Skip to main content
Log in

Expression of small nucleolar RNAs in leukemic cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Small nucleolar RNAs (snoRNAs) direct sequence-specific modifications to ribosomal RNA. We hypothesized that the expression of snoRNAs may be altered in leukemic cells.

Methods

The expression of snoRNAs was analyzed in various leukemic cell lines by massive parallel sequencing (SOLiD). Quantitative real-time PCR (RT-qPCR) was used to validate the expression profiles.

Results

Our results show characteristic differences in the expression patterns of snoRNAs between cell lines representing the main subgroups of leukemia, AML, pre-B-ALL and T-ALL, respectively. In RT-qPCR analyses, several snoRNAs were found to be differentially expressed in T-ALL as compared to pre-B-ALL cell lines.

Conclusions

snoRNAs are differentially expressed in various leukemic cell lines and could, therefore, be potentially useful in the classification of leukemia subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

APL:

Acute promyeloid leukemia

BLL:

Burkitt’s lymphoma/leukemia

DE:

Differentially expressed

FC:

Fold change

miRNA:

Micro-RNA

ncRNA:

Non-protein-coding RNA

NSCLC:

Non-small cell lung cancer

RT-qPCR:

Quantitative real-time PCR

scaRNA:

Cajal body-specific RNA

siRNA:

Small interfering RNA

snRNA:

Small nuclear RNA

snoRNA:

Small nucleolar RNA

snoRNP:

Small nucleolar ribonucleoprotein

References

  1. J.S. Mattick, I.V. Makunin, Non-coding RNA. Hum Mol Genet 15, R17–29 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J Pathol 220, 126–139 (2010)

    Article  PubMed  CAS  Google Scholar 

  3. T. Kiss, Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 109, 145–148 (2002)

    Article  PubMed  CAS  Google Scholar 

  4. B.E. Jady, T. Kiss, A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20, 541–551 (2001)

    Article  PubMed  CAS  Google Scholar 

  5. X. Darzacq, B.E. Jady, C. Verheggen, A.M. Kiss, E. Bertrand, T. Kiss, Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21, 2746–2756 (2002)

    Article  PubMed  CAS  Google Scholar 

  6. T. Kiss, E. Fayet-Lebaron, B.E. Jady, Box H/ACA small ribonucleoproteins. Mol Cell. 37, 597–606 (2010)

    Article  PubMed  Google Scholar 

  7. R.D. Leverette, M.T. Andrews, E.S. Maxwell, Mouse U14 snRNA is a processed intron of the cognate hsc70 heat shock pre-messenger RNA. Cell. 71, 1215–1221 (1992)

    Article  PubMed  CAS  Google Scholar 

  8. P. Fragapane, S. Prislei, A. Michienzi, E. Caffarelli, I. Bozzoni, A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. EMBO J. 12, 2921–2928 (1993)

    PubMed  CAS  Google Scholar 

  9. T. Kiss, W. Filipowicz, Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCC1. EMBO J 12, 2913–2920 (1993)

    PubMed  CAS  Google Scholar 

  10. K.T. Tycowski, M.D. Shu, J.A. Steitz, A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes Dev. 7, 1176–1190 (1993)

    Article  PubMed  CAS  Google Scholar 

  11. M.P. Hoeppner, S. White, D.C. Jeffares, A.M. Poole, Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol Evol. 1, 420–428 (2009)

    Article  PubMed  Google Scholar 

  12. K.T. Tycowski, M.D. Shu, J.A. Steitz, A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996)

    Article  PubMed  CAS  Google Scholar 

  13. O. Meyuhas, Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267, 6321–6330 (2000)

    Article  PubMed  CAS  Google Scholar 

  14. J. Cavaille, J.P. Bachellerie, Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78, 443–456 (1996)

    Article  PubMed  CAS  Google Scholar 

  15. N.J. Watkins, R.D. Leverette, L. Xia, M.T. Andrews, E.S. Maxwell, Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA. 2, 118–133 (1996)

    PubMed  CAS  Google Scholar 

  16. S.L. Ooi, D.A. Samarsky, M.J. Fournier, J.D. Boeke, Intronic snoRNA biosynthesis in saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA. 4, 1096–1110 (1998)

    Article  PubMed  CAS  Google Scholar 

  17. P. Pelczar, W. Filipowicz, The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol. 18, 4509–4518 (1998)

    PubMed  CAS  Google Scholar 

  18. C.M. Smith, J.A. Steitz, Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 18, 6897–6909 (1998)

    PubMed  CAS  Google Scholar 

  19. M.E. Askarian-Amiri, J. Crawford, J.D. French, C.E. Smart, M.A. Smith, M.B. Clark, K. Ru, T.R. Mercer, E.R. Thompson, S.R. Lakhani, A.C. Vargas, I.G. Campbell, M.A. Brown, M.E. Dinger, J.S. Mattick, SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 17, 878–891 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. G. Dieci, M. Preti, B. Montanini, Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 94, 83–88 (2009)

    Article  PubMed  CAS  Google Scholar 

  21. R.J. Taft, E.A. Glazov, T. Lassmann, Y. Hayashizaki, P. Carninci, J.S. Mattick, Small RNAs derived from snoRNAs. RNA. 15, 1233–1240 (2009)

    Article  PubMed  CAS  Google Scholar 

  22. M.S. Scott, M. Ono, From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 93, 1987–1992 (2011)

    Article  PubMed  CAS  Google Scholar 

  23. M. Brameier, A. Herwig, R. Reinhardt, L. Walter, J. Gruber, Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011)

    Article  PubMed  CAS  Google Scholar 

  24. S. Anders, W. Huber, Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010)

    Article  PubMed  CAS  Google Scholar 

  25. T.D. Schmittgen, J. Jiang, Q. Liu, L. Yang, A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004)

    Article  PubMed  Google Scholar 

  26. H.E. Gee, F.M. Buffa, C. Camps, A. Ramachandran, R. Leek, M. Taylor, M. Patil, H. Sheldon, G. Betts, J. Homer, C. West, J. Ragoussis, A.L. Harris, The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 104, 1168–1177 (2011)

    Article  PubMed  CAS  Google Scholar 

  27. L.H. Qu, Y. Henry, M. Nicoloso, B. Michot, M.C. Azum, M.H. Renalier, M. Caizergues-Ferrer, J.P. Bachellerie, U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res. 23, 2669–2676 (1995)

    Article  PubMed  CAS  Google Scholar 

  28. A. Rebane, A. Metspalu, U82, a novel snoRNA identified from the fifth intron of human and mouse nucleolin gene. Biochim Biophys Acta. 1446, 426–430 (1999)

    Article  PubMed  CAS  Google Scholar 

  29. G.T. Williams, M. Mourtada-Maarabouni, F. Farzaneh, A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans. 39, 482–486 (2011)

    Article  PubMed  CAS  Google Scholar 

  30. W. Valleron, E. Laprevotte, E.F. Gautier, C. Quelen, C. Demur, E. Delabesse, X. Agirre, F. Prósper, T. Kiss, P. Brousset, Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia (2012). doi:10.1038/leu.2012.111

  31. S.C. Nallar, L. Lin, V. Srivastava, P. Gade, E.R. Hofmann, H. Ahmed, S.P. Reddy, D.V. Kalvakolanu, GRIM-1, a novel growth suppressor, inhibits rRNA maturation by suppressing small nucleolar RNAs. PLoS One 6, e24082 (2011)

    Article  PubMed  CAS  Google Scholar 

  32. X.Y. Dong, C. Rodriguez, P. Guo, X. Sun, J.T. Talbot, W. Zhou, J. Petros, Q. Li, R.L. Vessella, A.S. Kibel, V.L. Stevens, E.E. Calle, J.T. Dong, SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17, 1031–1042 (2008)

    Article  PubMed  CAS  Google Scholar 

  33. X.Y. Dong, P. Guo, J. Boyd, X. Sun, Q. Li, W. Zhou, J.T. Dong, Implication of snoRNA U50 in human breast cancer. J Genet Genomics. 36, 447–454 (2009)

    Article  PubMed  CAS  Google Scholar 

  34. J. Liao, L. Yu, Y. Mei, M. Guarnera, J. Shen, R. Li, Z. Liu, F. Jiang, Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 9, 198 (2010)

    Article  PubMed  Google Scholar 

  35. Y.P. Mei, J.P. Liao, J.P. Shen, L. Yu, B.L. Liu, L. Liu, R.Y. Li, L. Ji, S.G. Dorsey, Z.R. Jiang, R.L. Katz, J.Y. Wang, F. Jiang, Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 31, 2794–2804 (2012)

    Article  PubMed  CAS  Google Scholar 

  36. M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 28, 195–208 (2009)

    Article  PubMed  CAS  Google Scholar 

  37. C. Ender, A. Krek, M.R. Friedlander, M. Beitzinger, L. Weinmann, W. Chen, S. Pfeffer, N. Rajewsky, G. Meister, A human snoRNA with microRNA-like functions. Mol Cell. 32, 519–528 (2008)

    Article  PubMed  CAS  Google Scholar 

  38. M. Ono, M.S. Scott, K. Yamada, F. Avolio, G.J. Barton, A.I. Lamond, Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 39, 3879–3891 (2011)

    Article  PubMed  CAS  Google Scholar 

  39. V. Havelange, R. Garzon, MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol. 85, 935–942 (2010)

    Article  PubMed  CAS  Google Scholar 

  40. S. Bhagavathi, M. Czader, MicroRNAs in benign and malignant hematopoiesis. Arch Pathol Lab Med. 134, 1276–1281 (2010)

    PubMed  CAS  Google Scholar 

  41. P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O’Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513–10518 (2008)

    Article  PubMed  CAS  Google Scholar 

  42. X. Chen, Y. Ba, L. Ma, X. Cai, Y. Yin, K. Wang, J. Guo, Y. Zhang, J. Chen, X. Guo, Q. Li, X. Li, W. Wang, Y. Zhang, J. Wang, X. Jiang, Y. Xiang, C. Xu, P. Zheng, J. Zhang, R. Li, H. Zhang, X. Shang, T. Gong, G. Ning, J. Wang, K. Zen, J. Zhang, C.Y. Zhang, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008)

    Article  PubMed  CAS  Google Scholar 

  43. E.K. Ng, W.W. Chong, H. Jin, E.K. Lam, V.Y. Shin, J. Yu, T.C. Poon, S.S. Ng, J.J. Sung, Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58, 1375–1381 (2009)

    Article  PubMed  CAS  Google Scholar 

  44. M.A. Cortez, G.A. Calin, MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther. 9, 703–711 (2009)

    Article  PubMed  CAS  Google Scholar 

  45. M.I. Aslam, K. Taylor, J.H. Pringle, J.S. Jameson, MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. 96, 702–710 (2009)

    Article  PubMed  CAS  Google Scholar 

  46. M. Tsujiura, D. Ichikawa, S. Komatsu, A. Shiozaki, H. Takeshita, T. Kosuga, H. Konishi, R. Morimura, K. Deguchi, H. Fujiwara, K. Okamoto, E. Otsuji, Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 102, 1174–1179 (2010)

    Article  PubMed  CAS  Google Scholar 

  47. Z. Hu, X. Chen, Y. Zhao, T. Tian, G. Jin, Y. Shu, Y. Chen, L. Xu, K. Zen, C. Zhang, H. Shen, Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 28, 1721–1726 (2010)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Jorma Kulmala for technical assistance. This work was supported by the Academy of Finland Research Council for Health (funding decision number 115260), the Foundation for Paediatric Research in Finland, the Finnish Medical Foundation, the Competitive Research Funding of Tampere University Hospital (grants 9J062, 9K073 and 9M052), the Nona and Kullervo Väre Foundation and the Päivikki and Sakari Sohlberg Foundation. The funding sources had no involvement in the study.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisa J. Teittinen.

Additional information

Authors’ contributions

Kaisa J. Teittinen and Olli Lohi provided conception of the study, designed the study and drafted the manuscript. Kaisa J. Teittinen, Asta Laiho, Annemari Uusimäki and Juha-Pekka Pursiheimo performed the experiments. Kaisa J. Teittinen, Asta Laiho, Attila Gyenesei and Olli Lohi analyzed and interpreted the data. Asta Laiho, Annemari Uusimäki, Juha-Pekka Pursiheimo and Attila Gyenesei revised the manuscript and all authors approved the final version of the submitted manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teittinen, K.J., Laiho, A., Uusimäki, A. et al. Expression of small nucleolar RNAs in leukemic cells. Cell Oncol. 36, 55–63 (2013). https://doi.org/10.1007/s13402-012-0113-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0113-5

Keywords

Navigation