Skip to main content

Advertisement

Log in

Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

Aims

The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

Methods

We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

Results

This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

Conclusions

Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, von Gilsa H, Huss J, Kenk G, Kölling C, Kohnle U, Meyer P, Mosandl R, Moosmayer H, Palmer S, Reif A, Rehfuess K, Stimm B (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa. Allg Forst- und Jagdztg 176:60–67

    Google Scholar 

  • Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas M-J, Ciais P (2011) Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Chang Biol 17:3274–3292. doi:10.1111/j.1365-2486.2011.02476.x

    Article  Google Scholar 

  • BGR (2004) Nutzungsdifferenzierte Bodenübersichtskarte der Bundesrepublik Deutschland 1:100.000.000 (Wald-BÜK 1000). Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity— evidence since the middle of the 20th century. Glob Chang Biol 12:862–882

    Article  Google Scholar 

  • Bontemps JD, Hervé JC, Duplat P, Dhôte JF (2012) Shifts in the height-related competitiveness of tree species following recent climate warming and implications for tree community composition: the case of common beech and sessile oak as predominant broadleaved species in Europe. Oikos 121:1287–1299

    Article  Google Scholar 

  • Bugmann H, Bigler C (2011) Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia 165:533–544. doi:10.1007/s00442-010-1837-4

    Article  PubMed  Google Scholar 

  • Bugmann H, Grote R, Lasch P, Lindner M, Suckow F (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K, Sabate S (eds) Impacts of Global Change of Tree Physiology and Forest Ecosystem. Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen. Forestry Science. Kluwer Academic Publisher, Dordrecht, pp 255–261

    Google Scholar 

  • Bugmann H, Palahi M, Bontemps JD, Tomé M (2010) Trends in modeling to address forest management and environmental challenges in Europe. For. Sys. 19(SI):3–7

    Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16:1145–1157

    Article  Google Scholar 

  • Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, Brad St.Clair J (2011) Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manage 261:1121–1142

    Article  Google Scholar 

  • Churkina G, Trusilova K, Vetter M, Dentener F (2007) Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance Manag 2:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Déqué M, Rowell D, Lüthi D, Giorgi F, Christensen J, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Chang 81:53–70

    Article  Google Scholar 

  • de Vries W, Gert Jan R, Per G, Hubert S (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob Change Biol 12:1151–1173

    Article  Google Scholar 

  • de Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003) Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. For Ecol Manag 174:77–95

    Article  Google Scholar 

  • Deutsch C, Journel A (1992) GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New York

    Google Scholar 

  • Di Filippo A, Biondi F, Maugeri M, Schirone B, Piovesan G (2012) Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Glob Chang Biol 18:960–972. doi:10.1111/j.1365-2486.2011.02617.x

    Article  Google Scholar 

  • Eggers J, Lindner M, Zudin S, Zaehle S, Lisk J (2008) Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Glob Chang Biol 14:2288–2303. doi:10.1111/j.1365-2486.2008.01653.x

    Article  Google Scholar 

  • ESBN, EC (2004) European Soil Database (v 2.0). European Soil Bureau Network and the European Commission, EUR 19945 EN, March 2004

  • Fontes L, Bontemps JD, Bugmann H, van Oijen M, Gracia CA, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models supporting forest management in a changing environment. For. Sys. 19(SI):8–29

    Google Scholar 

  • Fuchs T (2008) GPCC Annual report for year 2008. Development of the GPCC data base and analysis products. GPCC, Offenbach, Germany

    Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of Scots pine in the pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosyst 13:978–991. doi:10.1007/s10021-010-9368-8

    Article  CAS  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees - Struct. and. Funct 21:1–11

    Google Scholar 

  • Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561

    Article  Google Scholar 

  • Hollweg H-D, Böhm B, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble Simulations over Europe with the Regional Climate Model CLM forced with IPCC AR4 Global Scenarios. Max-Planck-Institute for Meteorology, Hamburg, Germany

    Google Scholar 

  • Huang J, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283

    Article  CAS  Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  Google Scholar 

  • Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174

    Article  Google Scholar 

  • Kahle H-P, Karjalainen T, Schuck A, Agren GI, Kellomäki S, Mellert K, Prietzel J, Rehfuess K-E, Spiecker H (eds) (2008) Causes and consequences of forest growth trends in Europe. Brill, Leiden

    Google Scholar 

  • Kauppi PE, Mielikainen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Sci 256:70–74

    Article  CAS  Google Scholar 

  • Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Chang Biol 17:565–579. doi:10.1111/j.1365-2486.2010.02254.x

    Article  Google Scholar 

  • Kellomäki S, Leinonen SE (2005) Management of European Forests under Changing Climatic Conditions. Final Report of the Project “Silvicultural Response Strategies to Climatic Change in Management of European Forests” funded by the European Union under the Contract EVK2-2000-00723 (SilviStrat). Research Notes. University of Joensuu, Faculty of Forestry, Joensuu

  • Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–363

    Article  CAS  Google Scholar 

  • Kölling C, Knoke T, Schall P, Ammer C (2009) Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarch 80:42–54

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Sci 309:1360–1362. doi:10.1126/science.1113977

    Article  Google Scholar 

  • Landsberg J (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397

    Article  Google Scholar 

  • Lasch P, Badeck FW, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manage 207:59–74

    Article  Google Scholar 

  • Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009a) Climate Simulation with CLM, Climate of the 20th Century run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_C20_1_D3

  • Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009b) Climate Simulation with CLM, Climate of the 20th Century run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_C20_2_D3

  • Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009c) Climate Simulation with CLM, Scenario A1B run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_A1B_1_D3

  • Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009d) Climate Simulation with CLM, Scenario A1B run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_A1B_2_D3

  • Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009e) Climate simulation with CLM, Scenario B1 run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_B1_1_D3

  • Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009f) Climate Simulation with CLM, Scenario B1 run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_B1_2_D3

  • Lukac M, Calfapietra C, Lagomarsino A, Loreto F (2010) Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol 30:1209–1220. doi:10.1093/treephys/tpq040

    Article  CAS  PubMed  Google Scholar 

  • Medlyn BE, Duursma RA, Zeppel MJB (2011) Forest productivity under climate change: a checklist for evaluating model studies. Wiley Interdiscip Rev Clim Chang 2:332–355

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563. doi:10.1111/j.1466-822X.2005.00190.x

    Article  Google Scholar 

  • Milne R, Van Oijen M (2005) A comparison of two modelling studies of environmental effects on forest carbon stocks across Europe. Ann of For Sci 62:911–923. doi:10.1051/forest:2005082

    Article  CAS  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nat 497:13–14

    Article  CAS  Google Scholar 

  • Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob Chang Biol 13:108–122. doi:10.1111/j.1365-2486.2006.01289.x

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nat 463:747–756

    Article  CAS  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani R (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nat 386:698–702

    Article  CAS  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, Bd V, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung T, Kram T, Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Sv R, Victor N, Dadi Z (2000) IPCC special report emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Sci 300:1560–1563. doi:10.1126/science.1082750

    Article  CAS  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing Twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J of Clim 13:2217–2238. doi:10.1175/1520-0442(2000)0132217:RTCSTC>2.0.CO;2

    Article  Google Scholar 

  • New M, Hulme M, Jones PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J of Clim 12:829–856

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373. doi:10.1073/pnas.1006463107

    Article  CAS  PubMed  Google Scholar 

  • Österle H, Gerstengarbe F-W, Werner PC (2003) Homogenisierung und Aktualisierung des Klimadatensatzes der Climate Research Unit der University of East Anglia, Norwich. Terra Nostra 6:326–329

    Google Scholar 

  • Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20:597–608

    Article  Google Scholar 

  • Pinkard EA, Battaglia M, Bruce J, Leriche A, Kriticos DJ (2010) Process-based modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity under current and future climates. For Ecol Manag 259:839–847

    Article  Google Scholar 

  • Piovesan G, Biondi F, Filippo AD, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Chang Biol 14:1265–1281

    Article  Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    Article  CAS  Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9. doi:10.1007/s00704-004-0058-3

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597. doi:10.1111/j.1461-0248.2008.01172.x

    Article  CAS  PubMed  Google Scholar 

  • Reyer C, Lasch P, Mohren GMJ, Sterck FJ (2010) Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—a model-based analysis. Ann of For Sci 67:805

    Article  Google Scholar 

  • Reyer C, Gutsch M, Lasch P (2012) Simulated forest productivity and biomass changes under global change in Europe. In: Pötzelsberger E, Mäkelä A, Mohren GMJ, Palahí M, Tomé M, Hasenauer H (eds) Modelling Forest Ecosystems - Concepts, Data and Application. Proceedings of the COST FP0603 Spring School, held in Kaprun, Austria, May 9th-13th, 2011. Institute of Silviculture, BOKU, Vienna. ISBN: 978-3-900962-98-2, pp 151–158

  • Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2010) GPCC Status Report,Global Precipitation Climatology Centre. Offenbach, Germany

    Google Scholar 

  • Rudolf B, Scheider U (2005) Calculation of gridded precipitation data fort he global land-surface using in-situ gauge observations. Proc. 2nd Workshop Int. Prec. Work. Gp.

  • Scheider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, Offenbach, Germany

    Google Scholar 

  • Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganicová K, Netherer S, Arpaci A, Bontemps J-D, Bugmann H, González-Olabarria JR, Lasch P, Meredieu C, Moreira F, Schelhaas M-J, Mohren F (2011) Modelling natural disturbances in forest ecosystems: a review. Ecol Model 222:903–924

    Article  Google Scholar 

  • Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manag 258:1735–1750

    Article  Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests. Springer, Berlin

    Google Scholar 

  • Tans P, Keeling R (2012) Trends in Atmospheric Carbon Dioxide. NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Scripps Institution of Oceanography (scrippsco2.ucsd.edu/),

  • USGS (2004) Shuttle Radar Topography Mission, 30 Arc Second scenes (SRTM_GTOPO_u30_n040e020, SRTM_GTOPO_u30_n090e020, SRTM_GTOPO_u30_n090e060, SRTM_GTOPO_u30_n040w020, SRTM_GTOPO_u30_n090w020, SRTM_GTOPO_u30_n040w060, SRTM_GTOPO_u30_n090w060), Unfilled, Unfinished 2.0, Global Land Cover Facility, University of Maryland, Maryland, USA

  • van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK

    Google Scholar 

  • Vayreda J, Martinez-Vilalta J, Gracia M, Retana J (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–1041

    Article  Google Scholar 

  • Wamelink GWW, Wieggers HJJ, Reinds GJ, Kros J, Mol-Dijkstra JP, van Oijen M, de Vries W (2009) Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. For Ecol Manag 258:1794–1805

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Matthias Dobbertin. We are grateful to ICP Forests and in particular Richard Fischer, Matthias Dobbertin, and Oliver Granke for helping us in all aspects concerning the Level-II database. This study was based on data that are part of the UNECE ICP Forests Collaborative Database (see www.icp-forests.org). In particular, data from the following countries and institutions were used: Austria (Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, Wien. Mr. Ferdinand Kristöfel (ferdinand.kristoefel@bfw.gv.at); Belgium (Research Institute for Nature and Forest, Ministère de la Région Wallonne and Mathieu Jonard in particular); Czech Republic (Forestry and Game Management Research Institute, VULHM); Estonia (Estonian Environment Information Centre); Finland (Finnish Forest Research Institute, METLA); France (Ministère de l‘agriculture et de la pêche); Germany (Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Bayerische Landesanstalt für Wald und Forstwirtschaft, Landesforstanstalt Eberswalde, Nordwestdeutsche Forstliche Versuchsanstalt, Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Schwerin, Landesamt für Natur, Umwelt und Verbraucherschutz NRW, Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Ministerium für Umwelt, Energie und Verkehr, Landesamt für Umwelt- und Arbeitsschutz Saarbrücken, Staatsbetrieb Sachsenforst, Thüringer Landesanstalt für Wald, Jagd u. Fischerei); Hungary (State Forest Service); Italy (Corpo Forestale dello Stato-Servizio CONECOFOR); Lithuania (State Forest Survey Service); The Netherlands (Ministry of Agriculture, Nature and Food Quality); Norway (Norwegian Forest and Landscape Institute); Poland (Forest Research Institute); Romania (Forest Research and Management Institute, ICAS); Slovak Republic (National Forest Centre); Spain (Forest Health Unit (SPCAN)/DG Nature and Forest Policy (DGMNyPF)/ Ministerio de Medio Ambiente, y Medio Rural y Marino); Sweden (Swedish Forest Agency); Switzerland (Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, WSL). Data collection and evaluations were co-financed under the LIFE + Regulation (EC) 614/2007 of the European Parliament and of the Council. We also would like to thank Beate Klöcking providing us data for the validation. We greatly acknowledge the provision of the CRUPIK dataset by Peter Werner and Herman Österle, the NORDFLUX data by Pasi Kolari and the many people contributing to the Euroflux/CarboEurope database, in particular D. Papale, R. Valentini, A. Granier, I. Janssens, B. Gielen and R. Ceulemans. Furthermore, Niklaus Zimmermann, Pedro Contro, Michael Benken, Julia Marusczyk and Alexandra Wilke greatly supported the data preparation for the 4C application. We thank Marc Metzger and Marcus Lindner for providing us the environmental zones of Europe data. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract No. 505539) whose support is gratefully acknowledged. We are grateful to the IT-services of the Potsdam Institute for Climate Impact Research for providing excellent computational infrastructure to carry out this study.

Funding

All authors acknowledge funding from the EC FP7 MOTIVE project (grant agreement No. 226544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Reyer.

Additional information

Handling Editor: Jean Daniel Bontemps

Contribution of the co-authors

Christopher Reyer: study design, data preparation, preparation of figures and tables, interpretation and analysis of results, and writing of paper

Petra Lasch-Born: study design, data preparation, model runs, interpretation and analysis of results, and supervision

Felicitas Suckow: data preparation and validation

Martin Gutsch: data preparation

Aline Murawski: data preparation

Tobias Pilz: data preparation and preparation of figures and tables

All authors commented on the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 13197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyer, C., Lasch-Born, P., Suckow, F. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science 71, 211–225 (2014). https://doi.org/10.1007/s13595-013-0306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-013-0306-8

Keywords

Navigation