Skip to main content
Log in

Towards human clinical application of emerging optogenetics technology

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Optogenetic technology has shown great promise as a tool to selectively control the electrical activity of neural circuits via optical stimulation. This control is enabled by genetic delivery and expression of light-sensitive proteins to specific cells. Optogenetics research in neuroscience has rapidly expanded and the technology shows the potential for clinical translation in treating neurological disorders including Parkinson’s disease and stroke. However, challenges still remain with respect to the clinical application of optogenetic technology. These challenges include developing appropriate gene delivery methods, creating more efficient light-sensitive proteins, and enhancing the specificity of targeting tools. This review will focus on the naturally occurring, light-sensitive opsin proteins and their potential for clinical use. Specifically, various methods for the safe and effective delivery of opsin genes to target cells are examined. By testing the delivery, expression, and stimulation of opsin in different organisms, selective delivery, robust expression, and effective activation of opsin can be optimized. Such testing will naturally focus on primates due to physiological similarities with humans. With further progress, the prospect of clinical translation of optogenetic tools — even beyond neuromodulation with devices such as an optogenetic cardiac pacemaker — may be just around the corner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Crick FH. Thinking about the brain. Sci Am. 1979.

  2. Deisseroth K: Optogenetics. Nat Method. 2011; 8(1):26–29.

    Article  Google Scholar 

  3. Guo ZV, Hart AC, Ramanathan S. Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Method. 2009; 6(12):891–896.

    Article  Google Scholar 

  4. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009; 324(5925):354.

    Article  Google Scholar 

  5. Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010; 466(7306):622–626.

    Article  Google Scholar 

  6. Tønnesen J, Sørensen AT, Deisseroth K, Lundberg C, Kokaia M. Optogenetic control of epileptiform activity. Proc Natl Acad Sci. 2009; 106(29):12162–12167.

    Article  Google Scholar 

  7. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat R Neurosci. 2009; 10(12):861–872.

    Article  Google Scholar 

  8. Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science. 2007; 317(5839):819–823.

    Article  Google Scholar 

  9. Monahan PE, Samulski RJ. Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today. 2000; 6(11):433–440.

    Article  Google Scholar 

  10. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV. An optogenetic toolbox designed for primates. Nat Neurosci. 2011; 14(3):387–397.

    Article  Google Scholar 

  11. Almedom RB, Liewald JF, Hernando G, Schultheis C, Rayes D, Pan J, Schedletzky T, Hutter H, Bouzat C, Gottschalk A. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse. EMBO J. 2009; 28(17):2636–2649.

    Article  Google Scholar 

  12. Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M, Gottschalk A. Optogenetic analysis of synaptic function. Nat Method. 2008; 5(10):895–902.

    Article  Google Scholar 

  13. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A. Multimodal fast optical interrogation of neural circuitry. Nature. 2007; 446(7136):633–639.

    Article  Google Scholar 

  14. Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 2010; 468(7326):921–926.

    Article  Google Scholar 

  15. Arrenberg AB, Del Bene F, Baier H. Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci. 2009; 106(42):17968–17973.

    Article  Google Scholar 

  16. Zhu P, Narita Y, Bundschuh ST, Fajardo O, Scharer YPZ, Chattopadhyaya B, Bouldoires EA, Stepien AE, Deisseroth K, Arber S. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system. Front Neural Circuit. 2009; 3(21):1–12.

    Google Scholar 

  17. Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol. 2008; 18(15):1133–1137.

    Article  Google Scholar 

  18. Stroh A, Tsai HC, Wang LP, Zhang F, Kressel J, Aravanis A, Santhanam N, Deisseroth K, Konnerth A, Schneider MB. Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells. 2011; 29(1):78–88.

    Article  Google Scholar 

  19. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009; 324(5930):1080.

    Article  Google Scholar 

  20. Covington HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, LaPlant Q, Mouzon E, Ghose S, Tamminga CA. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci. 2010; 30(48):16082.

    Article  Google Scholar 

  21. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P. Optogenetic control of heart muscle in vitro and in vivo. Nat Method. 2010; 7(11):897–900.

    Article  Google Scholar 

  22. Abbott SBG, Stornetta RL, Socolovsky CS, West GH, Guyenet PG. Photostimulation of channelrhodopsin-2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats. J Physiol. 2009; 587(23):5613–5631.

    Article  Google Scholar 

  23. Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, Fenno LE, Ramakrishnan C, Deisseroth K. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature. 2010; 465(7299):788–792.

    Article  Google Scholar 

  24. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV. An optogenetic toolbox designed for primates. Nat Neurosci. 2011; 14(3):387–397.

    Article  Google Scholar 

  25. Carter M, Shieh JC. Guide to research techniques in neuroscience: Acad Pr; 2009.

  26. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc. 2010; 5(3):439–456.

    Article  Google Scholar 

  27. Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biology. 2008; 36(1):129–139.

    Article  Google Scholar 

  28. Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, Augustine GJ, Feng G. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 2008; 36(1):141–154.

    Article  Google Scholar 

  29. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P. Channelrhodopsin-1: a light-gated proton channel in green algae. Science. 2002; 296(5577):2395.

    Article  Google Scholar 

  30. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. P Natl Acad Sci. 2003; 100(24):13940.

    Article  Google Scholar 

  31. Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J. 2009; 96(5):1803–1814.

    Article  Google Scholar 

  32. Wang H, Sugiyama Y, Hikima T, Sugano E, Tomita H, Takahashi T, Ishizuka T, Yawo H. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from Chlamydomonas. J Biol Chem. 2009; 284(9):5685.

    Article  Google Scholar 

  33. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 2007; 54(2):205–218.

    Article  Google Scholar 

  34. Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng. 2007; 4:S143.

    Article  Google Scholar 

  35. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K. Bi-stable neural state switches. Nat Neurosci. 2008; 12(2):229–234.

    Article  Google Scholar 

  36. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009; 324(5930):1080–1084.

    Article  Google Scholar 

  37. Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci. 2008; 28(28):7025.

    Article  Google Scholar 

  38. Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999; 286(5448):2244–2245.

    Article  Google Scholar 

  39. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, Campbell-Thompson M, Yachnis AT, Sandhaus RA, McElvaney NG. Phase 2 clinical trial of a recombinant adenoassociated virus vector expressing alpha 1 antitrypsin: interim results. Hum Gene Ther. 2011; 22(10):1239–1247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euiheon Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G.U., Kim, HI. & Chung, E. Towards human clinical application of emerging optogenetics technology. Biomed. Eng. Lett. 1, 207–212 (2011). https://doi.org/10.1007/s13534-011-0039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-011-0039-2

Keywords

Navigation