Wang Y, Hillmyer MA (2001) Polyethylene-poly(l-lactide) diblock copolymers: synthesis and compatibilization of poly(l-lactide)/polyethylene blends. J Polym Sci Part A Polym Chem 39:2755–2766

    Article  CAS  Google Scholar 

  24. Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823

    Article  CAS  Google Scholar 

  25. Harrats C, Thomas S, Groeninckx G (2006) Micro- and nanostructured multiphase polymer blend systems: phase morphology and interfaces, chapter 3. CRC Press, New York

    Google Scholar 

  26. Liu X-Q, Bao R-Y, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2013) Effect of nano-silica on the phase inversion behavior of immiscible PA6/ABS blends. Polym Test 32:141–149

    Article  CAS  Google Scholar 

  27. Don T-M, Hsu Y-C, Tai H-Y, Fu E, Cheng L-P (2012) Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture. J Membrane Sci 415–16:784–792

    Article  Google Scholar 

  28. Maeji NJ, Rasoul F, Kambouris P, Shao L, Whittaker M (2003) Polymers having co-continuous architecture. US Patent 20030022994 A1

  29. Tsai CC, Shih HH, Lai HM (2003) Biodegradable porous devices for tissue engineering. US patent 20030072790 A1

  30. Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene Copolymer. Polymer 50:747–751

    Article  CAS  Google Scholar 

  31. Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN (2011) Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends. Polym Degrad Stab 96:553–560

    Article  CAS  Google Scholar 

  32. Yordanov C, Minkova L (2005) Fractionated crystallization of compatibilized LDPE/PA6 blends. Eur Polym J 41:527–534

    Article  CAS  Google Scholar 

  33. Pluta M, Bartczak Z, Pawlak A, Galeski A, Pracella M (2001) Phase structure and viscoelastic properties of compatibilized blends of PET and HDPE recyclates. J Appl Polym Sci 82:1423–1436

    Article  CAS  Google Scholar 

  34. Henk GM (2009) Particle size measurements: fundamentals, practice, quality, chapter 2. Springer, New York

    Google Scholar 

  35. Balamurugan GP, Maiti SN (2007) Influence of microstructure and deformation behavior on toughening of reactively compatibilized polyamide 6 and poly(ethylene-co-butyl acrylate) blends. Eur Polym J 43:1786–1805

    Article  CAS  Google Scholar 

  36. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21:557–563

    Article  CAS  Google Scholar 

  37. Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273

    Article  CAS  Google Scholar 

  38. Gonçalves CMB, Coutinho JAP, Marrucho IM (2010) Optical properties. In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications, chapter 8. Wiley, New Jersey

    Google Scholar 

  39. Omonov TS, Harrats C, Groeninckx G (2005) Co-continuous and encapsulated three phase morphologies in uncompatibilized and reactively compatibilized polyamide 6/polypropylene/polystyrene ternary blends using two reactive precursors. Polymer 46:12322–12336

    Article  CAS  Google Scholar 

  40. Thirtha V, Lehman R, Nosker T (2006) Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers. Polymer 47:5392–5401

    Article  CAS  Google Scholar 

  41. Su R, Su J, Wang K, Yang C, Zhang Q, Fu Q (2009) Shear-induced change of phase morphology and tensile property in injection-molded bars of high-density polyethylene/polyoxymethylene blends. Eur Polym J 45:747–756

    Article  CAS  Google Scholar 

  42. Willemse RC, Speijer A, Langeraar AE, Posthuma de Boer A (1999) Tensile moduli of co-continuous polymer blends. Polymer 40:6645–6650

    Article  CAS  Google Scholar 

  43. Balta-Calleja FJ, Fakirov S (2007) Microhardness of polymers, chapter 5. Cambridge university press, New York

    Google Scholar 

  44. Minkova L, Hr Yordanov, Filippi S (2002) Characterization of blends of LDPE and PA6 with functionalized polyethylenes. Polymer 43:6195–6204

    Article  CAS  Google Scholar 

  45. Bourry D, Favis BD (1998) Cocontinuity and phase inversion in HDPE/PS blends: influence of interfacial modification and elasticity. J Polym Sci Part B: Polym Phys Ed 36:1889–1899

    Article  CAS  Google Scholar 

  46. Yan L-T, Sheng J (2006) Analysis of phase morphology and dynamics of immiscible PP/PA1010 blends and its partial-miscible blends during melt mixing from SEM patterns. Polymer 47:2894–2903

    Article  CAS  Google Scholar 

  47. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  48. Burgos N, Martino VP, Jiménez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98:651–658

    Article  CAS  Google Scholar 

  49. Ljungberg N, Wesslén B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Djellali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djellali, S., Haddaoui, N., Sadoun, T. et al. Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iran Polym J 22, 245–257 (2013). https://doi.org/10.1007/s13726-013-0126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0126-6

Keywords

Navigation