Skip to main content
Log in

Effect of pad surface roughness on material removal rate in chemical mechanical polishing using ultrafine colloidal ceria slurry

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper, effect of ultrafine ceria (UFC) particle of which size is as small as 20 nm on CMP performance was investigated. Compared to conventionally used 100 nm abrasive particle which is made by calcination process, almost 80% scratch reduction was obtained by using UFC. However, a UFC slurry showed unstable material removal rate behavior from less than 200 Å/min to over 2000 Å/min, depending on polishing pad surface characteristics. As pad surface roughness increases, oxide removal rate using UFC drops abruptly to less than 200 Å/min. In order to use UFC for scratch reduction, the pad surface roughness optimization is necessary to avoid a sudden drop in the removal rate. This study gives a possible boundary for pad surface roughness for UFC application for CMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Steigerwald, S. P. Muraka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, p. 1, John Wiley & Sons Inc., New York, USA (1997).

    Book  Google Scholar 

  2. M. R. Oliver (Ed.), Chemical-Mechanical Planarization of Semiconductor Materials, p. 7, Springer, Berlin Heidelberg, Germany (2004).

    Google Scholar 

  3. Y. Li (Ed.), Microelectronic Applications of Chemical Mechanical Planarization, p. 1, John Wiley & Sons Inc., New Jersey, USA (2008).

    Google Scholar 

  4. H. Liang, Tribo. Int. 38 235 (2005).

    Article  CAS  Google Scholar 

  5. J. Van Olmen, J. Coenen, W. Dehaene, K. De Meyer, C. Huyghebaert, A. Jourdain, Guruprasad Katti, A. Mercha, M. Rakowski, M. Stucchi, Y. Travaly, E. Beyne, and B. Swinnen, IEEE Int. Conf. on 3D Sys. Integr. p. 1, IEEE, San Francisco, CA, USA (2009).

    Google Scholar 

  6. S. W. Yoon, D. W. Yang, J. H. Koo, M. Padmanathan, and F. Carson, IEEE Int. Conf. on 3D Sys. Integr. p. 28, IEEE, San Francisco, CA, USA (2009).

    Google Scholar 

  7. A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, CIRP Annals-Manuf. Tech. 57 559 (2008).

    Article  Google Scholar 

  8. N. Saka, T. Eusner, and J.-H. Chun, CIRP Annals-Manuf. Tech. 57 341 (2008).

    Article  Google Scholar 

  9. D. Ryuzaki, Y. Hoshi, Y. Machii, N. Koyama, H. Sakurai, and T. Ashizawa, Proc. Sym. VLSI Tech. p. 168, Jpn. Soc. Appl. Phys., Kyoto, Japan (2009).

    Google Scholar 

  10. H.-J. Kim, B. Kim, B.-U. Yoon, K. Lee, Y. Ko, and C.-J. Kang, Proc. of Int. Conf. on CMP/Planarization Tech., p. 93, AZ, USA (2010).

    Google Scholar 

  11. I.-H. Sung, H. J. Kim, and C. D. Yeo, Appl. Surf. Sci. 258 8298 (2012).

    Article  CAS  Google Scholar 

  12. Y. Wang, Y.-W. Zhao, and J. Gu, J. Mater. Proc. Tech. 183 374 (2007).

    Article  CAS  Google Scholar 

  13. Y. Lee, Y.-J. Seo, J.-W. Yang, H.-H. Kim, Y. Park, and H. Jeaong, Electron. Mater. Lett. 8 81 (2012).

    Article  CAS  Google Scholar 

  14. J.-S. Kim, H.-G. Kang, M. Kanemoto, U. Paik, and J.-G. Park, Jpn. J. Appl. Phys. 46 7671 (2007).

    Article  CAS  Google Scholar 

  15. M.-H. Oh, R. K. Singh, S. Gupta, and S.-B. Cho, Microelec. Eng. 87 2633 (2010).

    Article  CAS  Google Scholar 

  16. H.-G. Kang, T. Katoh, and J.-G. Park, J. Kor. Phys. Soc. 47 705 (2005).

    CAS  Google Scholar 

  17. S.-K. Kim, U. Paik, and J.-G. Park, J. Cer. Proc. Res. 7 53 (2006).

    Google Scholar 

  18. Y. Lee, Y. J. Seo, and H. Jeong, Electron. Mater. Lett. 8 523 (2012).

    Article  CAS  Google Scholar 

  19. S. Raghavan, M. Keswani, and R. Jia, KONA Powder and Particle Journal 26 94 (2008).

    CAS  Google Scholar 

  20. J. Park, H. Jung, K. Yoshida, and M. Kinoshita, Jpn J. Appl. Phys. 47 1028 (2008).

    Article  CAS  Google Scholar 

  21. X. Liao, Y. Zhuang, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, Electrochem. Solid-State Lett. 14, H201 (2011).

    Article  CAS  Google Scholar 

  22. J. Luo and D. A. Dornfeld, IEEE Trans. on Semicon. Manuf. 14 112 (2001).

    Article  Google Scholar 

  23. Y. Sampurno, A. Rice, Y. Zhuang, and A. Philipossian, Electrochem. Solid-State Lett. 14, H318 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S., Kim, H.J., Hong, M.K. et al. Effect of pad surface roughness on material removal rate in chemical mechanical polishing using ultrafine colloidal ceria slurry. Electron. Mater. Lett. 9, 155–159 (2013). https://doi.org/10.1007/s13391-012-2144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2144-5

Keywords

Navigation