Skip to main content
Log in

Stable equilibrium configuration of two bar truss by an efficient nonmonotone global Barzilai–Borwein gradient method in a fuzzy environment

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

The stable equilibrium configuration of structures is a main goal in structural optimization. This goal may be achieved through minimizing the potential energy function. In the real world, sometimes, the input data and parameters of structural engineering design problems may be considered as fuzzy numbers which lead us to develop structural optimization methods in a fuzzy environment. In this regard, the present paper is intended to propose a fuzzy optimization scheme according to the nonmonotone globalization technique, the Barzilai–Borwein (BB) gradient method and the generalized Hukuhara differentiability (gH-differentiability). In fact, using the best benefits of BB-like methods i.e., simplicity, efficiency and low memory requirements, a modified global Barzilai–Borwein (GBB) gradient method is proposed for obtaining a non-dominated solution of the unconstrained fuzzy optimization related to the two bar asymmetric shallow truss in a fuzzy environment. The global convergence to first-order stationary points is also proved and the R-linear convergence rate is established under suitable assumptions. Furthermore, some numerical examples are given to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akaike, H.: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Stat. Math. 11, 1–17 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amini, K., Ahookhosh, M., Nosratipour, H.: An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer. Algorithm 66, 49–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ban, A.I., Bede, B.: Properties of the cross product of fuzzy numbers. J. Fuzzy Math. 14, 513–531 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Barzilai, B., Borwein, J.M.: Methods of conjugate gradients for solving linear systems. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ban, A.I., Bede, B.: Properties of the cross product of fuzzy numbers. J. Fuzzy Math. 14, 513–531 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151, 581–599 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Birgin, E.G., Chambouleyron, I., Martinez, J.M.: Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comput. Phys. 151, 862–880 (1999)

    Article  MATH  Google Scholar 

  10. Buckley, J.J., Abdalla, A.: Monte Carlo methods in fuzzy queuing theory. Soft Comput. 13, 1027–1033 (2009)

    Article  MATH  Google Scholar 

  11. Cadenas, J.M., Verdegay, J.L.: Towards a new strategy for solving fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 8, 231–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chalco-Cano, Y., Rufián-Lizana, A., Román-Flores, H., Jiménez-Gamero, M.D.: Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 219, 49–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chalco-Cano, Y., Silva, G.N., Rufián-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Prog. 106, 403–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. 112(2), 315–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diamond, P., Kloeden, P.E.: Meric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  18. Diamond, P.: Stability and periodicity in fuzzy differential equations. IEEE Trans. Fuzzy Syst. 8(5), 583–590 (2000)

    Article  MATH  Google Scholar 

  19. Fletcher, R.: Low storage methods for unconstrained optimization. Lect. Appl. Math. 26, 165–179 (1999)

    MathSciNet  Google Scholar 

  20. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14, 114–120 (1993)

    Article  Google Scholar 

  21. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grippo, L., Sciandrone, M.: Nonmonotone globalization techniques for the Barzilai–Borwein gradient method. Comput. Optim. Appl. 23, 143–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, P. Tanaka, H.: Fuzzy decision in possibility programming problems. In Proceedings of Asian Fuzzy System Symposium, pp. 278–283 (1996)

  24. Hanss, M.: Applied Fuzzy Arithmetic. Springer, New York (2005)

    MATH  Google Scholar 

  25. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hukuhara, M.: Integration des applications measurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)

    MathSciNet  MATH  Google Scholar 

  27. Jung, C.Y., Pulmano, V.A.: Improved fuzzy linear programming model for structural designs. Comput. Struct. 58, 471–477 (1996)

    Article  MATH  Google Scholar 

  28. Liu, W.B., Dai, Y.H.: Minimization algorithms based on supervisor and searcher cooperation. J. Optim. Theory Appl. 111, 359–379 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lodwick, W.A., Bachman, K.A.: Solving large-scale fuzzy and possibilistic optimization problems. Fuzzy Optim. Decis. Mak. 4(4), 257–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lodwick, W.A., Jamison, K.D.: Theoretical and semantic distinctions of fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization. Fuzzy Sets Syst. 158(17), 1861–1872 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lodwick, W.A.: The relationship between interval, fuzzy and possibilistic optimization. Model. Decis. Artif. Intell. 5861, 55–59 (2009)

    Article  MATH  Google Scholar 

  32. Pathak, V.D., Pirzada, U.M.: The optimality conditions for fuzzy optimization problem under the concept of generalized convexity. Adv. Appl. Math. Anal. 1, 23–38 (2010)

    Google Scholar 

  33. Pirzada, U.M., Pathak, V.D.: Newton method for solving the multi-variable fuzzy optimization problem. J. Optim. Theory Appl. 156, 867–881 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. RamiK, J., Rimanek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16, 123–138 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ramik, J., Vlach, M.: Fuzzy mathematical programming: a unified approach based on fuzzy relation. Fuzzy Optim. Decis. Mak. 1, 335–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rao, S.S.: Description and optimum design of fuzzy mathematical systems. J. Mech. Trans. Autom. Des. 109, 126–132 (1987)

    Article  Google Scholar 

  38. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saito, S., Ishii, H.: L-fuzzy optimization problems by parametric representation. IEEE, N Y 1173–1177 (2001). doi:10.1109/ICSMC.2001.973078

  40. Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for quadratic programs and applications in training support vector machines. Optim. Methods Softw. 20, 353–378 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, H.-C.: An \((\alpha,\beta )\)-optimal solution concept in fuzzy optimization problems. Optimization 53, 203–221 (2004)

    Article  MathSciNet  Google Scholar 

  42. Wu, H.-C.: Duality theory in fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 3, 345–365 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, H.-C.: Fuzzy optimization problemsbased on the embedding theorem and possibility and necessity measures. Math. Comput. Model. 40(3), 329–336 (2004)

    Article  MATH  Google Scholar 

  44. Wu, H.-C.: The Karush–Kuhn–Tucker optimality conditions for optimization problems with fuzzy valued objective functions. Math. Methods Oper. Res. 66, 203–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, H.-C.: The optimality conditions for optimization problems with fuzzy-valued objective functions. Optimization 57, 473–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, C.: Fuzzy optimization of structures by the two-phase method. Comput. Struct. 31(4), 575–580 (1989)

    Article  MathSciNet  Google Scholar 

  47. Yeh, Y.C., Hsu, D.S.: Structural optimization with fuzzy parameters. Comput. Struct. 37(6), 917–924 (1990)

    Article  Google Scholar 

  48. Zadeh, L.A.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control. 8, 59–60 (1963)

    Article  Google Scholar 

  49. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Solaymani Fard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosratipour, H., Fard, O.S., Borzabadi, A.H. et al. Stable equilibrium configuration of two bar truss by an efficient nonmonotone global Barzilai–Borwein gradient method in a fuzzy environment. Afr. Mat. 28, 333–356 (2017). https://doi.org/10.1007/s13370-016-0451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-016-0451-y

Keywords

Mathematics Subject Classification

Navigation