Skip to main content

Advertisement

Log in

The Link Between Early Life Nutrition and Cancer Risk

  • Cancer (MF Leitzmann, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Traditionally, cancer has been considered a disease caused by genetic alterations. However, there is growing evidence that the environment, particularly a person’s early life environment, can influence cancer risk. The mechanism by which the environment has been suggested to influence cancer risk is through the altered epigenetic regulation of genes. Epigenetic processes, which include DNA methylation, induce stable changes in gene expression without altering the gene sequence. A number of environmental factors, including nutrition, have been shown to alter the epigenome, leading to long term changes in gene expression and an altered susceptibility to disease. Using evidence from epidemiological and experimental studies, this review will discuss the hypothesis that changes in diet during early development can lead to an altered susceptibility to cancer as the result of modified epigenetic regulation of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    Article  CAS  PubMed  Google Scholar 

  2. Godfrey KM, Barker DJ. Fetal programming and adult health. Public Health Nutr. 2001;4:611–24.

    Article  CAS  PubMed  Google Scholar 

  3. Bertram CE, Hanson MA. Animal models and programming of the metabolic syndrome. Br Med Bull. 2001;60:103–21.

    Article  CAS  PubMed  Google Scholar 

  4. McCormack VA, dos Santos Silva I, Koupil I, et al. Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int J Cancer. 2005;115:611–7.

    Article  CAS  PubMed  Google Scholar 

  5. Michels KB, Xue F. Role of birthweight in the etiology of breast cancer. Int J Cancer. 2006;119:2007–25.

    Article  CAS  PubMed  Google Scholar 

  6. Sovio U, Jones R, Dos Santos Silva I, et al. Birth size and survival in breast cancer patients from the Uppsala Birth Cohort Study. Cancer Causes Control. 2013;24:1643–51.

    Article  PubMed  Google Scholar 

  7. Innes K, Byers T, Schymura M. Birth characteristics and subsequent risk for breast cancer in very young women. Am J Epidemiol. 2000;152:1121–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mellemkjaer L, Olsen ML, Sorensen HT, et al. Birth weight and risk of early-onset breast cancer (Denmark). Cancer Causes Control. 2003;14:61–4.

    Article  PubMed  Google Scholar 

  9. Sanderson M, Shu XO, Jin F, et al. Weight at birth and adolescence and premenopausal breast cancer risk in a low-risk population. Br J Cancer. 2002;86:84–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol. 2007;19:1–19.

    Article  PubMed  Google Scholar 

  11. Elias SG, Peeters PH, Grobbee DE, et al. Breast cancer risk after caloric restriction during the 1944-1945 Dutch famine. J Natl Cancer Inst. 2004;96:539–46.

    Article  PubMed  Google Scholar 

  12. Painter RC, De Rooij SR, Bossuyt PM, et al. A possible link between prenatal exposure to famine and breast cancer: a preliminary study. Am J Hum Biol. 2006;18:853–6.

    Article  CAS  PubMed  Google Scholar 

  13. Potischman N, Troisi R. In-utero and early life exposures in relation to risk of breast cancer. Cancer Causes Control. 1999;10:561–73.

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez-Twinn DS, Ekizoglou S, Gusterson BA, et al. Compensatory mammary growth following protein restriction during pregnancy and lactation increases early-onset mammary tumor incidence in rats. Carcinogenesis. 2007;28:545–52.

    Article  CAS  PubMed  Google Scholar 

  15. De AS, Khan G, Hilakivi-Clarke L. High birth weight increases mammary tumorigenesis in rats. Int J Cancer. 2006;119:1537–46.

    Article  Google Scholar 

  16. Hilakivi-Clarke L, Clarke R, Lippman M. The influence of maternal diet on breast cancer risk among female offspring. Nutrition. 1999;15:392–401.

    Article  CAS  PubMed  Google Scholar 

  17. Hilakivi-Clarke L, Clarke R, Onojafe I, et al. A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA. 1997;94:9372–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hilakivi-Clarke L, Onojafe I, Raygada M, et al. Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. J Natl Cancer Inst. 1996;88:1821–7.

    Article  CAS  PubMed  Google Scholar 

  19. Lo CY, Hsieh PH, Chen HF, et al. A maternal high-fat diet during pregnancy in rats results in a greater risk of carcinogen-induced mammary tumors in the female offspring than exposure to a high-fat diet in postnatal life. Int J Cancer. 2009;125:767–73.

    Article  CAS  PubMed  Google Scholar 

  20. Olivo SE, Hilakivi-Clarke L. Opposing effects of prepubertal low- and high-fat n-3 polyunsaturated fatty acid diets on rat mammary tumorigenesis. Carcinogenesis. 2005;26:1563–72.

    Article  CAS  PubMed  Google Scholar 

  21. Larsson SC, Giovannucci E, Wolk A. Folate and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2007;99:64–76.

    Article  CAS  PubMed  Google Scholar 

  22. Stolzenberg-Solomon RZ, Chang SC, Leitzmann MF, et al. Folate intake, alcohol use, and postmenopausal breast cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Clin Nutr. 2006;83:895–904.

    CAS  PubMed  Google Scholar 

  23. Pfeiffer CM, Johnson CL, Jain RB, et al. Trends in blood folate and vitamin B-12 concentrations in the United States, 1988 2004. Am J Clin Nutr. 2007;86:718–27.

    CAS  PubMed  Google Scholar 

  24. Radimer K, Bindewald B, Hughes J, et al. Dietary supplement use by US adults: data from the National Health and Nutrition Examination Survey, 1999-2000. Am J Epidemiol. 2004;160:339–49.

    Article  PubMed  Google Scholar 

  25. Wilson RD, Johnson JA, Wyatt P, et al. Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can. 2007;29:1003–26.

    PubMed  Google Scholar 

  26. Sie KK, Chen J, Sohn KJ, et al. Folic acid supplementation provided in utero and during lactation reduces the number of terminal end buds of the developing mammary glands in the offspring. Cancer Lett. 2009;280:72–7.

    Article  CAS  PubMed  Google Scholar 

  27. • Ly A, Lee H, Chen J, et al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res. 2011;71:988–97. This paper presents some of the first data that maternal folic acid supplemetnation can affect cancer risk in an animal model.

    Article  CAS  PubMed  Google Scholar 

  28. Cox GF, Burger J, Lip V, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71:162–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72:156–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    Article  CAS  PubMed  Google Scholar 

  31. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13.

    Article  CAS  PubMed  Google Scholar 

  32. Reik W, Dean W. DNA methylation and mammalian epigenetics. Electrophoresis. 2001;22:2838–43.

    Article  CAS  PubMed  Google Scholar 

  33. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362–5.

    Article  CAS  PubMed  Google Scholar 

  34. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998;20:116–7.

    Article  CAS  PubMed  Google Scholar 

  35. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  CAS  PubMed  Google Scholar 

  36. Yoder JA, Soman NS, Verdine GL, et al. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol. 1997;270:385–95.

    Article  CAS  PubMed  Google Scholar 

  37. Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000;22:836–45.

    Article  CAS  PubMed  Google Scholar 

  38. Brenner C, Fuks F. A methylation rendezvous: reader meets writers. Dev Cell. 2007;12:843–4.

    Article  CAS  PubMed  Google Scholar 

  39. Yun M, Wu J, Workman JL, et al. Readers of histone modifications. Cell Res. 2011;21:564–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nakayama J, Rice JC, Strahl BD, et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292:110–3.

    Article  CAS  PubMed  Google Scholar 

  41. Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000;25:269–77.

    Article  CAS  PubMed  Google Scholar 

  42. Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.

    Article  CAS  PubMed  Google Scholar 

  43. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457:396–404.

    Article  CAS  PubMed  Google Scholar 

  44. Kim DH, Saetrom P, Snove Jr O, et al. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A. 2008;105:16230–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Bayne EH, Allshire RC. RNA-directed transcriptional gene silencing in mammals. Trends Genet. 2005;21:370–3.

    Article  CAS  PubMed  Google Scholar 

  46. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.

    Article  CAS  PubMed  Google Scholar 

  47. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  48. Fraga MF, Herranz M, Espada J, et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res. 2004;64:5527–34.

    Article  CAS  PubMed  Google Scholar 

  49. Eden A, Gaudet F, Waghmare A, et al. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.

    Article  CAS  PubMed  Google Scholar 

  50. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  CAS  PubMed  Google Scholar 

  51. Rakyan VK, Down TA, Maslau S, et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20:434–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ohm JE, McGarvey KM, Yu X, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39:237–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–9.

    CAS  PubMed  Google Scholar 

  54. Dejeux E, Ronneberg JA, Solvang H, et al. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer. 2010;9:68.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Ashworth A. Familial breast cancer: the first linkage. Lancet Oncol. 2009;10:1212.

    Article  PubMed  Google Scholar 

  56. Scott JM, Weir DG. Folic acid, homocysteine and one-carbon metabolism: a review of the essential biochemistry. J Cardiovasc Risk. 1998;5:223–7.

    Article  CAS  PubMed  Google Scholar 

  57. Wolff GL, Kodell RL, Moore SR, et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12:949–57.

    CAS  PubMed  Google Scholar 

  58. Lillycrop KA, Slater-Jefferies JL, Hanson MA, et al. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97:1064–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Burdge GC, Phillips ES, Dunn RL, et al. Effect of reduced maternal protein consumption during pregnancy in the rat on plasma lipid concentrations and expression of peroxisomal proliferator-activated receptors in the liver and adipose tissue of the offspring. Nutr Res. 2004;24:639–46.

    Article  CAS  Google Scholar 

  60. Plagemann A, Harder T, Brunn M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 2009;587:4963–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. • Zheng S, Pan YX. Histone modifications, not DNA methylation, cause transcriptional repression of p16 (CDKN2A) in the mammary glands of offspring of protein-restricted rats. J Nutr Biochem. 2011;22:567–73. This article presents the first data showing that maternal diet can induce epigenetic changes within tumour suppressor genes in the mammary gland of the offspring.

    Article  CAS  PubMed  Google Scholar 

  62. Zheng S, Rollet M, Yang K et al. (2011) A gestational low-protein diet represses p21WAF1/Cip1 expression in the mammary gland of offspring rats through promoter histone modifications. Br J Nutr, 1–10.

  63. • Zheng S, Li Q, Zhang Y, et al. Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16 (INK4a) gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet. Epigenetics. 2012;7:183–90. This paper reports that high fat feeding during pregnancy can induced epigenetic changes in the tumour suppressor gene P16 in the mammary gland of offpsring.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Talens RP, Boomsma DI, Tobi EW, et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 2010;24:3135–44.

    Article  CAS  PubMed  Google Scholar 

  65. Godfrey KM, Sheppard A, Gluckman PD, et al. Epigenetic gene promoter methylation at birth is associated with child's later adiposity. Diabetes. 2011;60:1528–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. •• Brennan K, Garcia-Closas M, Orr N, et al. Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res. 2012;72:2304–13.

    Article  CAS  PubMed  Google Scholar 

  67. Wong EM, Southey MC, Fox SB, et al. Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer PrevRes (Phila). 2011;4:23–33.

    Article  CAS  Google Scholar 

  68. Fackler MJ, Malone K, Zhang Z, et al. Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:3306–10.

    Article  CAS  Google Scholar 

  69. • Yan PS, Venkataramu C, Ibrahim A, et al. Mapping Geographic Zones of Cancer Risk with Epigenetic Biomarkers in Normal Breast Tissue. Clin Can Res. 2014;12:6626–36. This article identifies a range of epigenetic markers of later cancer risk.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

R. Jordan Price, Graham C. Burdge, and Karen A. Lillycrop declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Lillycrop.

Additional information

This article is part of the Topical Collection on Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, R.J., Burdge, G.C. & Lillycrop, K.A. The Link Between Early Life Nutrition and Cancer Risk. Curr Nutr Rep 4, 6–12 (2015). https://doi.org/10.1007/s13668-014-0113-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-014-0113-3

Keywords

Navigation