Skip to main content

Advertisement

Log in

Dietary Management of Diabetic Chronic Kidney Disease

  • Diabetes and Obesity (MR Carnethon, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Diabetic chronic kidney disease (diabetic nephropathy) is the most common cause for end-stage renal failure and is associated with increased cardiovascular morbidity and mortality. Multiple interventions, including good control of blood pressure, blood glucose, and lipids, have been shown to slow its progression. Dietary management is being considered an adjunct to retard the progression of diabetic nephropathy. Several animal and human studies have evaluated the rationale and potential benefits of using various dietary interventions in patients with diabetic nephropathy. We provide an overview of the current evidence supporting the use of dietary measures in the management of diabetic chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164–76. doi:10.2337/diacare.28.1.164.

    Article  PubMed  Google Scholar 

  2. American Diabetes Association. Nephropathy in diabetes (position statement). Diabetes Care. 2004;27 Suppl 1:s79–83.

    Google Scholar 

  3. International Diabetes Federation. Diabetes atlas. 5th ed. Brussels: International Diabetes Federation; 2011.

    Google Scholar 

  4. Bloomgarden ZT. Type 2 diabetes in the young: the evolving epidemic. Diabetes Care. 2004;27:998–1010.

    Article  PubMed  Google Scholar 

  5. Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005;67:2089.

    Article  PubMed  Google Scholar 

  6. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  CAS  PubMed  Google Scholar 

  7. Nair S, Mishra V, Hayden K, Lisboa P, Pandya B, Vinjamuri S, et al. The 4-variable modification of diet in renal disease formula underestimates glomerular filtration rate in the obese type 2 diabetic subjects with chronic kidney disease. Diabetologia. 2011;54(6):1304–7. doi:10.1007/s00125-011-2085-9. This study compared the difference between estimated and measured glomerular filtration rates in obese and nonobese patients with diabetic chronic kidney disease.

    Article  CAS  PubMed  Google Scholar 

  8. Nair S, O’Brien SV, Hayden K, Pandya B, Lisboa PJG, Hardy KJ, et al. Effect of a cooked meat meal on serum creatinine and estimated glomerular filtration rate in diabetes related kidney disease. Diabetes Care. 2014;37(2):483–7. This study showed significant acute effects of a cooked meat meal on serum creatinine and eGFR in patients with chronic kidney disease.

    Article  CAS  PubMed  Google Scholar 

  9. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Article  Google Scholar 

  10. Bank N. Mechanisms of diabetic hyperfiltration. Kidney Int. 1991;40:792.

    Article  CAS  PubMed  Google Scholar 

  11. Vora JP, Dolben J, Dean JD, et al. Renal hemodynamics in newly presenting non-insulin dependent diabetes mellitus. Kidney Int. 1992;41:829.

    Article  CAS  PubMed  Google Scholar 

  12. Nelson RG, Bennett PH, Beck GJ, et al. Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. N Engl J Med. 1996;335:1636.

    Article  CAS  PubMed  Google Scholar 

  13. Tuttle KR, Bruton JL, Perusek MC, et al. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N Engl J Med. 1991;324:1626.

    Article  CAS  PubMed  Google Scholar 

  14. Vallon V, Richter K, Blantz RC, et al. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol. 1999;10:2569.

    CAS  PubMed  Google Scholar 

  15. Heilig CW, Concepcion LA, Riser BL, et al. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995;96:1802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Habib SL. Alterations in tubular epithelial cells in diabetic nephropathy. J Nephrol. 2013;26(5):865–9.

    Article  CAS  PubMed  Google Scholar 

  17. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556.

    Article  PubMed  Google Scholar 

  18. Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev. 2008;4(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  19. Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes. 1995;44:1139.

    Article  CAS  PubMed  Google Scholar 

  20. Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999;56:393.

    Article  CAS  PubMed  Google Scholar 

  21. Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19:433.

    Article  PubMed  Google Scholar 

  22. Singh AK, Mo W, Dunea G, Arruda JA. Effect of glycated proteins on the matrix of glomerular epithelial cells. J Am Soc Nephrol. 1998;9:802.

    CAS  PubMed  Google Scholar 

  23. de Vriese AS, Tilton RG, Elger M, et al. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol. 2001;12:993.

    PubMed  Google Scholar 

  24. Gaude P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  Google Scholar 

  25. Gall MA, Hougaard P, Borch-Johnsen K, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ. 1997;314:783–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med. 1998;158:998–1004.

    Article  CAS  PubMed  Google Scholar 

  29. Hovind P, Rossing P, Tarnow L, Parving HH. Smoking and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2003;26:911–6.

    Article  PubMed  Google Scholar 

  30. de Boer IH, Sibley SD, Kestenbaum B, et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol. 2007;18:235.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Toeller M, Buyken A, Heitkamp G, Bramswig S, Mann J, Milne R, et al. Protein intake and urinary albumin excretion rates in the EURODIAB IDDM Complications Study. Diabetologia. 1997;40:1219–26.

    Article  CAS  PubMed  Google Scholar 

  32. Pecis M, Azevedo MJ, Gross JL. Chicken and fish diet reduces glomerular hyperfiltration in IDDM patients. Diabetes Care. 1994;17:665–72.

    Article  CAS  PubMed  Google Scholar 

  33. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9. CrossRefMedline.

    Article  Google Scholar 

  34. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.

    Google Scholar 

  35. Wang SL, Head J, Stevens L, Fuller JH. Excess mortality and its relation to hypertension and proteinuria in diabetic patients. The World Health Organization multinational study of vascular disease in diabetes. Diabetes Care. 1996;19:305–12.

    Article  CAS  PubMed  Google Scholar 

  36. Mogensen CE. Prediction of clinical diabetic nephropathy in IDDM patients. Alternatives to microalbuminuria? Diabetes. 1990;39:761.

    Article  CAS  PubMed  Google Scholar 

  37. Diabetes Control and Complications Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group. Kidney Int. 1995;47(6):1703–20 [Medline].

    Article  Google Scholar 

  38. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  39. Ritz E, Keller CK, Bergis KH, Siebels M. Renal involvement in type II diabetes. Curr Opin Nephrol Hypertens. 1994;3(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  40. Bakris GL, Weir MR. Salt intake and reductions in arterial pressure and proteinuria. Is there a direct link? Am J Hypertens. 1996;9(12 Pt 2):200S–6.

    Article  CAS  PubMed  Google Scholar 

  41. Houlihan CA, Akdeniz A, Tsalamandris C, Cooper ME, Jerums G, Gilbert RE. Urinary transforming growth factor-beta excretion in patients with hypertension, type 2 diabetes, and elevated albumin excretion rate: effects of angiotensin receptor blockade and sodium restriction. Diabetes Care. 2002;25(6):1072–7.

    Article  CAS  PubMed  Google Scholar 

  42. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(4 Suppl 3):S1–201.

    Google Scholar 

  43. WHO technical report series; no. 935. Protein and amino acid requirements in human nutrition: report of a joint. FAO/WHO/UNU expert consultation. Geneva, Switzerland; 2002. Issue date 2007.

  44. Fouque D, Kalantar-Zadesh K, Kopple JD, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.

    Article  CAS  PubMed  Google Scholar 

  45. Huang CX, Tighiouart H, Beddhu S, Cheung AK, Dwyer JT, Eknoyan G, et al. Both low muscle mass and low fat are associated with higher all-cause mortality in hemodialysis patients. Kidney Int. 2010;77(7):624–9.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 2007;6(5):376–85.

    Article  CAS  PubMed  Google Scholar 

  47. Kopple JD, Jahn H, Massry SG, Heidland A, editors. Nutrition and metabolism in renal disease. Proceedings of the 5th International Congress on Nutrition and Metabolism in Renal Disease, Strasbourg, France, September 103, 1988. Kidney Int. 1989;37(Suppl 27):S1–308.

  48. Food and Nutrition Board, Protein and Amino Acids. Recommended dietary allowances. 10th ed. Washington, D.C.: National Academy Press; 1989.

    Google Scholar 

  49. MAFF. National food survey 1994. London: HMSO; 1995.

    Google Scholar 

  50. McGandy RB, Barrows Jr CH, Spanias A, Meredith A, Stone JI, Norris AH. Nutrient intakes and energy expenditure in men of different ages. J Gerontol. 1966;21:581–7.

    Article  CAS  PubMed  Google Scholar 

  51. Levey AS, Greene T, Schluchter MD, Cleary PA, Teschan PE, Lorenz RA, et al. Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol. 1993;4(5):1159–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. King AJ, Levey AS. Dietary protein and renal function. J Am Soc Nephrol. 1993;3(11):1723–37.

    CAS  PubMed  Google Scholar 

  53. Addis T, Drury DR. The rate of urea excretion. VII. The effect of various other factors than blood urea concentration on the rate of urea excretion. J Biol Chem. 1923;55(4):629–38.

    CAS  Google Scholar 

  54. Shannon JA, Jolliffe N, Smith HW. The excretion of urine in the dog. IV. The effect of maintenance diet, feeding. etc., upon the quantity of glomerular filtrate. Am J Physiol. 1932;101:625–38.

    CAS  Google Scholar 

  55. Pitts RF. The effects of infusing glycine and varying the dietary protein intake on renal hemodynamics in the dog. Am J Physiol. 1944;142:355–77.

    CAS  Google Scholar 

  56. Wiegman TB, Zlomke AM, MacDougall ML, Kipp DE. Controlled changes in chronic dietary protein intake do not change glomerular filtration rate. Am J Kidney Dis. 1990;25:147–54.

    Article  Google Scholar 

  57. Nielson AL, Bang HO. The influence of diet on renal function of healthy persons. Acta Med Scand. 1948;130:382–8.

    Article  Google Scholar 

  58. Ichikawa I, Purkerson ML, Klahr S, Troy JL, Martinez-Maldonado M, Brenner BM. Mechanism of reduced glomerular filtration rate in chronic malnutrition. J Clin Invest. 1980;65(5):982–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bouby N, Trinh-Trang-Tan MM, Laouari D, Kleinknecht C, Grünfeld JP, Kriz W, et al. Role of the urinary concentrating process in the renal effects of high protein intake. Kidney Int. 1988;34(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  60. Zats R, Meyer TW, Rennke HG, Brenner BM. Predominance of haemodynamic rather than metabolic factors in the pathogenesis of diabetic nephropathy. Proc Natl Acad Sci U S A. 1985;82:5963–7.

    Article  Google Scholar 

  61. Zeller K, Whittaker E, Sullivan L, et al. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991;324:78.

    Article  CAS  PubMed  Google Scholar 

  62. Walker JD, Bending JJ, Dodds RA, et al. Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet. 1989;2:1411.

    Article  CAS  PubMed  Google Scholar 

  63. Rosman JB, Langer K, Brandl M, et al. Protein-restricted diets in chronic renal failure: a four year follow-up shows limited indications. Kidney Int Suppl. 1989;27:S96.

    CAS  PubMed  Google Scholar 

  64. Locatelli F, Alberti D, Graziani G, Buccianti G, Redaelli B, Giangrande A. A prospective, randomised, multicenter trial of the effect of protein restriction on progression of chronic renal insufficiency. Lancet. 1991;337:1299–304.

    Article  CAS  PubMed  Google Scholar 

  65. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330(13):877–84.

    Article  CAS  PubMed  Google Scholar 

  66. Levey AS, Greene T, Sarnak MJ, Wang X, Beck GJ, Kusek JW, et al. Effect of dietary protein restriction on the progression of kidney disease: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis. 2006;48(6):879–88.

    Article  CAS  PubMed  Google Scholar 

  67. Robertson L, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrane Database Syst Rev. 2007;CD002181.

  68. Kopple JD. National Kidney Foundation KDOQI clinical practice guidelines for dietary protein intake for chronic dialysis patients. Am J Kidney Dis. 2001;38(Suppl):S68–73.

    Article  CAS  PubMed  Google Scholar 

  69. Sehgal AR, Sullivan C, Leon JB, Bialostosky K. Public health approach to addressing hyperphosphatemia among dialysis patients. J Ren Nutr. 2008;18:256–61.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432–9. This study has highlighted raised FGF-23levels as an independent risk factor for end-stage renal disease in patients with relatively normal kidney function and for mortality in chronic kidney disease of various aetiologies.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Gutiérrez OM, Wolf M, Taylor EN. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin J Am Soc Nephrol. 2011;6(12):2871–8.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011;22(10):1913–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2005;90:1519–24.

    Article  CAS  PubMed  Google Scholar 

  74. Chue CD, Edwards NC, Davis LJ, et al. Serum phosphate but not pulse wave velocity predicts decline in renal function in patients with early chronic kidney disease. Nephrol Dial Transplant. 2011;26:2576.

    Article  CAS  PubMed  Google Scholar 

  75. Loghman-Adham M. Role of phosphate retention in the progression of renal failure. J Lab Clin Med. 1993;122:16.

    CAS  PubMed  Google Scholar 

  76. Gimenez LF, Solez K, Walker WG. Relation between renal calcium content and renal impairment in 246 human renal biopsies. Kidney Int. 1987;31:93.

    Article  CAS  PubMed  Google Scholar 

  77. Uribarri J. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin Dial. 2007;20:295–301. CrossRefMedline.

    Article  PubMed  Google Scholar 

  78. Moe SM, Zidehsarai MP, Chambers MA, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:257–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Bell RR, Draper HH, Tzeng DYM, Shin HK, Schmidt GR. Physiological responses of human adults to foods containing phosphate additives. J Nutr. 1977;107:42–50.

    CAS  PubMed  Google Scholar 

  80. Murphy-Gutekunst L, Uribarri J. Hidden phosphorus-enhanced meats. J Renal Nutr. 2005;15:e1–4.

    Google Scholar 

  81. McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, et al. A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol. 2013;24(12):2096–103. This randomized, controlled study showed that overall salt restriction resulted in statistically significant reductions in BP, extracellular fluid volume, and albuminuria. It also was shown that these changes were more pronounced in non-CKD patients, suggesting increased salt sensitivity in CKD patients. This study recommended sodium restriction in the management of CKD patients to slow CKD progression and to reduce cardiovascular risk.

    Article  CAS  PubMed  Google Scholar 

  82. Suckling RJ, He FJ, Macgregor GA. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2011;CD006763. This meta-analysis showed a considerably large reduction in BP with salt restriction comparable to single drug therapy. The recommendation was that all patients with diabetes should consider reducing salt intake at least to less than 5-6 g/day.

  83. Garibotto G, DeFerrari G, Robaudo C, Saffioti S, Paoletti E, Pontremoli R, et al. Effects of a protein meal on blood amino acid profile in patients with chronic renal failure. Nephron. 1993;64:216–25.

    Article  CAS  PubMed  Google Scholar 

  84. DeFerrari G, Garibotto G, Robauso C, Sala MR, Tizianello A. Splanchnic exchange of amino acids after amino acid ingestion in patients with chronic renal insufficiency. Am J Clin Nutr. 1988;48:72–83.

    CAS  PubMed  Google Scholar 

  85. Bergstrom J, Furst P, Noree L-O, Vinnars E. Intracellular free amino acids in muscle tissue of patients with chronic uraemia: effect of peritoneal dialysis and infusion of essential amino acids. Clin Sci Mol Med. 1978;54:51–60.

    CAS  PubMed  Google Scholar 

  86. Reyes AA, Purkerson ML, Karl I, Klahr S. Dietary supplementation with L-arginine ameliorates the progression of renal disease in rats with subtotal nephrectomy. Am J Kidney Dis. 1992;20:168–76.

    Article  CAS  PubMed  Google Scholar 

  87. Reyes AA, Karl IE, Kissane J, Klahr S. L-arginine administration prevents glomerular hyperfiltration and decreases proteinuria in diabetic rats. J Am Soc Nephrol. 1993;4:1039–45.

    CAS  PubMed  Google Scholar 

  88. Chen PY, Sanders PW. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest. 1991;88(5):1559–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Bello E, Caramelo C, Lopez MD, Soldevilla MJ, Gonzalez-Pacheco FR, Rovira A, et al. Induction of microalbuminuria by L-arginine infusion in healthy individuals: an insight into the mechanism of proteinuria. AM J Kidney Dis. 1999;33:1018–25.

    Article  CAS  PubMed  Google Scholar 

  90. Watanabe G, Tomiyama H, Doba N. Effects of oral administration of L-arginine on renal function in patients with heart failure. J Hypertens. 2000;18:229–34.

    Article  CAS  PubMed  Google Scholar 

  91. Narita I, Border WA, Ketteler M, Ruoslahti E, Noble NA. L-arginine may mediate the therapeutic effects of low protein diets. Proc Natl Acad Sci U S A. 1995;92:4552–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Bennett-Richards KJ, Kattenhorn M, Donald AE, Oakley GR, Varghese Z, Bruckdorfer KR, et al. Oral L-arginine does not improve endothelial dysfunction in children with chronic renal failure. Kidney Int. 2002;62:1372–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Deepa Beeharry, Franklin Joseph, David Ewins, and Sunil Nair declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beeharry, D., Joseph, F., Ewins, D. et al. Dietary Management of Diabetic Chronic Kidney Disease. Curr Nutr Rep 3, 333–339 (2014). https://doi.org/10.1007/s13668-014-0093-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-014-0093-3

Keywords

Navigation