Skip to main content
Log in

Properties and Strengthening Mechanisms in Cold-Rolled and Aged Cu–3Ag–0.5Zr Alloy

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the present study, the yield strength of 80% cold-rolled and aged Cu–3Ag–0.5Zr alloy was theoretically estimated for five strengthening mechanisms using data obtained from optical microscopy and transmission electron microscopy. For comparison, the mechanical properties were evaluated in different conditions. The theoretical yield strength was in good agreement with the experimental value. The major contribution to yield strength in cold-rolled and aged condition was from coherency strengthening and dislocation strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zhang, L. Meng, Microstructure and properties of Cu–Ag, Cu–Ag–Cr and Cu–Ag–Cr–RE alloys. J. Mater. Sci. Technol. 19, 75 (2003)

    Article  Google Scholar 

  2. H. Groh III, D. Ellis, W. Loewenthal, Comparison of GRCop-84 to other Cu alloys with high thermal conductivities. J. Mater. Eng. Perform. 17, 594 (2008)

    Article  Google Scholar 

  3. A. Gaganov, J. Freudenberger, E. Botcharova, L. Schultz, Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu—7 wt% Ag alloys. Mater. Sci. Eng. A 437, 313 (2006)

    Article  Google Scholar 

  4. S.C. Krishna, B. Thomas Tharian, K. Pant, R.S. Kottada, Age-hardening characteristics of Cu–3Ag–0.5 Zr alloy. Mater. Sci. Forum 710, 563 (2012)

    Article  Google Scholar 

  5. S.C. Krishna, K.T. Tharian, B. Pant, R.S. Kottada, Microstructure and mechanical properties of Cu–Ag–Zr alloy. J. Mater. Eng. Perform. 22, 3884 (2013)

    Article  Google Scholar 

  6. J. Lyubimova, J. Freudenberger, C. Mickel, T. Thersleff, A. Kauffmann, L. Schultz, Microstructural inhomogeneities in Cu–Ag–Zr alloys due to heavy plastic deformation. Mater. Sci. Eng. A 527, 606 (2010)

    Article  Google Scholar 

  7. N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 57, 4198 (2009)

    Article  Google Scholar 

  8. H. Liao, M. Cai, Q. Jing, K. Ding, Effect of cold-rolling on mechanical properties and microstructure of an Al-12%Si-0.2%Mg alloy. J. Mater. Eng. Perform. 20, 1364 (2011)

    Article  Google Scholar 

  9. Y. Sakai, H.J. Schneider-Muntau, Ultra-high strength, high conductivity Cu–Ag alloy wires. Acta Mater. 45, 1017 (1997)

    Article  Google Scholar 

  10. Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, T.G. Langdon, Achieving high strength and high ductility in precipitation-hardened alloys. Adv. Mater. 17, 1599 (2005)

    Article  Google Scholar 

  11. Z. Rdzawski, J. Stobrawa, Thermomechanical processing of Cu–Ni–Si–Cr–Mg alloy. Mater. Sci. Technol. 9, 142 (1993)

    Article  Google Scholar 

  12. N. Hansen, Hall–Petch relation and boundary strengthening. Scripta Mater. 51, 801 (2004)

    Article  Google Scholar 

  13. S. Esmaeili, D. Lloyd, W. Poole, A yield strength model for the Al–Mg–Si–Cu alloy AA6111. Acta Mater. 51, 2243 (2003)

    Article  Google Scholar 

  14. J. Freudenberger, J. Lyubimova, A. Gaganov, H. Klauß, L. Schultz, Mechanical behavior of heavily deformed CuAgZr conductor materials. J. Phys. 240, 1 (2010)

    Google Scholar 

  15. G.E. Dieter, Mechanical Metallurgy, vol. 3 (McGraw-Hill, New York, 1976)

    Google Scholar 

  16. M.J. Saarivirta, High conductivity copper-rich Cu–Zr alloys. Trans. Met. Soc. AIME 218, 431–437 (1960)

    Google Scholar 

  17. A.J. Kulkarni, K. Krishnamurthy, S. Deshmukh, R. Mishra, Microstructural optimization of alloys using a genetic algorithm. Mater. Sci. Eng. A 372, 213 (2004)

    Article  Google Scholar 

  18. T. Gladman, Precipitation hardening in metals. Mater. Sci. Technol. 15, 30 (1999)

    Article  Google Scholar 

  19. A. Ardell, Precipitation hardening. Metall. Trans. A 16, 2131 (1985)

    Article  Google Scholar 

  20. Z. Guo, W. Sha, Quantification of precipitation hardening and evolution of precipitates. Mater. Trans. 43, 1273 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues at Material Characterization Division, VSSC for their support in the characterization of the samples. The authors would also like to express sincere gratitude to the Director, VSSC for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chenna Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S.C., Gangwar, N.K., Jha, A.K. et al. Properties and Strengthening Mechanisms in Cold-Rolled and Aged Cu–3Ag–0.5Zr Alloy. Metallogr. Microstruct. Anal. 3, 323–327 (2014). https://doi.org/10.1007/s13632-014-0147-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-014-0147-3

Keywords

Navigation