Skip to main content

Advertisement

Log in

Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Epigenetic alterations of the transcription factor 21 (TCF21) gene have been associated with head and neck squamous cell carcinoma (HNSCC) and other tumor entities. So far, however, no reports have appeared in the literature on TCF21 protein expression in HNSCC and its relevance as a putative biomarker.

Methods

TCF21 protein expression was assessed in 74 HNSCCs and 31 benign tonsils by immunohistochemistry. Methylation analyses of the corresponding gene promoter were performed in 45 HNSCCs and 31 benign tonsils. The TCF21 expression levels in the tumors and controls were compared with each other and within each group and, in addition, with the TCF21 promoter methylation status and various clinicopathological characteristics.

Results

Overall, both the expression levels and methylation frequencies of TCF21 were significantly higher in the HNSCCs than in the benign controls (p < 0.001 each). Specifically, TCF21 promoter hypermethylation resulted in a reduced protein expression in a subgroup of the HNSCCs (p = 0.038), but not in the tonsils. In the tonsils, TCF21 protein expression positively correlated with that of CD31 (p = 0.039), a marker for blood vessels. Also, in the tonsils the TCF21 protein methylation frequency showed a positive correlation with age (p = 0.008). The HNSCCs of patients with a positive history for alcohol and nicotine abuse showed higher TCF21 protein expression levels than their respective counterparts (p = 0.028 and p = 0.062, respectively). The same was observed in human papilloma virus (HPV)-negative tumors (p = 0.042), tumors located in the oral cavity (p = 0.016) and early-stage tumors (p = 0.025). Interestingly, expression rates in tumors of the oropharynx, where HPV-positive tumors were most frequently found, tended to be lower (p = 0.065). The methylation frequencies of TCF21 were found to be significantly higher in tumors of patients without nicotine abuse (p = 0.030), in HPV-positive tumors (p = 0.014) and in tumors exhibiting over-expression of p16, a protein induced by HPV (p = 0.006).

Conclusions

Both over-expression and increased promoter methylation of TCF21 were frequently observed in HNSCCs. TCF21 promoter hypermethylation was found to lead to gene silencing in the HNSCCs, but not in the benign tonsils. These epigenetic, and possibly also genetic, alterations of the TCF21 gene in HNSCCs may be driven by HPV infection, nicotine and alcohol abuse, or both. These findings, together with its stage- and primary site-dependent expression, turn TCF21 into a promising candidate biomarker in HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HNSCC:

Head and neck squamous cell carcinoma

HPV:

Human papilloma virus

NSCLC:

Non-small-cell lung cancer

EMT:

Epithelial-mesenchymal transition

CDK:

Cyclin-dependent kinase

RT-PCR:

Real-Time PCR

HBB:

Human Beta-globin

References

  1. C.R. Leemans, B.J. Braakhuis, R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat. Rev. Cancer 11, 9 (2011)

    Article  PubMed  CAS  Google Scholar 

  2. G. D’Souza, A.R. Kreimer, R. Viscidi, M. Pawlita, C. Fakhry, W.M. Koch, W.H. Westra, M.L. Gillison, Case–control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med. 356, 1944 (2007)

    Article  PubMed  Google Scholar 

  3. S. Marur, G. D’Souza, W.H. Westra, A.A. Forastiere, HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 11, 781 (2010)

    Article  PubMed  Google Scholar 

  4. A.R. Kreimer, G.M. Clifford, P. Boyle, S. Franceschi, Human papillomavirus types in head and neck squamous cell carcinoma worldwide: a systematic review. Cancer Epidemiol. Biomarkers Prev. 14, 467 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. N. Termine, V. Panzarella, S. Falaschini, A. Russo, D. Matranga, L. Lo Muzio, G. Campisi, HPV in oral squamous cell carcinoma vs head and neck squamous cell carcinoma biopsies: a meta-analysis (1988–2007). Ann. Oncol. 19, 1681 (2008)

    Article  PubMed  CAS  Google Scholar 

  6. M.B. Gillespie, S. Rubinchik, B. Hoel, N. Sutkowski, Human papillomavirus and oropharyngeal cancer: what you need to know in 2009. Curr. Treat. Options Oncol. 10, 296 (2009)

    Article  PubMed  Google Scholar 

  7. S. Begum, D. Cao, M. Gillison, M. Zahurak, W.H. Westra, Tissue distribution of human papillomavirus 16 DNA integration in patients with tonsillar carcinoma. Clin. Cancer Res. 11, 5694 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. C. Fakhry, W.H. Westra, S. Li, A. Cmelak, J.A. Ridge, H. Pinto, A. Forastiere, M.L. Gillison, Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl. Cancer Inst. 100, 261 (2008)

    Article  PubMed  CAS  Google Scholar 

  9. K.K. Ang, J. Harris, R. Wheeler, R. Weber, D.I. Rosenthal, P.F. Nguyen-Tân, W.H. Westra, C.H. Chung, R.C. Jordan, C. Lu, H. Kim, R. Axelrod, C.C. Silverman, K.P. Redmond, M.L. Gillison, Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363(24) (2010)

  10. D. Weiss, M. Koopmann, C. Rudack, Prevalence and impact on clinicopathological characteristics of human papillomavirus-16 DNA in cervical lymph node metastases of head and neck squamous cell carcinoma. Head Neck 33, 856 (2011)

    Article  PubMed  Google Scholar 

  11. J. Califano, P. van der Riet, W. Westra, H. Nawroz, G. Clayman, S. Piantadosi, R. Corio, D. Lee, B. Greenberg, W. Koch, D. Sidransky, Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 56, 2488 (1996)

    PubMed  CAS  Google Scholar 

  12. J.G. Herman, S.B. Baylin, Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042 (2003)

    Article  PubMed  CAS  Google Scholar 

  13. C.A. Righini, F. de Fraipont, J.F. Timsit, C. Faure, E. Brambilla, E. Reyt, M.C. Favrot, Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin. Cancer Res. 13, 1179 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. A.L. Carvalho, C. Jeronimo, M.M. Kim, R. Henrique, Z. Zhang, M.O. Hoque, S. Chang, M. Brait, C.S. Nayak, W.W. Jiang, Q. Claybourne, Y. Tokumaru, J. Lee, D. Goldenberg, E. Garrett-Mayer, S. Goodman, C.S. Moon, W. Koch, W.H. Westra, D. Sidransky, J.A. Califano, Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin. Cancer Res. 14, 97 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. M. Viswanathan, N. Tsuchida, G. Shanmugam, Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int. J. Cancer 105, 41 (2003)

    Article  PubMed  CAS  Google Scholar 

  16. L.T. Smith, M. Lin, R.M. Brena, J.C. Lang, D.E. Schuller, G.A. Otterson, C.D. Morrison, D.J. Smiraglia, C. Plass, Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc. Natl. Acad. Sci. U S A 103, 982 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. K. Arab, L.T. Smith, A. Gast, D. Weichenhan, J.P. Huang, R. Claus, T. Hielscher, A.V. Espinosa, M.D. Ringel, C.D. Morrison, D. Schadendorf, R. Kumar, C. Plass, Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma. Carcinogenesis 32, 1467 (2011)

    Article  PubMed  CAS  Google Scholar 

  18. V.L. Costa, R. Henrique, S.A. Danielsen, M. Eknaes, P. Patrício, A. Morais, J. Oliveira, R.A. Lothe, M.R. Teixeira, G.E. Lind, C. Jerónimo, TCF21 and PCDH17 methylation: an innovative panel of biomarkers for a simultaneous detection of urological cancers. Epigenetics 6, 1120 (2011)

    Article  PubMed  CAS  Google Scholar 

  19. M. Tessema, R. Willink, K. Do, Y.Y. Yu, W. Yu, E.O. Machida, M. Brock, L. Van Neste, C.A. Stidley, S.B. Baylin, S.A. Belinsky, Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Res. 68, 1707 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. P.P. Anglim, J.S. Galler, M.N. Koss, J.A. Hagen, S. Turla, M. Campan, D.J. Weisenberger, P.W. Laird, K.D. Siegmund, I.A. Laird-Offringa, Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol. Cancer 7, 62 (2008)

    Article  PubMed  Google Scholar 

  21. J. Lu, J.A. Richardson, E.N. Olson, Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech. Dev. 73, 23 (1998)

    Article  PubMed  CAS  Google Scholar 

  22. J.R. Lu, R. Bassel-Duby, A. Hawkins, P. Chang, R. Valdez, H. Wu, L. Gan, J.M. Shelton, J.A. Richardson, E.N. Olson, Control of facial muscle development by MyoR and capsulin. Science 298, 2378 (2002)

    Article  PubMed  CAS  Google Scholar 

  23. S.E. Quaggin, L. Schwartz, S. Cui, P. Igarashi, J. Deimling, M. Post, J. Rossant, The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 126, 5771 (1999)

    PubMed  CAS  Google Scholar 

  24. B. Baum, J. Settleman, M.P. Quinlan, Transitions between epithelial and mesenchymal states in development and disease. Semin. Cell. Dev. Biol. 19, 294 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. H. Hugo, M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams, E.W. Thompson, Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J. Cell. Physiol. 213, 374 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. M. Guarino, B. Rubino, G. Ballabio, The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39, 305 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. P. Dasgupta, W. Rizwani, S. Pillai, R. Kinkade, M. Kovacs, S. Rastogi, S. Banerjee, M. Carless, E. Kim, D. Coppola, E. Haura, S. Chellappan, Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int. J. Cancer 124, 36 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. A.N. Cardesa, N. Gale, A. Nadal, N. Zidar, Tumors of the Oral Cavity and Oropharynx, in World Health Organization Classification of Tumours, Pathology and Genetics of Head and Neck Tumors, ed. By L. Barnes, J.W. Eveson, P. Reichart, D. Sidransky (IARC Press, Lyon, 2005), p. 118

    Google Scholar 

  29. A.M. de Roda Husman, J.M.M. Walboomers, A.J.C. van den Brule, C.J.L.M. Meijer, P.J.F. Snijders, The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human Papillomavirus detection by PCR. J Gen Virol 76, 1057 (1995)

    Article  PubMed  Google Scholar 

  30. M.R. de Araujo, L. De Marco, C.F. Santos, I.R. Rubira-Bullen, G. Ronco, I. Pennini, L. Vizzini, F. Merletti, A. Gillio-Tos, GP5+/6+ SYBR Green methodology for simultaneous screening and quantification of human papillomavirus. J Clin Virol 45, 90 (2009)

    Article  PubMed  Google Scholar 

  31. F. Wang-Johanning, D.W. Lu, Y. Wang, M.R. Johnson, G.L. Johanning, Quantitation of human papillomavirus 16 E6 and E7 DNA and RNA in residual material from ThinPrep papanicolaou tests using real-time polymerase chain reaction analysis. Cancer 94, 2199 (2002)

    Article  PubMed  CAS  Google Scholar 

  32. M.W. Lingen, K.W. Chang, S.J. McMurray, D.B. Solt, M.S. Kies, B.B. Mittal, G.K. Haines, H.J. Pelzer, Overexpression of p53 in squamous cell carcinoma of the tongue in young patients with no known risk factors is not associated with mutations in exons 5–9. Head Neck 22, 328 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. R. Klaes, T. Friedrich, D. Spitkovsky, R. Ridder, W. Rudy, U. Petry, G. Dallenbach-Hellweg, D. Schmidt, M. von Knebel Doeberitz, Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int. J. Cancer 92, 276 (2001)

    Article  PubMed  CAS  Google Scholar 

  34. K.L. Richards, B. Zhang, M. Sun, W. Dong, J. Churchill, L.L. Bachinski, C.D. Wilson, K.A. Baggerly, G. Yin, D.N. Hayes, I.I. Wistuba, R. Krahe, Methylation of the candidate biomarker TCF21 is very frequent across a spectrum of early-stage nonsmall cell lung cancers. Cancer 117, 606 (2011)

    Article  PubMed  CAS  Google Scholar 

  35. N. Shivapurkar, V. Stastny, Y. Xie, C. Prinsen, E. Frenkel, B. Czerniak, F.B. Thunnissen, J.D. Minna, A.F. Gazdar, Differential methylation of a short CpG-rich sequence within exon 1 of TCF21 gene: a promising cancer biomarker assay. Cancer Epidemiol. Biomarkers Prev. 17, 995 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. P.H. Su, Y.W. Lin, R.L. Huang, Y.P. Liao, H.Y. Lee, H.C. Wang, T.K. Chao, C.K. Chen, M.W. Chan, T.Y. Chu, M.H. Yu, H.C. Lai, Epigenetic silencing of PTPRR activates MAPK signaling promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene (2012). doi:10.1038/onc.2012.29

    Google Scholar 

  37. E. Gubanova, B. Brown, S.V. Ivanov, T. Helleday, G.B. Mills, W.G. Yarbrough, N. Issaeva, Downregulation of SMG-1 in HPV-positive head and neck squamous cell carcinoma due to promoter hypermethylation correlates with improved survival. Clin. Cancer Res. 18, 1257 (2012)

    Article  PubMed  CAS  Google Scholar 

  38. J. Jiang, L.J. Zhao, C. Zhao, G. Zhang, Y. Zhao, J.R. Li, X.P. Li, L.H. Wei, Hypomethylated CpG around the transcription start site enables TERT expression and HPV16 E6 regulates TERT methylation in cervical cancer cells. Gynecol. Oncol. 124, 534 (2012)

    Article  PubMed  CAS  Google Scholar 

  39. M.A. Sartor, D.C. Dolinoy, T.R. Jones, J.A. Colacino, M.E. Prince, T.E. Carey, L.S. Rozek, Genome-wide methylation and expression differences in HPV(+) and HPV(−) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics 6, 777 (2011)

    Article  PubMed  CAS  Google Scholar 

  40. P. Yanatatsaneejit, A. Mutirangura, N. Kitkumthorn, Human papillomavirus’s physical state and cyclin A1 promoter methylation in cervical cancer. Int. J. Gynecol. Cancer 21, 902 (2011)

    Article  PubMed  Google Scholar 

  41. W.A. Burgers, L. Blanchon, S. Pradhan, Y. de Launoit, T. Kouzarides, F. Fuks, Viral oncoproteins target the DNA methyltransferases. Oncogene 26, 1650 (2007)

    Article  PubMed  CAS  Google Scholar 

  42. J. Laurson, S. Khan, R. Chung, K. Cross, K. Raj, Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein. Carcinogenesis 31, 918 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The expert technical assistance of Annette Dietrich and Margret Menke is gratefully acknowledged. We thank Dr. Hartmut Schmidt for logistic support in the PCR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, D., Stockmann, C., Schrödter, K. et al. Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma. Cell Oncol. 36, 213–224 (2013). https://doi.org/10.1007/s13402-013-0129-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0129-5

Keywords

Navigation